| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * clk-dfll.c - Tegra DFLL clock source common code |
| * |
| * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved. |
| * |
| * Aleksandr Frid <afrid@nvidia.com> |
| * Paul Walmsley <pwalmsley@nvidia.com> |
| * |
| * This library is for the DVCO and DFLL IP blocks on the Tegra124 |
| * SoC. These IP blocks together are also known at NVIDIA as |
| * "CL-DVFS". To try to avoid confusion, this code refers to them |
| * collectively as the "DFLL." |
| * |
| * The DFLL is a root clocksource which tolerates some amount of |
| * supply voltage noise. Tegra124 uses it to clock the fast CPU |
| * complex when the target CPU speed is above a particular rate. The |
| * DFLL can be operated in either open-loop mode or closed-loop mode. |
| * In open-loop mode, the DFLL generates an output clock appropriate |
| * to the supply voltage. In closed-loop mode, when configured with a |
| * target frequency, the DFLL minimizes supply voltage while |
| * delivering an average frequency equal to the target. |
| * |
| * Devices clocked by the DFLL must be able to tolerate frequency |
| * variation. In the case of the CPU, it's important to note that the |
| * CPU cycle time will vary. This has implications for |
| * performance-measurement code and any code that relies on the CPU |
| * cycle time to delay for a certain length of time. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/debugfs.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/i2c.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/pm_opp.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/reset.h> |
| #include <linux/seq_file.h> |
| |
| #include "clk-dfll.h" |
| #include "cvb.h" |
| |
| /* |
| * DFLL control registers - access via dfll_{readl,writel} |
| */ |
| |
| /* DFLL_CTRL: DFLL control register */ |
| #define DFLL_CTRL 0x00 |
| #define DFLL_CTRL_MODE_MASK 0x03 |
| |
| /* DFLL_CONFIG: DFLL sample rate control */ |
| #define DFLL_CONFIG 0x04 |
| #define DFLL_CONFIG_DIV_MASK 0xff |
| #define DFLL_CONFIG_DIV_PRESCALE 32 |
| |
| /* DFLL_PARAMS: tuning coefficients for closed loop integrator */ |
| #define DFLL_PARAMS 0x08 |
| #define DFLL_PARAMS_CG_SCALE (0x1 << 24) |
| #define DFLL_PARAMS_FORCE_MODE_SHIFT 22 |
| #define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT) |
| #define DFLL_PARAMS_CF_PARAM_SHIFT 16 |
| #define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT) |
| #define DFLL_PARAMS_CI_PARAM_SHIFT 8 |
| #define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT) |
| #define DFLL_PARAMS_CG_PARAM_SHIFT 0 |
| #define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT) |
| |
| /* DFLL_TUNE0: delay line configuration register 0 */ |
| #define DFLL_TUNE0 0x0c |
| |
| /* DFLL_TUNE1: delay line configuration register 1 */ |
| #define DFLL_TUNE1 0x10 |
| |
| /* DFLL_FREQ_REQ: target DFLL frequency control */ |
| #define DFLL_FREQ_REQ 0x14 |
| #define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28) |
| #define DFLL_FREQ_REQ_FORCE_SHIFT 16 |
| #define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT) |
| #define FORCE_MAX 2047 |
| #define FORCE_MIN -2048 |
| #define DFLL_FREQ_REQ_SCALE_SHIFT 8 |
| #define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT) |
| #define DFLL_FREQ_REQ_SCALE_MAX 256 |
| #define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7) |
| #define DFLL_FREQ_REQ_MULT_SHIFT 0 |
| #define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT) |
| #define FREQ_MAX 127 |
| |
| /* DFLL_DROOP_CTRL: droop prevention control */ |
| #define DFLL_DROOP_CTRL 0x1c |
| |
| /* DFLL_OUTPUT_CFG: closed loop mode control registers */ |
| /* NOTE: access via dfll_i2c_{readl,writel} */ |
| #define DFLL_OUTPUT_CFG 0x20 |
| #define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30) |
| #define OUT_MASK 0x3f |
| #define DFLL_OUTPUT_CFG_SAFE_SHIFT 24 |
| #define DFLL_OUTPUT_CFG_SAFE_MASK \ |
| (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
| #define DFLL_OUTPUT_CFG_MAX_SHIFT 16 |
| #define DFLL_OUTPUT_CFG_MAX_MASK \ |
| (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT) |
| #define DFLL_OUTPUT_CFG_MIN_SHIFT 8 |
| #define DFLL_OUTPUT_CFG_MIN_MASK \ |
| (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT) |
| #define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7) |
| #define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6) |
| #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0 |
| #define DFLL_OUTPUT_CFG_PWM_DIV_MASK \ |
| (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) |
| |
| /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */ |
| #define DFLL_OUTPUT_FORCE 0x24 |
| #define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6) |
| #define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0 |
| #define DFLL_OUTPUT_FORCE_VALUE_MASK \ |
| (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT) |
| |
| /* DFLL_MONITOR_CTRL: internal monitor data source control */ |
| #define DFLL_MONITOR_CTRL 0x28 |
| #define DFLL_MONITOR_CTRL_FREQ 6 |
| |
| /* DFLL_MONITOR_DATA: internal monitor data output */ |
| #define DFLL_MONITOR_DATA 0x2c |
| #define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16) |
| #define DFLL_MONITOR_DATA_VAL_SHIFT 0 |
| #define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT) |
| |
| /* |
| * I2C output control registers - access via dfll_i2c_{readl,writel} |
| */ |
| |
| /* DFLL_I2C_CFG: I2C controller configuration register */ |
| #define DFLL_I2C_CFG 0x40 |
| #define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20) |
| #define DFLL_I2C_CFG_HS_CODE_SHIFT 16 |
| #define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT) |
| #define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15) |
| #define DFLL_I2C_CFG_SIZE_SHIFT 12 |
| #define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT) |
| #define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10) |
| #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1 |
| #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0 |
| |
| /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */ |
| #define DFLL_I2C_VDD_REG_ADDR 0x44 |
| |
| /* DFLL_I2C_STS: I2C controller status */ |
| #define DFLL_I2C_STS 0x48 |
| #define DFLL_I2C_STS_I2C_LAST_SHIFT 1 |
| #define DFLL_I2C_STS_I2C_REQ_PENDING 0x1 |
| |
| /* DFLL_INTR_STS: DFLL interrupt status register */ |
| #define DFLL_INTR_STS 0x5c |
| |
| /* DFLL_INTR_EN: DFLL interrupt enable register */ |
| #define DFLL_INTR_EN 0x60 |
| #define DFLL_INTR_MIN_MASK 0x1 |
| #define DFLL_INTR_MAX_MASK 0x2 |
| |
| /* |
| * Integrated I2C controller registers - relative to td->i2c_controller_base |
| */ |
| |
| /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */ |
| #define DFLL_I2C_CLK_DIVISOR 0x6c |
| #define DFLL_I2C_CLK_DIVISOR_MASK 0xffff |
| #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16 |
| #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0 |
| #define DFLL_I2C_CLK_DIVISOR_PREDIV 8 |
| #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12 |
| |
| /* |
| * Other constants |
| */ |
| |
| /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */ |
| #define MAX_DFLL_VOLTAGES 33 |
| |
| /* |
| * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware |
| * integrates the DVCO counter over - used for debug rate monitoring and |
| * droop control |
| */ |
| #define REF_CLK_CYC_PER_DVCO_SAMPLE 4 |
| |
| /* |
| * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this |
| * driver, in Hz |
| */ |
| #define REF_CLOCK_RATE 51000000UL |
| |
| #define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2)) |
| #define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2)) |
| |
| /** |
| * enum dfll_ctrl_mode - DFLL hardware operating mode |
| * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) |
| * @DFLL_DISABLED: DFLL not generating an output clock |
| * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage |
| * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match |
| * the requested rate |
| * |
| * The integer corresponding to the last two states, minus one, is |
| * written to the DFLL hardware to change operating modes. |
| */ |
| enum dfll_ctrl_mode { |
| DFLL_UNINITIALIZED = 0, |
| DFLL_DISABLED = 1, |
| DFLL_OPEN_LOOP = 2, |
| DFLL_CLOSED_LOOP = 3, |
| }; |
| |
| /** |
| * enum dfll_tune_range - voltage range that the driver believes it's in |
| * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed |
| * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode) |
| * |
| * Some DFLL tuning parameters may need to change depending on the |
| * DVCO's voltage; these states represent the ranges that the driver |
| * supports. These are software states; these values are never |
| * written into registers. |
| */ |
| enum dfll_tune_range { |
| DFLL_TUNE_UNINITIALIZED = 0, |
| DFLL_TUNE_LOW = 1, |
| }; |
| |
| |
| enum tegra_dfll_pmu_if { |
| TEGRA_DFLL_PMU_I2C = 0, |
| TEGRA_DFLL_PMU_PWM = 1, |
| }; |
| |
| /** |
| * struct dfll_rate_req - target DFLL rate request data |
| * @rate: target frequency, after the postscaling |
| * @dvco_target_rate: target frequency, after the postscaling |
| * @lut_index: LUT index at which voltage the dvco_target_rate will be reached |
| * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register |
| * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register |
| */ |
| struct dfll_rate_req { |
| unsigned long rate; |
| unsigned long dvco_target_rate; |
| int lut_index; |
| u8 mult_bits; |
| u8 scale_bits; |
| }; |
| |
| struct tegra_dfll { |
| struct device *dev; |
| struct tegra_dfll_soc_data *soc; |
| |
| void __iomem *base; |
| void __iomem *i2c_base; |
| void __iomem *i2c_controller_base; |
| void __iomem *lut_base; |
| |
| struct regulator *vdd_reg; |
| struct clk *soc_clk; |
| struct clk *ref_clk; |
| struct clk *i2c_clk; |
| struct clk *dfll_clk; |
| struct reset_control *dvco_rst; |
| unsigned long ref_rate; |
| unsigned long i2c_clk_rate; |
| unsigned long dvco_rate_min; |
| |
| enum dfll_ctrl_mode mode; |
| enum dfll_tune_range tune_range; |
| struct dentry *debugfs_dir; |
| struct clk_hw dfll_clk_hw; |
| const char *output_clock_name; |
| struct dfll_rate_req last_req; |
| unsigned long last_unrounded_rate; |
| |
| /* Parameters from DT */ |
| u32 droop_ctrl; |
| u32 sample_rate; |
| u32 force_mode; |
| u32 cf; |
| u32 ci; |
| u32 cg; |
| bool cg_scale; |
| |
| /* I2C interface parameters */ |
| u32 i2c_fs_rate; |
| u32 i2c_reg; |
| u32 i2c_slave_addr; |
| |
| /* lut array entries are regulator framework selectors or PWM values*/ |
| unsigned lut[MAX_DFLL_VOLTAGES]; |
| unsigned long lut_uv[MAX_DFLL_VOLTAGES]; |
| int lut_size; |
| u8 lut_bottom, lut_min, lut_max, lut_safe; |
| |
| /* PWM interface */ |
| enum tegra_dfll_pmu_if pmu_if; |
| unsigned long pwm_rate; |
| struct pinctrl *pwm_pin; |
| struct pinctrl_state *pwm_enable_state; |
| struct pinctrl_state *pwm_disable_state; |
| u32 reg_init_uV; |
| }; |
| |
| #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) |
| |
| /* mode_name: map numeric DFLL modes to names for friendly console messages */ |
| static const char * const mode_name[] = { |
| [DFLL_UNINITIALIZED] = "uninitialized", |
| [DFLL_DISABLED] = "disabled", |
| [DFLL_OPEN_LOOP] = "open_loop", |
| [DFLL_CLOSED_LOOP] = "closed_loop", |
| }; |
| |
| /* |
| * Register accessors |
| */ |
| |
| static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs) |
| { |
| return __raw_readl(td->base + offs); |
| } |
| |
| static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs) |
| { |
| WARN_ON(offs >= DFLL_I2C_CFG); |
| __raw_writel(val, td->base + offs); |
| } |
| |
| static inline void dfll_wmb(struct tegra_dfll *td) |
| { |
| dfll_readl(td, DFLL_CTRL); |
| } |
| |
| /* I2C output control registers - for addresses above DFLL_I2C_CFG */ |
| |
| static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs) |
| { |
| return __raw_readl(td->i2c_base + offs); |
| } |
| |
| static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs) |
| { |
| __raw_writel(val, td->i2c_base + offs); |
| } |
| |
| static inline void dfll_i2c_wmb(struct tegra_dfll *td) |
| { |
| dfll_i2c_readl(td, DFLL_I2C_CFG); |
| } |
| |
| /** |
| * dfll_is_running - is the DFLL currently generating a clock? |
| * @td: DFLL instance |
| * |
| * If the DFLL is currently generating an output clock signal, return |
| * true; otherwise return false. |
| */ |
| static bool dfll_is_running(struct tegra_dfll *td) |
| { |
| return td->mode >= DFLL_OPEN_LOOP; |
| } |
| |
| /* |
| * Runtime PM suspend/resume callbacks |
| */ |
| |
| /** |
| * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL |
| * @dev: DFLL device * |
| * |
| * Enable all clocks needed by the DFLL. Assumes that clk_prepare() |
| * has already been called on all the clocks. |
| * |
| * XXX Should also handle context restore when returning from off. |
| */ |
| int tegra_dfll_runtime_resume(struct device *dev) |
| { |
| struct tegra_dfll *td = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = clk_enable(td->ref_clk); |
| if (ret) { |
| dev_err(dev, "could not enable ref clock: %d\n", ret); |
| return ret; |
| } |
| |
| ret = clk_enable(td->soc_clk); |
| if (ret) { |
| dev_err(dev, "could not enable register clock: %d\n", ret); |
| clk_disable(td->ref_clk); |
| return ret; |
| } |
| |
| ret = clk_enable(td->i2c_clk); |
| if (ret) { |
| dev_err(dev, "could not enable i2c clock: %d\n", ret); |
| clk_disable(td->soc_clk); |
| clk_disable(td->ref_clk); |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(tegra_dfll_runtime_resume); |
| |
| /** |
| * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL |
| * @dev: DFLL device * |
| * |
| * Disable all clocks needed by the DFLL. Assumes that other code |
| * will later call clk_unprepare(). |
| */ |
| int tegra_dfll_runtime_suspend(struct device *dev) |
| { |
| struct tegra_dfll *td = dev_get_drvdata(dev); |
| |
| clk_disable(td->ref_clk); |
| clk_disable(td->soc_clk); |
| clk_disable(td->i2c_clk); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(tegra_dfll_runtime_suspend); |
| |
| /* |
| * DFLL tuning operations (per-voltage-range tuning settings) |
| */ |
| |
| /** |
| * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage |
| * @td: DFLL instance |
| * |
| * Tune the DFLL oscillator parameters and the CPU clock shaper for |
| * the low-voltage range. These settings are valid for any voltage, |
| * but may not be optimal. |
| */ |
| static void dfll_tune_low(struct tegra_dfll *td) |
| { |
| td->tune_range = DFLL_TUNE_LOW; |
| |
| dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0); |
| dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1); |
| dfll_wmb(td); |
| |
| if (td->soc->set_clock_trimmers_low) |
| td->soc->set_clock_trimmers_low(); |
| } |
| |
| /* |
| * Output clock scaler helpers |
| */ |
| |
| /** |
| * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate |
| * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field) |
| * @dvco_rate: the DVCO rate |
| * |
| * Apply the same scaling formula that the DFLL hardware uses to scale |
| * the DVCO rate. |
| */ |
| static unsigned long dfll_scale_dvco_rate(int scale_bits, |
| unsigned long dvco_rate) |
| { |
| return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX; |
| } |
| |
| /* |
| * DFLL mode switching |
| */ |
| |
| /** |
| * dfll_set_mode - change the DFLL control mode |
| * @td: DFLL instance |
| * @mode: DFLL control mode (see enum dfll_ctrl_mode) |
| * |
| * Change the DFLL's operating mode between disabled, open-loop mode, |
| * and closed-loop mode, or vice versa. |
| */ |
| static void dfll_set_mode(struct tegra_dfll *td, |
| enum dfll_ctrl_mode mode) |
| { |
| td->mode = mode; |
| dfll_writel(td, mode - 1, DFLL_CTRL); |
| dfll_wmb(td); |
| } |
| |
| /* |
| * DVCO rate control |
| */ |
| |
| static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min) |
| { |
| struct dev_pm_opp *opp; |
| unsigned long rate, prev_rate; |
| unsigned long uv, min_uv; |
| |
| min_uv = td->lut_uv[out_min]; |
| for (rate = 0, prev_rate = 0; ; rate++) { |
| opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); |
| if (IS_ERR(opp)) |
| break; |
| |
| uv = dev_pm_opp_get_voltage(opp); |
| dev_pm_opp_put(opp); |
| |
| if (uv && uv > min_uv) |
| return prev_rate; |
| |
| prev_rate = rate; |
| } |
| |
| return prev_rate; |
| } |
| |
| /* |
| * DFLL-to-I2C controller interface |
| */ |
| |
| /** |
| * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests |
| * @td: DFLL instance |
| * @enable: whether to enable or disable the I2C voltage requests |
| * |
| * Set the master enable control for I2C control value updates. If disabled, |
| * then I2C control messages are inhibited, regardless of the DFLL mode. |
| */ |
| static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) |
| { |
| u32 val; |
| |
| val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); |
| |
| if (enable) |
| val |= DFLL_OUTPUT_CFG_I2C_ENABLE; |
| else |
| val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; |
| |
| dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); |
| dfll_i2c_wmb(td); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * DFLL-to-PWM controller interface |
| */ |
| |
| /** |
| * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests |
| * @td: DFLL instance |
| * @enable: whether to enable or disable the PWM voltage requests |
| * |
| * Set the master enable control for PWM control value updates. If disabled, |
| * then the PWM signal is not driven. Also configure the PWM output pad |
| * to the appropriate state. |
| */ |
| static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable) |
| { |
| int ret; |
| u32 val, div; |
| |
| if (enable) { |
| ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state); |
| if (ret < 0) { |
| dev_err(td->dev, "setting enable state failed\n"); |
| return -EINVAL; |
| } |
| val = dfll_readl(td, DFLL_OUTPUT_CFG); |
| val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK; |
| div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate); |
| val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) |
| & DFLL_OUTPUT_CFG_PWM_DIV_MASK; |
| dfll_writel(td, val, DFLL_OUTPUT_CFG); |
| dfll_wmb(td); |
| |
| val |= DFLL_OUTPUT_CFG_PWM_ENABLE; |
| dfll_writel(td, val, DFLL_OUTPUT_CFG); |
| dfll_wmb(td); |
| } else { |
| ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state); |
| if (ret < 0) |
| dev_warn(td->dev, "setting disable state failed\n"); |
| |
| val = dfll_readl(td, DFLL_OUTPUT_CFG); |
| val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE; |
| dfll_writel(td, val, DFLL_OUTPUT_CFG); |
| dfll_wmb(td); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_set_force_output_value - set fixed value for force output |
| * @td: DFLL instance |
| * @out_val: value to force output |
| * |
| * Set the fixed value for force output, DFLL will output this value when |
| * force output is enabled. |
| */ |
| static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val) |
| { |
| u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE); |
| |
| val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK); |
| dfll_writel(td, val, DFLL_OUTPUT_FORCE); |
| dfll_wmb(td); |
| |
| return dfll_readl(td, DFLL_OUTPUT_FORCE); |
| } |
| |
| /** |
| * dfll_set_force_output_enabled - enable/disable force output |
| * @td: DFLL instance |
| * @enable: whether to enable or disable the force output |
| * |
| * Set the enable control for fouce output with fixed value. |
| */ |
| static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable) |
| { |
| u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE); |
| |
| if (enable) |
| val |= DFLL_OUTPUT_FORCE_ENABLE; |
| else |
| val &= ~DFLL_OUTPUT_FORCE_ENABLE; |
| |
| dfll_writel(td, val, DFLL_OUTPUT_FORCE); |
| dfll_wmb(td); |
| } |
| |
| /** |
| * dfll_force_output - force output a fixed value |
| * @td: DFLL instance |
| * @out_sel: value to force output |
| * |
| * Set the fixed value for force output, DFLL will output this value. |
| */ |
| static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel) |
| { |
| u32 val; |
| |
| if (out_sel > OUT_MASK) |
| return -EINVAL; |
| |
| val = dfll_set_force_output_value(td, out_sel); |
| if ((td->mode < DFLL_CLOSED_LOOP) && |
| !(val & DFLL_OUTPUT_FORCE_ENABLE)) { |
| dfll_set_force_output_enabled(td, true); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_load_lut - load the voltage lookup table |
| * @td: struct tegra_dfll * |
| * |
| * Load the voltage-to-PMIC register value lookup table into the DFLL |
| * IP block memory. Look-up tables can be loaded at any time. |
| */ |
| static void dfll_load_i2c_lut(struct tegra_dfll *td) |
| { |
| int i, lut_index; |
| u32 val; |
| |
| for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { |
| if (i < td->lut_min) |
| lut_index = td->lut_min; |
| else if (i > td->lut_max) |
| lut_index = td->lut_max; |
| else |
| lut_index = i; |
| |
| val = regulator_list_hardware_vsel(td->vdd_reg, |
| td->lut[lut_index]); |
| __raw_writel(val, td->lut_base + i * 4); |
| } |
| |
| dfll_i2c_wmb(td); |
| } |
| |
| /** |
| * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface |
| * @td: DFLL instance |
| * |
| * During DFLL driver initialization, program the DFLL-I2C interface |
| * with the PMU slave address, vdd register offset, and transfer mode. |
| * This data is used by the DFLL to automatically construct I2C |
| * voltage-set commands, which are then passed to the DFLL's internal |
| * I2C controller. |
| */ |
| static void dfll_init_i2c_if(struct tegra_dfll *td) |
| { |
| u32 val; |
| |
| if (td->i2c_slave_addr > 0x7f) { |
| val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; |
| val |= DFLL_I2C_CFG_SLAVE_ADDR_10; |
| } else { |
| val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; |
| } |
| val |= DFLL_I2C_CFG_SIZE_MASK; |
| val |= DFLL_I2C_CFG_ARB_ENABLE; |
| dfll_i2c_writel(td, val, DFLL_I2C_CFG); |
| |
| dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); |
| |
| val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); |
| BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); |
| val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; |
| |
| /* default hs divisor just in case */ |
| val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; |
| __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); |
| dfll_i2c_wmb(td); |
| } |
| |
| /** |
| * dfll_init_out_if - prepare DFLL-to-PMIC interface |
| * @td: DFLL instance |
| * |
| * During DFLL driver initialization or resume from context loss, |
| * disable the I2C command output to the PMIC, set safe voltage and |
| * output limits, and disable and clear limit interrupts. |
| */ |
| static void dfll_init_out_if(struct tegra_dfll *td) |
| { |
| u32 val; |
| |
| td->lut_min = td->lut_bottom; |
| td->lut_max = td->lut_size - 1; |
| td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0); |
| |
| /* clear DFLL_OUTPUT_CFG before setting new value */ |
| dfll_writel(td, 0, DFLL_OUTPUT_CFG); |
| dfll_wmb(td); |
| |
| val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | |
| (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | |
| (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); |
| dfll_writel(td, val, DFLL_OUTPUT_CFG); |
| dfll_wmb(td); |
| |
| dfll_writel(td, 0, DFLL_OUTPUT_FORCE); |
| dfll_i2c_writel(td, 0, DFLL_INTR_EN); |
| dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, |
| DFLL_INTR_STS); |
| |
| if (td->pmu_if == TEGRA_DFLL_PMU_PWM) { |
| u32 vinit = td->reg_init_uV; |
| int vstep = td->soc->alignment.step_uv; |
| unsigned long vmin = td->lut_uv[0]; |
| |
| /* set initial voltage */ |
| if ((vinit >= vmin) && vstep) { |
| unsigned int vsel; |
| |
| vsel = DIV_ROUND_UP((vinit - vmin), vstep); |
| dfll_force_output(td, vsel); |
| } |
| } else { |
| dfll_load_i2c_lut(td); |
| dfll_init_i2c_if(td); |
| } |
| } |
| |
| /* |
| * Set/get the DFLL's targeted output clock rate |
| */ |
| |
| /** |
| * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate |
| * @td: DFLL instance |
| * @rate: clock rate |
| * |
| * Determines the index of a I2C LUT entry for a voltage that approximately |
| * produces the given DFLL clock rate. This is used when forcing a value |
| * to the integrator during rate changes. Returns -ENOENT if a suitable |
| * LUT index is not found. |
| */ |
| static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) |
| { |
| struct dev_pm_opp *opp; |
| int i, align_step; |
| |
| opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); |
| if (IS_ERR(opp)) |
| return PTR_ERR(opp); |
| |
| align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv; |
| dev_pm_opp_put(opp); |
| |
| for (i = td->lut_bottom; i < td->lut_size; i++) { |
| if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step) |
| return i; |
| } |
| |
| return -ENOENT; |
| } |
| |
| /** |
| * dfll_calculate_rate_request - calculate DFLL parameters for a given rate |
| * @td: DFLL instance |
| * @req: DFLL-rate-request structure |
| * @rate: the desired DFLL rate |
| * |
| * Populate the DFLL-rate-request record @req fields with the scale_bits |
| * and mult_bits fields, based on the target input rate. Returns 0 upon |
| * success, or -EINVAL if the requested rate in req->rate is too high |
| * or low for the DFLL to generate. |
| */ |
| static int dfll_calculate_rate_request(struct tegra_dfll *td, |
| struct dfll_rate_req *req, |
| unsigned long rate) |
| { |
| u32 val; |
| |
| /* |
| * If requested rate is below the minimum DVCO rate, active the scaler. |
| * In the future the DVCO minimum voltage should be selected based on |
| * chip temperature and the actual minimum rate should be calibrated |
| * at runtime. |
| */ |
| req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; |
| if (rate < td->dvco_rate_min) { |
| int scale; |
| |
| scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, |
| td->dvco_rate_min / 1000); |
| if (!scale) { |
| dev_err(td->dev, "%s: Rate %lu is too low\n", |
| __func__, rate); |
| return -EINVAL; |
| } |
| req->scale_bits = scale - 1; |
| rate = td->dvco_rate_min; |
| } |
| |
| /* Convert requested rate into frequency request and scale settings */ |
| val = DVCO_RATE_TO_MULT(rate, td->ref_rate); |
| if (val > FREQ_MAX) { |
| dev_err(td->dev, "%s: Rate %lu is above dfll range\n", |
| __func__, rate); |
| return -EINVAL; |
| } |
| req->mult_bits = val; |
| req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); |
| req->rate = dfll_scale_dvco_rate(req->scale_bits, |
| req->dvco_target_rate); |
| req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); |
| if (req->lut_index < 0) |
| return req->lut_index; |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_set_frequency_request - start the frequency change operation |
| * @td: DFLL instance |
| * @req: rate request structure |
| * |
| * Tell the DFLL to try to change its output frequency to the |
| * frequency represented by @req. DFLL must be in closed-loop mode. |
| */ |
| static void dfll_set_frequency_request(struct tegra_dfll *td, |
| struct dfll_rate_req *req) |
| { |
| u32 val = 0; |
| int force_val; |
| int coef = 128; /* FIXME: td->cg_scale? */; |
| |
| force_val = (req->lut_index - td->lut_safe) * coef / td->cg; |
| force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); |
| |
| val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; |
| val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; |
| val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & |
| DFLL_FREQ_REQ_FORCE_MASK; |
| val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; |
| |
| dfll_writel(td, val, DFLL_FREQ_REQ); |
| dfll_wmb(td); |
| } |
| |
| /** |
| * tegra_dfll_request_rate - set the next rate for the DFLL to tune to |
| * @td: DFLL instance |
| * @rate: clock rate to target |
| * |
| * Convert the requested clock rate @rate into the DFLL control logic |
| * settings. In closed-loop mode, update new settings immediately to |
| * adjust DFLL output rate accordingly. Otherwise, just save them |
| * until the next switch to closed loop. Returns 0 upon success, |
| * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL |
| * if @rate is outside the DFLL's tunable range. |
| */ |
| static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) |
| { |
| int ret; |
| struct dfll_rate_req req; |
| |
| if (td->mode == DFLL_UNINITIALIZED) { |
| dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", |
| __func__, mode_name[td->mode]); |
| return -EPERM; |
| } |
| |
| ret = dfll_calculate_rate_request(td, &req, rate); |
| if (ret) |
| return ret; |
| |
| td->last_unrounded_rate = rate; |
| td->last_req = req; |
| |
| if (td->mode == DFLL_CLOSED_LOOP) |
| dfll_set_frequency_request(td, &td->last_req); |
| |
| return 0; |
| } |
| |
| /* |
| * DFLL enable/disable & open-loop <-> closed-loop transitions |
| */ |
| |
| /** |
| * dfll_disable - switch from open-loop mode to disabled mode |
| * @td: DFLL instance |
| * |
| * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success |
| * or -EPERM if the DFLL is not currently in open-loop mode. |
| */ |
| static int dfll_disable(struct tegra_dfll *td) |
| { |
| if (td->mode != DFLL_OPEN_LOOP) { |
| dev_err(td->dev, "cannot disable DFLL in %s mode\n", |
| mode_name[td->mode]); |
| return -EINVAL; |
| } |
| |
| dfll_set_mode(td, DFLL_DISABLED); |
| pm_runtime_put_sync(td->dev); |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_enable - switch a disabled DFLL to open-loop mode |
| * @td: DFLL instance |
| * |
| * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success |
| * or -EPERM if the DFLL is not currently disabled. |
| */ |
| static int dfll_enable(struct tegra_dfll *td) |
| { |
| if (td->mode != DFLL_DISABLED) { |
| dev_err(td->dev, "cannot enable DFLL in %s mode\n", |
| mode_name[td->mode]); |
| return -EPERM; |
| } |
| |
| pm_runtime_get_sync(td->dev); |
| dfll_set_mode(td, DFLL_OPEN_LOOP); |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_set_open_loop_config - prepare to switch to open-loop mode |
| * @td: DFLL instance |
| * |
| * Prepare to switch the DFLL to open-loop mode. This switches the |
| * DFLL to the low-voltage tuning range, ensures that I2C output |
| * forcing is disabled, and disables the output clock rate scaler. |
| * The DFLL's low-voltage tuning range parameters must be |
| * characterized to keep the downstream device stable at any DVCO |
| * input voltage. No return value. |
| */ |
| static void dfll_set_open_loop_config(struct tegra_dfll *td) |
| { |
| u32 val; |
| |
| /* always tune low (safe) in open loop */ |
| if (td->tune_range != DFLL_TUNE_LOW) |
| dfll_tune_low(td); |
| |
| val = dfll_readl(td, DFLL_FREQ_REQ); |
| val |= DFLL_FREQ_REQ_SCALE_MASK; |
| val &= ~DFLL_FREQ_REQ_FORCE_ENABLE; |
| dfll_writel(td, val, DFLL_FREQ_REQ); |
| dfll_wmb(td); |
| } |
| |
| /** |
| * tegra_dfll_lock - switch from open-loop to closed-loop mode |
| * @td: DFLL instance |
| * |
| * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, |
| * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the |
| * DFLL is not currently in open-loop mode. |
| */ |
| static int dfll_lock(struct tegra_dfll *td) |
| { |
| struct dfll_rate_req *req = &td->last_req; |
| |
| switch (td->mode) { |
| case DFLL_CLOSED_LOOP: |
| return 0; |
| |
| case DFLL_OPEN_LOOP: |
| if (req->rate == 0) { |
| dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| if (td->pmu_if == TEGRA_DFLL_PMU_PWM) |
| dfll_pwm_set_output_enabled(td, true); |
| else |
| dfll_i2c_set_output_enabled(td, true); |
| |
| dfll_set_mode(td, DFLL_CLOSED_LOOP); |
| dfll_set_frequency_request(td, req); |
| dfll_set_force_output_enabled(td, false); |
| return 0; |
| |
| default: |
| BUG_ON(td->mode > DFLL_CLOSED_LOOP); |
| dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", |
| __func__, mode_name[td->mode]); |
| return -EPERM; |
| } |
| } |
| |
| /** |
| * tegra_dfll_unlock - switch from closed-loop to open-loop mode |
| * @td: DFLL instance |
| * |
| * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, |
| * or -EPERM if the DFLL is not currently in open-loop mode. |
| */ |
| static int dfll_unlock(struct tegra_dfll *td) |
| { |
| switch (td->mode) { |
| case DFLL_CLOSED_LOOP: |
| dfll_set_open_loop_config(td); |
| dfll_set_mode(td, DFLL_OPEN_LOOP); |
| if (td->pmu_if == TEGRA_DFLL_PMU_PWM) |
| dfll_pwm_set_output_enabled(td, false); |
| else |
| dfll_i2c_set_output_enabled(td, false); |
| return 0; |
| |
| case DFLL_OPEN_LOOP: |
| return 0; |
| |
| default: |
| BUG_ON(td->mode > DFLL_CLOSED_LOOP); |
| dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", |
| __func__, mode_name[td->mode]); |
| return -EPERM; |
| } |
| } |
| |
| /* |
| * Clock framework integration |
| * |
| * When the DFLL is being controlled by the CCF, always enter closed loop |
| * mode when the clk is enabled. This requires that a DFLL rate request |
| * has been set beforehand, which implies that a clk_set_rate() call is |
| * always required before a clk_enable(). |
| */ |
| |
| static int dfll_clk_is_enabled(struct clk_hw *hw) |
| { |
| struct tegra_dfll *td = clk_hw_to_dfll(hw); |
| |
| return dfll_is_running(td); |
| } |
| |
| static int dfll_clk_enable(struct clk_hw *hw) |
| { |
| struct tegra_dfll *td = clk_hw_to_dfll(hw); |
| int ret; |
| |
| ret = dfll_enable(td); |
| if (ret) |
| return ret; |
| |
| ret = dfll_lock(td); |
| if (ret) |
| dfll_disable(td); |
| |
| return ret; |
| } |
| |
| static void dfll_clk_disable(struct clk_hw *hw) |
| { |
| struct tegra_dfll *td = clk_hw_to_dfll(hw); |
| int ret; |
| |
| ret = dfll_unlock(td); |
| if (!ret) |
| dfll_disable(td); |
| } |
| |
| static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct tegra_dfll *td = clk_hw_to_dfll(hw); |
| |
| return td->last_unrounded_rate; |
| } |
| |
| /* Must use determine_rate since it allows for rates exceeding 2^31-1 */ |
| static int dfll_clk_determine_rate(struct clk_hw *hw, |
| struct clk_rate_request *clk_req) |
| { |
| struct tegra_dfll *td = clk_hw_to_dfll(hw); |
| struct dfll_rate_req req; |
| int ret; |
| |
| ret = dfll_calculate_rate_request(td, &req, clk_req->rate); |
| if (ret) |
| return ret; |
| |
| /* |
| * Don't set the rounded rate, since it doesn't really matter as |
| * the output rate will be voltage controlled anyway, and cpufreq |
| * freaks out if any rounding happens. |
| */ |
| |
| return 0; |
| } |
| |
| static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct tegra_dfll *td = clk_hw_to_dfll(hw); |
| |
| return dfll_request_rate(td, rate); |
| } |
| |
| static const struct clk_ops dfll_clk_ops = { |
| .is_enabled = dfll_clk_is_enabled, |
| .enable = dfll_clk_enable, |
| .disable = dfll_clk_disable, |
| .recalc_rate = dfll_clk_recalc_rate, |
| .determine_rate = dfll_clk_determine_rate, |
| .set_rate = dfll_clk_set_rate, |
| }; |
| |
| static struct clk_init_data dfll_clk_init_data = { |
| .ops = &dfll_clk_ops, |
| .num_parents = 0, |
| }; |
| |
| /** |
| * dfll_register_clk - register the DFLL output clock with the clock framework |
| * @td: DFLL instance |
| * |
| * Register the DFLL's output clock with the Linux clock framework and register |
| * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL |
| * or -ENOMEM upon failure. |
| */ |
| static int dfll_register_clk(struct tegra_dfll *td) |
| { |
| int ret; |
| |
| dfll_clk_init_data.name = td->output_clock_name; |
| td->dfll_clk_hw.init = &dfll_clk_init_data; |
| |
| td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw); |
| if (IS_ERR(td->dfll_clk)) { |
| dev_err(td->dev, "DFLL clock registration error\n"); |
| return -EINVAL; |
| } |
| |
| ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get, |
| td->dfll_clk); |
| if (ret) { |
| dev_err(td->dev, "of_clk_add_provider() failed\n"); |
| |
| clk_unregister(td->dfll_clk); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_unregister_clk - unregister the DFLL output clock |
| * @td: DFLL instance |
| * |
| * Unregister the DFLL's output clock from the Linux clock framework |
| * and from clkdev. No return value. |
| */ |
| static void dfll_unregister_clk(struct tegra_dfll *td) |
| { |
| of_clk_del_provider(td->dev->of_node); |
| clk_unregister(td->dfll_clk); |
| td->dfll_clk = NULL; |
| } |
| |
| /* |
| * Debugfs interface |
| */ |
| |
| #ifdef CONFIG_DEBUG_FS |
| /* |
| * Monitor control |
| */ |
| |
| /** |
| * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq |
| * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield |
| * @ref_rate: DFLL reference clock rate |
| * |
| * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles |
| * per second. Returns the converted value. |
| */ |
| static u64 dfll_calc_monitored_rate(u32 monitor_data, |
| unsigned long ref_rate) |
| { |
| return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE); |
| } |
| |
| /** |
| * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor |
| * @td: DFLL instance |
| * |
| * If the DFLL is enabled, return the last rate reported by the DFLL's |
| * internal monitoring hardware. This works in both open-loop and |
| * closed-loop mode, and takes the output scaler setting into account. |
| * Assumes that the monitor was programmed to monitor frequency before |
| * the sample period started. If the driver believes that the DFLL is |
| * currently uninitialized or disabled, it will return 0, since |
| * otherwise the DFLL monitor data register will return the last |
| * measured rate from when the DFLL was active. |
| */ |
| static u64 dfll_read_monitor_rate(struct tegra_dfll *td) |
| { |
| u32 v, s; |
| u64 pre_scaler_rate, post_scaler_rate; |
| |
| if (!dfll_is_running(td)) |
| return 0; |
| |
| v = dfll_readl(td, DFLL_MONITOR_DATA); |
| v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT; |
| pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate); |
| |
| s = dfll_readl(td, DFLL_FREQ_REQ); |
| s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT; |
| post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate); |
| |
| return post_scaler_rate; |
| } |
| |
| static int attr_enable_get(void *data, u64 *val) |
| { |
| struct tegra_dfll *td = data; |
| |
| *val = dfll_is_running(td); |
| |
| return 0; |
| } |
| static int attr_enable_set(void *data, u64 val) |
| { |
| struct tegra_dfll *td = data; |
| |
| return val ? dfll_enable(td) : dfll_disable(td); |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, |
| "%llu\n"); |
| |
| static int attr_lock_get(void *data, u64 *val) |
| { |
| struct tegra_dfll *td = data; |
| |
| *val = (td->mode == DFLL_CLOSED_LOOP); |
| |
| return 0; |
| } |
| static int attr_lock_set(void *data, u64 val) |
| { |
| struct tegra_dfll *td = data; |
| |
| return val ? dfll_lock(td) : dfll_unlock(td); |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n"); |
| |
| static int attr_rate_get(void *data, u64 *val) |
| { |
| struct tegra_dfll *td = data; |
| |
| *val = dfll_read_monitor_rate(td); |
| |
| return 0; |
| } |
| |
| static int attr_rate_set(void *data, u64 val) |
| { |
| struct tegra_dfll *td = data; |
| |
| return dfll_request_rate(td, val); |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); |
| |
| static int attr_registers_show(struct seq_file *s, void *data) |
| { |
| u32 val, offs; |
| struct tegra_dfll *td = s->private; |
| |
| seq_puts(s, "CONTROL REGISTERS:\n"); |
| for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) { |
| if (offs == DFLL_OUTPUT_CFG) |
| val = dfll_i2c_readl(td, offs); |
| else |
| val = dfll_readl(td, offs); |
| seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val); |
| } |
| |
| seq_puts(s, "\nI2C and INTR REGISTERS:\n"); |
| for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4) |
| seq_printf(s, "[0x%02x] = 0x%08x\n", offs, |
| dfll_i2c_readl(td, offs)); |
| for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4) |
| seq_printf(s, "[0x%02x] = 0x%08x\n", offs, |
| dfll_i2c_readl(td, offs)); |
| |
| if (td->pmu_if == TEGRA_DFLL_PMU_I2C) { |
| seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n"); |
| offs = DFLL_I2C_CLK_DIVISOR; |
| seq_printf(s, "[0x%02x] = 0x%08x\n", offs, |
| __raw_readl(td->i2c_controller_base + offs)); |
| |
| seq_puts(s, "\nLUT:\n"); |
| for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4) |
| seq_printf(s, "[0x%02x] = 0x%08x\n", offs, |
| __raw_readl(td->lut_base + offs)); |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_SHOW_ATTRIBUTE(attr_registers); |
| |
| static void dfll_debug_init(struct tegra_dfll *td) |
| { |
| struct dentry *root; |
| |
| if (!td || (td->mode == DFLL_UNINITIALIZED)) |
| return; |
| |
| root = debugfs_create_dir("tegra_dfll_fcpu", NULL); |
| td->debugfs_dir = root; |
| |
| debugfs_create_file_unsafe("enable", 0644, root, td, |
| &enable_fops); |
| debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops); |
| debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops); |
| debugfs_create_file("registers", 0444, root, td, &attr_registers_fops); |
| } |
| |
| #else |
| static void inline dfll_debug_init(struct tegra_dfll *td) { } |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| /* |
| * DFLL initialization |
| */ |
| |
| /** |
| * dfll_set_default_params - program non-output related DFLL parameters |
| * @td: DFLL instance |
| * |
| * During DFLL driver initialization or resume from context loss, |
| * program parameters for the closed loop integrator, DVCO tuning, |
| * voltage droop control and monitor control. |
| */ |
| static void dfll_set_default_params(struct tegra_dfll *td) |
| { |
| u32 val; |
| |
| val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); |
| BUG_ON(val > DFLL_CONFIG_DIV_MASK); |
| dfll_writel(td, val, DFLL_CONFIG); |
| |
| val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | |
| (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | |
| (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | |
| (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | |
| (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); |
| dfll_writel(td, val, DFLL_PARAMS); |
| |
| dfll_tune_low(td); |
| dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); |
| dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); |
| } |
| |
| /** |
| * dfll_init_clks - clk_get() the DFLL source clocks |
| * @td: DFLL instance |
| * |
| * Call clk_get() on the DFLL source clocks and save the pointers for later |
| * use. Returns 0 upon success or error (see devm_clk_get) if one or more |
| * of the clocks couldn't be looked up. |
| */ |
| static int dfll_init_clks(struct tegra_dfll *td) |
| { |
| td->ref_clk = devm_clk_get(td->dev, "ref"); |
| if (IS_ERR(td->ref_clk)) { |
| dev_err(td->dev, "missing ref clock\n"); |
| return PTR_ERR(td->ref_clk); |
| } |
| |
| td->soc_clk = devm_clk_get(td->dev, "soc"); |
| if (IS_ERR(td->soc_clk)) { |
| dev_err(td->dev, "missing soc clock\n"); |
| return PTR_ERR(td->soc_clk); |
| } |
| |
| td->i2c_clk = devm_clk_get(td->dev, "i2c"); |
| if (IS_ERR(td->i2c_clk)) { |
| dev_err(td->dev, "missing i2c clock\n"); |
| return PTR_ERR(td->i2c_clk); |
| } |
| td->i2c_clk_rate = clk_get_rate(td->i2c_clk); |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_init - Prepare the DFLL IP block for use |
| * @td: DFLL instance |
| * |
| * Do everything necessary to prepare the DFLL IP block for use. The |
| * DFLL will be left in DISABLED state. Called by dfll_probe(). |
| * Returns 0 upon success, or passes along the error from whatever |
| * function returned it. |
| */ |
| static int dfll_init(struct tegra_dfll *td) |
| { |
| int ret; |
| |
| td->ref_rate = clk_get_rate(td->ref_clk); |
| if (td->ref_rate != REF_CLOCK_RATE) { |
| dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu", |
| td->ref_rate, REF_CLOCK_RATE); |
| return -EINVAL; |
| } |
| |
| reset_control_deassert(td->dvco_rst); |
| |
| ret = clk_prepare(td->ref_clk); |
| if (ret) { |
| dev_err(td->dev, "failed to prepare ref_clk\n"); |
| return ret; |
| } |
| |
| ret = clk_prepare(td->soc_clk); |
| if (ret) { |
| dev_err(td->dev, "failed to prepare soc_clk\n"); |
| goto di_err1; |
| } |
| |
| ret = clk_prepare(td->i2c_clk); |
| if (ret) { |
| dev_err(td->dev, "failed to prepare i2c_clk\n"); |
| goto di_err2; |
| } |
| |
| td->last_unrounded_rate = 0; |
| |
| pm_runtime_enable(td->dev); |
| pm_runtime_get_sync(td->dev); |
| |
| dfll_set_mode(td, DFLL_DISABLED); |
| dfll_set_default_params(td); |
| |
| if (td->soc->init_clock_trimmers) |
| td->soc->init_clock_trimmers(); |
| |
| dfll_set_open_loop_config(td); |
| |
| dfll_init_out_if(td); |
| |
| pm_runtime_put_sync(td->dev); |
| |
| return 0; |
| |
| di_err2: |
| clk_unprepare(td->soc_clk); |
| di_err1: |
| clk_unprepare(td->ref_clk); |
| |
| reset_control_assert(td->dvco_rst); |
| |
| return ret; |
| } |
| |
| /* |
| * DT data fetch |
| */ |
| |
| /* |
| * Find a PMIC voltage register-to-voltage mapping for the given voltage. |
| * An exact voltage match is required. |
| */ |
| static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) |
| { |
| int i, n_voltages, reg_uV,reg_volt_id, align_step; |
| |
| if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM)) |
| return -EINVAL; |
| |
| align_step = uV / td->soc->alignment.step_uv; |
| n_voltages = regulator_count_voltages(td->vdd_reg); |
| for (i = 0; i < n_voltages; i++) { |
| reg_uV = regulator_list_voltage(td->vdd_reg, i); |
| if (reg_uV < 0) |
| break; |
| |
| reg_volt_id = reg_uV / td->soc->alignment.step_uv; |
| |
| if (align_step == reg_volt_id) |
| return i; |
| } |
| |
| dev_err(td->dev, "no voltage map entry for %d uV\n", uV); |
| return -EINVAL; |
| } |
| |
| /* |
| * Find a PMIC voltage register-to-voltage mapping for the given voltage, |
| * rounding up to the closest supported voltage. |
| * */ |
| static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) |
| { |
| int i, n_voltages, reg_uV, reg_volt_id, align_step; |
| |
| if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM)) |
| return -EINVAL; |
| |
| align_step = uV / td->soc->alignment.step_uv; |
| n_voltages = regulator_count_voltages(td->vdd_reg); |
| for (i = 0; i < n_voltages; i++) { |
| reg_uV = regulator_list_voltage(td->vdd_reg, i); |
| if (reg_uV < 0) |
| break; |
| |
| reg_volt_id = reg_uV / td->soc->alignment.step_uv; |
| |
| if (align_step <= reg_volt_id) |
| return i; |
| } |
| |
| dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); |
| return -EINVAL; |
| } |
| |
| /* |
| * dfll_build_pwm_lut - build the PWM regulator lookup table |
| * @td: DFLL instance |
| * @v_max: Vmax from OPP table |
| * |
| * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC. |
| * In this case closed loop output is controlling duty cycle directly. The s/w |
| * look-up that maps PWM duty cycle to voltage is still built by this function. |
| */ |
| static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max) |
| { |
| int i; |
| unsigned long rate, reg_volt; |
| u8 lut_bottom = MAX_DFLL_VOLTAGES; |
| int v_min = td->soc->cvb->min_millivolts * 1000; |
| |
| for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { |
| reg_volt = td->lut_uv[i]; |
| |
| /* since opp voltage is exact mv */ |
| reg_volt = (reg_volt / 1000) * 1000; |
| if (reg_volt > v_max) |
| break; |
| |
| td->lut[i] = i; |
| if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min)) |
| lut_bottom = i; |
| } |
| |
| /* determine voltage boundaries */ |
| td->lut_size = i; |
| if ((lut_bottom == MAX_DFLL_VOLTAGES) || |
| (lut_bottom + 1 >= td->lut_size)) { |
| dev_err(td->dev, "no voltage above DFLL minimum %d mV\n", |
| td->soc->cvb->min_millivolts); |
| return -EINVAL; |
| } |
| td->lut_bottom = lut_bottom; |
| |
| /* determine rate boundaries */ |
| rate = get_dvco_rate_below(td, td->lut_bottom); |
| if (!rate) { |
| dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n", |
| td->soc->cvb->min_millivolts); |
| return -EINVAL; |
| } |
| td->dvco_rate_min = rate; |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_build_i2c_lut - build the I2C voltage register lookup table |
| * @td: DFLL instance |
| * @v_max: Vmax from OPP table |
| * |
| * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with |
| * PMIC voltage register values that span the entire DFLL operating range. |
| * This function builds the look-up table based on the OPP table provided by |
| * the soc-specific platform driver (td->soc->opp_dev) and the PMIC |
| * register-to-voltage mapping queried from the regulator framework. |
| * |
| * On success, fills in td->lut and returns 0, or -err on failure. |
| */ |
| static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max) |
| { |
| unsigned long rate, v, v_opp; |
| int ret = -EINVAL; |
| int j, selector, lut; |
| |
| v = td->soc->cvb->min_millivolts * 1000; |
| lut = find_vdd_map_entry_exact(td, v); |
| if (lut < 0) |
| goto out; |
| td->lut[0] = lut; |
| td->lut_bottom = 0; |
| |
| for (j = 1, rate = 0; ; rate++) { |
| struct dev_pm_opp *opp; |
| |
| opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); |
| if (IS_ERR(opp)) |
| break; |
| v_opp = dev_pm_opp_get_voltage(opp); |
| |
| if (v_opp <= td->soc->cvb->min_millivolts * 1000) |
| td->dvco_rate_min = dev_pm_opp_get_freq(opp); |
| |
| dev_pm_opp_put(opp); |
| |
| for (;;) { |
| v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); |
| if (v >= v_opp) |
| break; |
| |
| selector = find_vdd_map_entry_min(td, v); |
| if (selector < 0) |
| goto out; |
| if (selector != td->lut[j - 1]) |
| td->lut[j++] = selector; |
| } |
| |
| v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; |
| selector = find_vdd_map_entry_exact(td, v); |
| if (selector < 0) |
| goto out; |
| if (selector != td->lut[j - 1]) |
| td->lut[j++] = selector; |
| |
| if (v >= v_max) |
| break; |
| } |
| td->lut_size = j; |
| |
| if (!td->dvco_rate_min) |
| dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", |
| td->soc->cvb->min_millivolts); |
| else { |
| ret = 0; |
| for (j = 0; j < td->lut_size; j++) |
| td->lut_uv[j] = |
| regulator_list_voltage(td->vdd_reg, |
| td->lut[j]); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int dfll_build_lut(struct tegra_dfll *td) |
| { |
| unsigned long rate, v_max; |
| struct dev_pm_opp *opp; |
| |
| rate = ULONG_MAX; |
| opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate); |
| if (IS_ERR(opp)) { |
| dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); |
| return -EINVAL; |
| } |
| v_max = dev_pm_opp_get_voltage(opp); |
| dev_pm_opp_put(opp); |
| |
| if (td->pmu_if == TEGRA_DFLL_PMU_PWM) |
| return dfll_build_pwm_lut(td, v_max); |
| else |
| return dfll_build_i2c_lut(td, v_max); |
| } |
| |
| /** |
| * read_dt_param - helper function for reading required parameters from the DT |
| * @td: DFLL instance |
| * @param: DT property name |
| * @dest: output pointer for the value read |
| * |
| * Read a required numeric parameter from the DFLL device node, or complain |
| * if the property doesn't exist. Returns a boolean indicating success for |
| * easy chaining of multiple calls to this function. |
| */ |
| static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) |
| { |
| int err = of_property_read_u32(td->dev->of_node, param, dest); |
| |
| if (err < 0) { |
| dev_err(td->dev, "failed to read DT parameter %s: %d\n", |
| param, err); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem |
| * @td: DFLL instance |
| * |
| * Read all the parameters required for operation in I2C mode. The parameters |
| * can originate from the device tree or the regulator subsystem. |
| * Returns 0 on success or -err on failure. |
| */ |
| static int dfll_fetch_i2c_params(struct tegra_dfll *td) |
| { |
| struct regmap *regmap; |
| struct device *i2c_dev; |
| struct i2c_client *i2c_client; |
| int vsel_reg, vsel_mask; |
| int ret; |
| |
| if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) |
| return -EINVAL; |
| |
| regmap = regulator_get_regmap(td->vdd_reg); |
| i2c_dev = regmap_get_device(regmap); |
| i2c_client = to_i2c_client(i2c_dev); |
| |
| td->i2c_slave_addr = i2c_client->addr; |
| |
| ret = regulator_get_hardware_vsel_register(td->vdd_reg, |
| &vsel_reg, |
| &vsel_mask); |
| if (ret < 0) { |
| dev_err(td->dev, |
| "regulator unsuitable for DFLL I2C operation\n"); |
| return -EINVAL; |
| } |
| td->i2c_reg = vsel_reg; |
| |
| return 0; |
| } |
| |
| static int dfll_fetch_pwm_params(struct tegra_dfll *td) |
| { |
| int ret, i; |
| u32 pwm_period; |
| |
| if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) { |
| dev_err(td->dev, |
| "Missing step or alignment info for PWM regulator"); |
| return -EINVAL; |
| } |
| for (i = 0; i < MAX_DFLL_VOLTAGES; i++) |
| td->lut_uv[i] = td->soc->alignment.offset_uv + |
| i * td->soc->alignment.step_uv; |
| |
| ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts", |
| &td->reg_init_uV); |
| if (!ret) { |
| dev_err(td->dev, "couldn't get initialized voltage\n"); |
| return ret; |
| } |
| |
| ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period); |
| if (!ret) { |
| dev_err(td->dev, "couldn't get PWM period\n"); |
| return ret; |
| } |
| td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1); |
| |
| td->pwm_pin = devm_pinctrl_get(td->dev); |
| if (IS_ERR(td->pwm_pin)) { |
| dev_err(td->dev, "DT: missing pinctrl device\n"); |
| return PTR_ERR(td->pwm_pin); |
| } |
| |
| td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin, |
| "dvfs_pwm_enable"); |
| if (IS_ERR(td->pwm_enable_state)) { |
| dev_err(td->dev, "DT: missing pwm enabled state\n"); |
| return PTR_ERR(td->pwm_enable_state); |
| } |
| |
| td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin, |
| "dvfs_pwm_disable"); |
| if (IS_ERR(td->pwm_disable_state)) { |
| dev_err(td->dev, "DT: missing pwm disabled state\n"); |
| return PTR_ERR(td->pwm_disable_state); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dfll_fetch_common_params - read DFLL parameters from the device tree |
| * @td: DFLL instance |
| * |
| * Read all the DT parameters that are common to both I2C and PWM operation. |
| * Returns 0 on success or -EINVAL on any failure. |
| */ |
| static int dfll_fetch_common_params(struct tegra_dfll *td) |
| { |
| bool ok = true; |
| |
| ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); |
| ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); |
| ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); |
| ok &= read_dt_param(td, "nvidia,cf", &td->cf); |
| ok &= read_dt_param(td, "nvidia,ci", &td->ci); |
| ok &= read_dt_param(td, "nvidia,cg", &td->cg); |
| td->cg_scale = of_property_read_bool(td->dev->of_node, |
| "nvidia,cg-scale"); |
| |
| if (of_property_read_string(td->dev->of_node, "clock-output-names", |
| &td->output_clock_name)) { |
| dev_err(td->dev, "missing clock-output-names property\n"); |
| ok = false; |
| } |
| |
| return ok ? 0 : -EINVAL; |
| } |
| |
| /* |
| * API exported to per-SoC platform drivers |
| */ |
| |
| /** |
| * tegra_dfll_register - probe a Tegra DFLL device |
| * @pdev: DFLL platform_device * |
| * @soc: Per-SoC integration and characterization data for this DFLL instance |
| * |
| * Probe and initialize a DFLL device instance. Intended to be called |
| * by a SoC-specific shim driver that passes in per-SoC integration |
| * and configuration data via @soc. Returns 0 on success or -err on failure. |
| */ |
| int tegra_dfll_register(struct platform_device *pdev, |
| struct tegra_dfll_soc_data *soc) |
| { |
| struct resource *mem; |
| struct tegra_dfll *td; |
| int ret; |
| |
| if (!soc) { |
| dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n"); |
| return -EINVAL; |
| } |
| |
| td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL); |
| if (!td) |
| return -ENOMEM; |
| td->dev = &pdev->dev; |
| platform_set_drvdata(pdev, td); |
| |
| td->soc = soc; |
| |
| td->dvco_rst = devm_reset_control_get(td->dev, "dvco"); |
| if (IS_ERR(td->dvco_rst)) { |
| dev_err(td->dev, "couldn't get dvco reset\n"); |
| return PTR_ERR(td->dvco_rst); |
| } |
| |
| ret = dfll_fetch_common_params(td); |
| if (ret) { |
| dev_err(td->dev, "couldn't parse device tree parameters\n"); |
| return ret; |
| } |
| |
| if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) { |
| td->pmu_if = TEGRA_DFLL_PMU_PWM; |
| ret = dfll_fetch_pwm_params(td); |
| } else { |
| td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu"); |
| if (IS_ERR(td->vdd_reg)) { |
| dev_err(td->dev, "couldn't get vdd_cpu regulator\n"); |
| return PTR_ERR(td->vdd_reg); |
| } |
| td->pmu_if = TEGRA_DFLL_PMU_I2C; |
| ret = dfll_fetch_i2c_params(td); |
| } |
| if (ret) |
| return ret; |
| |
| ret = dfll_build_lut(td); |
| if (ret) { |
| dev_err(td->dev, "couldn't build LUT\n"); |
| return ret; |
| } |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!mem) { |
| dev_err(td->dev, "no control register resource\n"); |
| return -ENODEV; |
| } |
| |
| td->base = devm_ioremap(td->dev, mem->start, resource_size(mem)); |
| if (!td->base) { |
| dev_err(td->dev, "couldn't ioremap DFLL control registers\n"); |
| return -ENODEV; |
| } |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!mem) { |
| dev_err(td->dev, "no i2c_base resource\n"); |
| return -ENODEV; |
| } |
| |
| td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); |
| if (!td->i2c_base) { |
| dev_err(td->dev, "couldn't ioremap i2c_base resource\n"); |
| return -ENODEV; |
| } |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 2); |
| if (!mem) { |
| dev_err(td->dev, "no i2c_controller_base resource\n"); |
| return -ENODEV; |
| } |
| |
| td->i2c_controller_base = devm_ioremap(td->dev, mem->start, |
| resource_size(mem)); |
| if (!td->i2c_controller_base) { |
| dev_err(td->dev, |
| "couldn't ioremap i2c_controller_base resource\n"); |
| return -ENODEV; |
| } |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 3); |
| if (!mem) { |
| dev_err(td->dev, "no lut_base resource\n"); |
| return -ENODEV; |
| } |
| |
| td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); |
| if (!td->lut_base) { |
| dev_err(td->dev, |
| "couldn't ioremap lut_base resource\n"); |
| return -ENODEV; |
| } |
| |
| ret = dfll_init_clks(td); |
| if (ret) { |
| dev_err(&pdev->dev, "DFLL clock init error\n"); |
| return ret; |
| } |
| |
| /* Enable the clocks and set the device up */ |
| ret = dfll_init(td); |
| if (ret) |
| return ret; |
| |
| ret = dfll_register_clk(td); |
| if (ret) { |
| dev_err(&pdev->dev, "DFLL clk registration failed\n"); |
| return ret; |
| } |
| |
| dfll_debug_init(td); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(tegra_dfll_register); |
| |
| /** |
| * tegra_dfll_unregister - release all of the DFLL driver resources for a device |
| * @pdev: DFLL platform_device * |
| * |
| * Unbind this driver from the DFLL hardware device represented by |
| * @pdev. The DFLL must be disabled for this to succeed. Returns a |
| * soc pointer upon success or -EBUSY if the DFLL is still active. |
| */ |
| struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev) |
| { |
| struct tegra_dfll *td = platform_get_drvdata(pdev); |
| |
| /* Try to prevent removal while the DFLL is active */ |
| if (td->mode != DFLL_DISABLED) { |
| dev_err(&pdev->dev, |
| "must disable DFLL before removing driver\n"); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| debugfs_remove_recursive(td->debugfs_dir); |
| |
| dfll_unregister_clk(td); |
| pm_runtime_disable(&pdev->dev); |
| |
| clk_unprepare(td->ref_clk); |
| clk_unprepare(td->soc_clk); |
| clk_unprepare(td->i2c_clk); |
| |
| reset_control_assert(td->dvco_rst); |
| |
| return td->soc; |
| } |
| EXPORT_SYMBOL(tegra_dfll_unregister); |