| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd. |
| |
| #include <linux/extable.h> |
| #include <linux/kprobes.h> |
| #include <linux/mmu_context.h> |
| #include <linux/perf_event.h> |
| |
| int fixup_exception(struct pt_regs *regs) |
| { |
| const struct exception_table_entry *fixup; |
| |
| fixup = search_exception_tables(instruction_pointer(regs)); |
| if (fixup) { |
| regs->pc = fixup->fixup; |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static inline bool is_write(struct pt_regs *regs) |
| { |
| switch (trap_no(regs)) { |
| case VEC_TLBINVALIDS: |
| return true; |
| case VEC_TLBMODIFIED: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_CPU_HAS_LDSTEX |
| static inline void csky_cmpxchg_fixup(struct pt_regs *regs) |
| { |
| return; |
| } |
| #else |
| extern unsigned long csky_cmpxchg_ldw; |
| extern unsigned long csky_cmpxchg_stw; |
| static inline void csky_cmpxchg_fixup(struct pt_regs *regs) |
| { |
| if (trap_no(regs) != VEC_TLBMODIFIED) |
| return; |
| |
| if (instruction_pointer(regs) == csky_cmpxchg_stw) |
| instruction_pointer_set(regs, csky_cmpxchg_ldw); |
| return; |
| } |
| #endif |
| |
| static inline void no_context(struct pt_regs *regs, unsigned long addr) |
| { |
| current->thread.trap_no = trap_no(regs); |
| |
| /* Are we prepared to handle this kernel fault? */ |
| if (fixup_exception(regs)) |
| return; |
| |
| /* |
| * Oops. The kernel tried to access some bad page. We'll have to |
| * terminate things with extreme prejudice. |
| */ |
| bust_spinlocks(1); |
| pr_alert("Unable to handle kernel paging request at virtual " |
| "addr 0x%08lx, pc: 0x%08lx\n", addr, regs->pc); |
| die(regs, "Oops"); |
| make_task_dead(SIGKILL); |
| } |
| |
| static inline void mm_fault_error(struct pt_regs *regs, unsigned long addr, vm_fault_t fault) |
| { |
| current->thread.trap_no = trap_no(regs); |
| |
| if (fault & VM_FAULT_OOM) { |
| /* |
| * We ran out of memory, call the OOM killer, and return the userspace |
| * (which will retry the fault, or kill us if we got oom-killed). |
| */ |
| if (!user_mode(regs)) { |
| no_context(regs, addr); |
| return; |
| } |
| pagefault_out_of_memory(); |
| return; |
| } else if (fault & VM_FAULT_SIGBUS) { |
| /* Kernel mode? Handle exceptions or die */ |
| if (!user_mode(regs)) { |
| no_context(regs, addr); |
| return; |
| } |
| do_trap(regs, SIGBUS, BUS_ADRERR, addr); |
| return; |
| } |
| BUG(); |
| } |
| |
| static inline void bad_area(struct pt_regs *regs, struct mm_struct *mm, int code, unsigned long addr) |
| { |
| /* |
| * Something tried to access memory that isn't in our memory map. |
| * Fix it, but check if it's kernel or user first. |
| */ |
| mmap_read_unlock(mm); |
| /* User mode accesses just cause a SIGSEGV */ |
| if (user_mode(regs)) { |
| do_trap(regs, SIGSEGV, code, addr); |
| return; |
| } |
| |
| no_context(regs, addr); |
| } |
| |
| static inline void vmalloc_fault(struct pt_regs *regs, int code, unsigned long addr) |
| { |
| pgd_t *pgd, *pgd_k; |
| pud_t *pud, *pud_k; |
| pmd_t *pmd, *pmd_k; |
| pte_t *pte_k; |
| int offset; |
| |
| /* User mode accesses just cause a SIGSEGV */ |
| if (user_mode(regs)) { |
| do_trap(regs, SIGSEGV, code, addr); |
| return; |
| } |
| |
| /* |
| * Synchronize this task's top level page-table |
| * with the 'reference' page table. |
| * |
| * Do _not_ use "tsk" here. We might be inside |
| * an interrupt in the middle of a task switch.. |
| */ |
| offset = pgd_index(addr); |
| |
| pgd = get_pgd() + offset; |
| pgd_k = init_mm.pgd + offset; |
| |
| if (!pgd_present(*pgd_k)) { |
| no_context(regs, addr); |
| return; |
| } |
| set_pgd(pgd, *pgd_k); |
| |
| pud = (pud_t *)pgd; |
| pud_k = (pud_t *)pgd_k; |
| if (!pud_present(*pud_k)) { |
| no_context(regs, addr); |
| return; |
| } |
| |
| pmd = pmd_offset(pud, addr); |
| pmd_k = pmd_offset(pud_k, addr); |
| if (!pmd_present(*pmd_k)) { |
| no_context(regs, addr); |
| return; |
| } |
| set_pmd(pmd, *pmd_k); |
| |
| pte_k = pte_offset_kernel(pmd_k, addr); |
| if (!pte_present(*pte_k)) { |
| no_context(regs, addr); |
| return; |
| } |
| |
| flush_tlb_one(addr); |
| } |
| |
| static inline bool access_error(struct pt_regs *regs, struct vm_area_struct *vma) |
| { |
| if (is_write(regs)) { |
| if (!(vma->vm_flags & VM_WRITE)) |
| return true; |
| } else { |
| if (unlikely(!vma_is_accessible(vma))) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * This routine handles page faults. It determines the address and the |
| * problem, and then passes it off to one of the appropriate routines. |
| */ |
| asmlinkage void do_page_fault(struct pt_regs *regs) |
| { |
| struct task_struct *tsk; |
| struct vm_area_struct *vma; |
| struct mm_struct *mm; |
| unsigned long addr = read_mmu_entryhi() & PAGE_MASK; |
| unsigned int flags = FAULT_FLAG_DEFAULT; |
| int code = SEGV_MAPERR; |
| vm_fault_t fault; |
| |
| tsk = current; |
| mm = tsk->mm; |
| |
| csky_cmpxchg_fixup(regs); |
| |
| if (kprobe_page_fault(regs, tsk->thread.trap_no)) |
| return; |
| |
| /* |
| * Fault-in kernel-space virtual memory on-demand. |
| * The 'reference' page table is init_mm.pgd. |
| * |
| * NOTE! We MUST NOT take any locks for this case. We may |
| * be in an interrupt or a critical region, and should |
| * only copy the information from the master page table, |
| * nothing more. |
| */ |
| if (unlikely((addr >= VMALLOC_START) && (addr <= VMALLOC_END))) { |
| vmalloc_fault(regs, code, addr); |
| return; |
| } |
| |
| /* Enable interrupts if they were enabled in the parent context. */ |
| if (likely(regs->sr & BIT(6))) |
| local_irq_enable(); |
| |
| /* |
| * If we're in an interrupt, have no user context, or are running |
| * in an atomic region, then we must not take the fault. |
| */ |
| if (unlikely(faulthandler_disabled() || !mm)) { |
| no_context(regs, addr); |
| return; |
| } |
| |
| if (user_mode(regs)) |
| flags |= FAULT_FLAG_USER; |
| |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); |
| |
| if (is_write(regs)) |
| flags |= FAULT_FLAG_WRITE; |
| retry: |
| mmap_read_lock(mm); |
| vma = find_vma(mm, addr); |
| if (unlikely(!vma)) { |
| bad_area(regs, mm, code, addr); |
| return; |
| } |
| if (likely(vma->vm_start <= addr)) |
| goto good_area; |
| if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { |
| bad_area(regs, mm, code, addr); |
| return; |
| } |
| if (unlikely(expand_stack(vma, addr))) { |
| bad_area(regs, mm, code, addr); |
| return; |
| } |
| |
| /* |
| * Ok, we have a good vm_area for this memory access, so |
| * we can handle it. |
| */ |
| good_area: |
| code = SEGV_ACCERR; |
| |
| if (unlikely(access_error(regs, vma))) { |
| bad_area(regs, mm, code, addr); |
| return; |
| } |
| |
| /* |
| * If for any reason at all we could not handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| fault = handle_mm_fault(vma, addr, flags, regs); |
| |
| /* |
| * If we need to retry but a fatal signal is pending, handle the |
| * signal first. We do not need to release the mmap_lock because it |
| * would already be released in __lock_page_or_retry in mm/filemap.c. |
| */ |
| if (fault_signal_pending(fault, regs)) { |
| if (!user_mode(regs)) |
| no_context(regs, addr); |
| return; |
| } |
| |
| /* The fault is fully completed (including releasing mmap lock) */ |
| if (fault & VM_FAULT_COMPLETED) |
| return; |
| |
| if (unlikely((fault & VM_FAULT_RETRY) && (flags & FAULT_FLAG_ALLOW_RETRY))) { |
| flags |= FAULT_FLAG_TRIED; |
| |
| /* |
| * No need to mmap_read_unlock(mm) as we would |
| * have already released it in __lock_page_or_retry |
| * in mm/filemap.c. |
| */ |
| goto retry; |
| } |
| |
| mmap_read_unlock(mm); |
| |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| mm_fault_error(regs, addr, fault); |
| return; |
| } |
| return; |
| } |