| // SPDX-License-Identifier: GPL-2.0-only |
| #include <linux/kdebug.h> |
| #include <linux/kprobes.h> |
| #include <linux/preempt.h> |
| #include <asm/break.h> |
| |
| static const union loongarch_instruction breakpoint_insn = { |
| .reg0i15_format = { |
| .opcode = break_op, |
| .immediate = BRK_KPROBE_BP, |
| } |
| }; |
| |
| static const union loongarch_instruction singlestep_insn = { |
| .reg0i15_format = { |
| .opcode = break_op, |
| .immediate = BRK_KPROBE_SSTEPBP, |
| } |
| }; |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe); |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| static bool insns_not_supported(union loongarch_instruction insn) |
| { |
| switch (insn.reg2i14_format.opcode) { |
| case llw_op: |
| case lld_op: |
| case scw_op: |
| case scd_op: |
| pr_notice("kprobe: ll and sc instructions are not supported\n"); |
| return true; |
| } |
| |
| switch (insn.reg1i21_format.opcode) { |
| case bceqz_op: |
| pr_notice("kprobe: bceqz and bcnez instructions are not supported\n"); |
| return true; |
| } |
| |
| return false; |
| } |
| NOKPROBE_SYMBOL(insns_not_supported); |
| |
| static bool insns_need_simulation(struct kprobe *p) |
| { |
| if (is_pc_ins(&p->opcode)) |
| return true; |
| |
| if (is_branch_ins(&p->opcode)) |
| return true; |
| |
| return false; |
| } |
| NOKPROBE_SYMBOL(insns_need_simulation); |
| |
| static void arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) |
| { |
| if (is_pc_ins(&p->opcode)) |
| simu_pc(regs, p->opcode); |
| else if (is_branch_ins(&p->opcode)) |
| simu_branch(regs, p->opcode); |
| } |
| NOKPROBE_SYMBOL(arch_simulate_insn); |
| |
| static void arch_prepare_ss_slot(struct kprobe *p) |
| { |
| p->ainsn.insn[0] = *p->addr; |
| p->ainsn.insn[1] = singlestep_insn; |
| p->ainsn.restore = (unsigned long)p->addr + LOONGARCH_INSN_SIZE; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_ss_slot); |
| |
| static void arch_prepare_simulate(struct kprobe *p) |
| { |
| p->ainsn.restore = 0; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_simulate); |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| if ((unsigned long)p->addr & 0x3) |
| return -EILSEQ; |
| |
| /* copy instruction */ |
| p->opcode = *p->addr; |
| |
| /* decode instruction */ |
| if (insns_not_supported(p->opcode)) |
| return -EINVAL; |
| |
| if (insns_need_simulation(p)) { |
| p->ainsn.insn = NULL; |
| } else { |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| return -ENOMEM; |
| } |
| |
| /* prepare the instruction */ |
| if (p->ainsn.insn) |
| arch_prepare_ss_slot(p); |
| else |
| arch_prepare_simulate(p); |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_kprobe); |
| |
| /* Install breakpoint in text */ |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = breakpoint_insn; |
| flush_insn_slot(p); |
| } |
| NOKPROBE_SYMBOL(arch_arm_kprobe); |
| |
| /* Remove breakpoint from text */ |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flush_insn_slot(p); |
| } |
| NOKPROBE_SYMBOL(arch_disarm_kprobe); |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| } |
| NOKPROBE_SYMBOL(arch_remove_kprobe); |
| |
| static void save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| } |
| NOKPROBE_SYMBOL(save_previous_kprobe); |
| |
| static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| } |
| NOKPROBE_SYMBOL(restore_previous_kprobe); |
| |
| static void set_current_kprobe(struct kprobe *p) |
| { |
| __this_cpu_write(current_kprobe, p); |
| } |
| NOKPROBE_SYMBOL(set_current_kprobe); |
| |
| /* |
| * Interrupts need to be disabled before single-step mode is set, |
| * and not reenabled until after single-step mode ends. |
| * Without disabling interrupt on local CPU, there is a chance of |
| * interrupt occurrence in the period of exception return and start |
| * of out-of-line single-step, that result in wrongly single stepping |
| * into the interrupt handler. |
| */ |
| static void save_local_irqflag(struct kprobe_ctlblk *kcb, |
| struct pt_regs *regs) |
| { |
| kcb->saved_status = regs->csr_prmd; |
| regs->csr_prmd &= ~CSR_PRMD_PIE; |
| } |
| NOKPROBE_SYMBOL(save_local_irqflag); |
| |
| static void restore_local_irqflag(struct kprobe_ctlblk *kcb, |
| struct pt_regs *regs) |
| { |
| regs->csr_prmd = kcb->saved_status; |
| } |
| NOKPROBE_SYMBOL(restore_local_irqflag); |
| |
| static void post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb, |
| struct pt_regs *regs) |
| { |
| /* return addr restore if non-branching insn */ |
| if (cur->ainsn.restore != 0) |
| instruction_pointer_set(regs, cur->ainsn.restore); |
| |
| /* restore back original saved kprobe variables and continue */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| preempt_enable_no_resched(); |
| return; |
| } |
| |
| /* |
| * update the kcb status even if the cur->post_handler is |
| * not set because reset_curent_kprobe() doesn't update kcb. |
| */ |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| if (cur->post_handler) |
| cur->post_handler(cur, regs, 0); |
| |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| } |
| NOKPROBE_SYMBOL(post_kprobe_handler); |
| |
| static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb, int reenter) |
| { |
| if (reenter) { |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p); |
| kcb->kprobe_status = KPROBE_REENTER; |
| } else { |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| } |
| |
| if (p->ainsn.insn) { |
| /* IRQs and single stepping do not mix well */ |
| save_local_irqflag(kcb, regs); |
| /* set ip register to prepare for single stepping */ |
| regs->csr_era = (unsigned long)p->ainsn.insn; |
| } else { |
| /* simulate single steping */ |
| arch_simulate_insn(p, regs); |
| /* now go for post processing */ |
| post_kprobe_handler(p, kcb, regs); |
| } |
| } |
| NOKPROBE_SYMBOL(setup_singlestep); |
| |
| static bool reenter_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_HIT_SSDONE: |
| case KPROBE_HIT_ACTIVE: |
| kprobes_inc_nmissed_count(p); |
| setup_singlestep(p, regs, kcb, 1); |
| break; |
| case KPROBE_REENTER: |
| pr_warn("Failed to recover from reentered kprobes.\n"); |
| dump_kprobe(p); |
| WARN_ON_ONCE(1); |
| break; |
| default: |
| WARN_ON(1); |
| return false; |
| } |
| |
| return true; |
| } |
| NOKPROBE_SYMBOL(reenter_kprobe); |
| |
| bool kprobe_breakpoint_handler(struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb; |
| struct kprobe *p, *cur_kprobe; |
| kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->csr_era; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing. |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| cur_kprobe = kprobe_running(); |
| |
| p = get_kprobe(addr); |
| if (p) { |
| if (cur_kprobe) { |
| if (reenter_kprobe(p, regs, kcb)) |
| return true; |
| } else { |
| /* Probe hit */ |
| set_current_kprobe(p); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| /* |
| * If we have no pre-handler or it returned 0, we |
| * continue with normal processing. If we have a |
| * pre-handler and it returned non-zero, it will |
| * modify the execution path and no need to single |
| * stepping. Let's just reset current kprobe and exit. |
| * |
| * pre_handler can hit a breakpoint and can step thru |
| * before return. |
| */ |
| if (!p->pre_handler || !p->pre_handler(p, regs)) { |
| setup_singlestep(p, regs, kcb, 0); |
| } else { |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| } |
| return true; |
| } |
| } |
| |
| if (addr->word != breakpoint_insn.word) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| * Return back to original instruction, and continue. |
| */ |
| regs->csr_era = (unsigned long)addr; |
| preempt_enable_no_resched(); |
| return true; |
| } |
| |
| preempt_enable_no_resched(); |
| return false; |
| } |
| NOKPROBE_SYMBOL(kprobe_breakpoint_handler); |
| |
| bool kprobe_singlestep_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| unsigned long addr = instruction_pointer(regs); |
| |
| if (cur && (kcb->kprobe_status & (KPROBE_HIT_SS | KPROBE_REENTER)) && |
| ((unsigned long)&cur->ainsn.insn[1] == addr)) { |
| restore_local_irqflag(kcb, regs); |
| post_kprobe_handler(cur, kcb, regs); |
| return true; |
| } |
| |
| preempt_enable_no_resched(); |
| return false; |
| } |
| NOKPROBE_SYMBOL(kprobe_singlestep_handler); |
| |
| bool kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the ip points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->csr_era = (unsigned long)cur->addr; |
| WARN_ON_ONCE(!instruction_pointer(regs)); |
| |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| } else { |
| restore_local_irqflag(kcb, regs); |
| reset_current_kprobe(); |
| } |
| preempt_enable_no_resched(); |
| break; |
| } |
| return false; |
| } |
| NOKPROBE_SYMBOL(kprobe_fault_handler); |
| |
| /* |
| * Provide a blacklist of symbols identifying ranges which cannot be kprobed. |
| * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). |
| */ |
| int __init arch_populate_kprobe_blacklist(void) |
| { |
| return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, |
| (unsigned long)__irqentry_text_end); |
| } |
| |
| int __init arch_init_kprobes(void) |
| { |
| return 0; |
| } |
| |
| /* ASM function that handles the kretprobes must not be probed */ |
| NOKPROBE_SYMBOL(__kretprobe_trampoline); |
| |
| /* Called from __kretprobe_trampoline */ |
| void __used *trampoline_probe_handler(struct pt_regs *regs) |
| { |
| return (void *)kretprobe_trampoline_handler(regs, NULL); |
| } |
| NOKPROBE_SYMBOL(trampoline_probe_handler); |
| |
| void arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *)regs->regs[1]; |
| ri->fp = NULL; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->regs[1] = (unsigned long)&__kretprobe_trampoline; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_kretprobe); |
| |
| int arch_trampoline_kprobe(struct kprobe *p) |
| { |
| return 0; |
| } |
| NOKPROBE_SYMBOL(arch_trampoline_kprobe); |