| /* |
| * Copyright 2022 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/firmware.h> |
| #include <drm/drm_drv.h> |
| |
| #include "amdgpu.h" |
| #include "amdgpu_ucode.h" |
| #include "amdgpu_vpe.h" |
| #include "amdgpu_smu.h" |
| #include "soc15_common.h" |
| #include "vpe_v6_1.h" |
| |
| #define AMDGPU_CSA_VPE_SIZE 64 |
| /* VPE CSA resides in the 4th page of CSA */ |
| #define AMDGPU_CSA_VPE_OFFSET (4096 * 3) |
| |
| /* 1 second timeout */ |
| #define VPE_IDLE_TIMEOUT msecs_to_jiffies(1000) |
| |
| #define VPE_MAX_DPM_LEVEL 4 |
| #define FIXED1_8_BITS_PER_FRACTIONAL_PART 8 |
| #define GET_PRATIO_INTEGER_PART(x) ((x) >> FIXED1_8_BITS_PER_FRACTIONAL_PART) |
| |
| static void vpe_set_ring_funcs(struct amdgpu_device *adev); |
| |
| static inline uint16_t div16_u16_rem(uint16_t dividend, uint16_t divisor, uint16_t *remainder) |
| { |
| *remainder = dividend % divisor; |
| return dividend / divisor; |
| } |
| |
| static inline uint16_t complete_integer_division_u16( |
| uint16_t dividend, |
| uint16_t divisor, |
| uint16_t *remainder) |
| { |
| return div16_u16_rem(dividend, divisor, (uint16_t *)remainder); |
| } |
| |
| static uint16_t vpe_u1_8_from_fraction(uint16_t numerator, uint16_t denominator) |
| { |
| u16 arg1_value = numerator; |
| u16 arg2_value = denominator; |
| |
| uint16_t remainder; |
| |
| /* determine integer part */ |
| uint16_t res_value = complete_integer_division_u16( |
| arg1_value, arg2_value, &remainder); |
| |
| if (res_value > 127 /* CHAR_MAX */) |
| return 0; |
| |
| /* determine fractional part */ |
| { |
| unsigned int i = FIXED1_8_BITS_PER_FRACTIONAL_PART; |
| |
| do { |
| remainder <<= 1; |
| |
| res_value <<= 1; |
| |
| if (remainder >= arg2_value) { |
| res_value |= 1; |
| remainder -= arg2_value; |
| } |
| } while (--i != 0); |
| } |
| |
| /* round up LSB */ |
| { |
| uint16_t summand = (remainder << 1) >= arg2_value; |
| |
| if ((res_value + summand) > 32767 /* SHRT_MAX */) |
| return 0; |
| |
| res_value += summand; |
| } |
| |
| return res_value; |
| } |
| |
| static uint16_t vpe_internal_get_pratio(uint16_t from_frequency, uint16_t to_frequency) |
| { |
| uint16_t pratio = vpe_u1_8_from_fraction(from_frequency, to_frequency); |
| |
| if (GET_PRATIO_INTEGER_PART(pratio) > 1) |
| pratio = 0; |
| |
| return pratio; |
| } |
| |
| /* |
| * VPE has 4 DPM levels from level 0 (lowerest) to 3 (highest), |
| * VPE FW will dynamically decide which level should be used according to current loading. |
| * |
| * Get VPE and SOC clocks from PM, and select the appropriate four clock values, |
| * calculate the ratios of adjusting from one clock to another. |
| * The VPE FW can then request the appropriate frequency from the PMFW. |
| */ |
| int amdgpu_vpe_configure_dpm(struct amdgpu_vpe *vpe) |
| { |
| struct amdgpu_device *adev = vpe->ring.adev; |
| uint32_t dpm_ctl; |
| |
| if (adev->pm.dpm_enabled) { |
| struct dpm_clocks clock_table = { 0 }; |
| struct dpm_clock *VPEClks; |
| struct dpm_clock *SOCClks; |
| uint32_t idx; |
| uint32_t pratio_vmax_vnorm = 0, pratio_vnorm_vmid = 0, pratio_vmid_vmin = 0; |
| uint16_t pratio_vmin_freq = 0, pratio_vmid_freq = 0, pratio_vnorm_freq = 0, pratio_vmax_freq = 0; |
| |
| dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); |
| dpm_ctl |= 1; /* DPM enablement */ |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); |
| |
| /* Get VPECLK and SOCCLK */ |
| if (amdgpu_dpm_get_dpm_clock_table(adev, &clock_table)) { |
| dev_dbg(adev->dev, "%s: get clock failed!\n", __func__); |
| goto disable_dpm; |
| } |
| |
| SOCClks = clock_table.SocClocks; |
| VPEClks = clock_table.VPEClocks; |
| |
| /* vpe dpm only cares 4 levels. */ |
| for (idx = 0; idx < VPE_MAX_DPM_LEVEL; idx++) { |
| uint32_t soc_dpm_level; |
| uint32_t min_freq; |
| |
| if (idx == 0) |
| soc_dpm_level = 0; |
| else |
| soc_dpm_level = (idx * 2) + 1; |
| |
| /* clamp the max level */ |
| if (soc_dpm_level > PP_SMU_NUM_VPECLK_DPM_LEVELS - 1) |
| soc_dpm_level = PP_SMU_NUM_VPECLK_DPM_LEVELS - 1; |
| |
| min_freq = (SOCClks[soc_dpm_level].Freq < VPEClks[soc_dpm_level].Freq) ? |
| SOCClks[soc_dpm_level].Freq : VPEClks[soc_dpm_level].Freq; |
| |
| switch (idx) { |
| case 0: |
| pratio_vmin_freq = min_freq; |
| break; |
| case 1: |
| pratio_vmid_freq = min_freq; |
| break; |
| case 2: |
| pratio_vnorm_freq = min_freq; |
| break; |
| case 3: |
| pratio_vmax_freq = min_freq; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (pratio_vmin_freq && pratio_vmid_freq && pratio_vnorm_freq && pratio_vmax_freq) { |
| uint32_t pratio_ctl; |
| |
| pratio_vmax_vnorm = (uint32_t)vpe_internal_get_pratio(pratio_vmax_freq, pratio_vnorm_freq); |
| pratio_vnorm_vmid = (uint32_t)vpe_internal_get_pratio(pratio_vnorm_freq, pratio_vmid_freq); |
| pratio_vmid_vmin = (uint32_t)vpe_internal_get_pratio(pratio_vmid_freq, pratio_vmin_freq); |
| |
| pratio_ctl = pratio_vmax_vnorm | (pratio_vnorm_vmid << 9) | (pratio_vmid_vmin << 18); |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_pratio), pratio_ctl); /* PRatio */ |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_request_interval), 24000); /* 1ms, unit=1/24MHz */ |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_decision_threshold), 1200000); /* 50ms */ |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_busy_clamp_threshold), 1200000);/* 50ms */ |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_idle_clamp_threshold), 1200000);/* 50ms */ |
| dev_dbg(adev->dev, "%s: configure vpe dpm pratio done!\n", __func__); |
| } else { |
| dev_dbg(adev->dev, "%s: invalid pratio parameters!\n", __func__); |
| goto disable_dpm; |
| } |
| } |
| return 0; |
| |
| disable_dpm: |
| dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); |
| dpm_ctl &= 0xfffffffe; /* Disable DPM */ |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); |
| dev_dbg(adev->dev, "%s: disable vpe dpm\n", __func__); |
| return 0; |
| } |
| |
| int amdgpu_vpe_psp_update_sram(struct amdgpu_device *adev) |
| { |
| struct amdgpu_firmware_info ucode = { |
| .ucode_id = AMDGPU_UCODE_ID_VPE, |
| .mc_addr = adev->vpe.cmdbuf_gpu_addr, |
| .ucode_size = 8, |
| }; |
| |
| return psp_execute_ip_fw_load(&adev->psp, &ucode); |
| } |
| |
| int amdgpu_vpe_init_microcode(struct amdgpu_vpe *vpe) |
| { |
| struct amdgpu_device *adev = vpe->ring.adev; |
| const struct vpe_firmware_header_v1_0 *vpe_hdr; |
| char fw_prefix[32], fw_name[64]; |
| int ret; |
| |
| amdgpu_ucode_ip_version_decode(adev, VPE_HWIP, fw_prefix, sizeof(fw_prefix)); |
| snprintf(fw_name, sizeof(fw_name), "amdgpu/%s.bin", fw_prefix); |
| |
| ret = amdgpu_ucode_request(adev, &adev->vpe.fw, fw_name); |
| if (ret) |
| goto out; |
| |
| vpe_hdr = (const struct vpe_firmware_header_v1_0 *)adev->vpe.fw->data; |
| adev->vpe.fw_version = le32_to_cpu(vpe_hdr->header.ucode_version); |
| adev->vpe.feature_version = le32_to_cpu(vpe_hdr->ucode_feature_version); |
| |
| if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { |
| struct amdgpu_firmware_info *info; |
| |
| info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTX]; |
| info->ucode_id = AMDGPU_UCODE_ID_VPE_CTX; |
| info->fw = adev->vpe.fw; |
| adev->firmware.fw_size += |
| ALIGN(le32_to_cpu(vpe_hdr->ctx_ucode_size_bytes), PAGE_SIZE); |
| |
| info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTL]; |
| info->ucode_id = AMDGPU_UCODE_ID_VPE_CTL; |
| info->fw = adev->vpe.fw; |
| adev->firmware.fw_size += |
| ALIGN(le32_to_cpu(vpe_hdr->ctl_ucode_size_bytes), PAGE_SIZE); |
| } |
| |
| return 0; |
| out: |
| dev_err(adev->dev, "fail to initialize vpe microcode\n"); |
| release_firmware(adev->vpe.fw); |
| adev->vpe.fw = NULL; |
| return ret; |
| } |
| |
| int amdgpu_vpe_ring_init(struct amdgpu_vpe *vpe) |
| { |
| struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); |
| struct amdgpu_ring *ring = &vpe->ring; |
| int ret; |
| |
| ring->ring_obj = NULL; |
| ring->use_doorbell = true; |
| ring->vm_hub = AMDGPU_MMHUB0(0); |
| ring->doorbell_index = (adev->doorbell_index.vpe_ring << 1); |
| snprintf(ring->name, 4, "vpe"); |
| |
| ret = amdgpu_ring_init(adev, ring, 1024, &vpe->trap_irq, 0, |
| AMDGPU_RING_PRIO_DEFAULT, NULL); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| int amdgpu_vpe_ring_fini(struct amdgpu_vpe *vpe) |
| { |
| amdgpu_ring_fini(&vpe->ring); |
| |
| return 0; |
| } |
| |
| static int vpe_early_init(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| |
| switch (amdgpu_ip_version(adev, VPE_HWIP, 0)) { |
| case IP_VERSION(6, 1, 0): |
| vpe_v6_1_set_funcs(vpe); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| vpe_set_ring_funcs(adev); |
| vpe_set_regs(vpe); |
| |
| return 0; |
| } |
| |
| static void vpe_idle_work_handler(struct work_struct *work) |
| { |
| struct amdgpu_device *adev = |
| container_of(work, struct amdgpu_device, vpe.idle_work.work); |
| unsigned int fences = 0; |
| |
| fences += amdgpu_fence_count_emitted(&adev->vpe.ring); |
| |
| if (fences == 0) |
| amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); |
| else |
| schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); |
| } |
| |
| static int vpe_common_init(struct amdgpu_vpe *vpe) |
| { |
| struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); |
| int r; |
| |
| r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, |
| AMDGPU_GEM_DOMAIN_GTT, |
| &adev->vpe.cmdbuf_obj, |
| &adev->vpe.cmdbuf_gpu_addr, |
| (void **)&adev->vpe.cmdbuf_cpu_addr); |
| if (r) { |
| dev_err(adev->dev, "VPE: failed to allocate cmdbuf bo %d\n", r); |
| return r; |
| } |
| |
| vpe->context_started = false; |
| INIT_DELAYED_WORK(&adev->vpe.idle_work, vpe_idle_work_handler); |
| |
| return 0; |
| } |
| |
| static int vpe_sw_init(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| int ret; |
| |
| ret = vpe_common_init(vpe); |
| if (ret) |
| goto out; |
| |
| ret = vpe_irq_init(vpe); |
| if (ret) |
| goto out; |
| |
| ret = vpe_ring_init(vpe); |
| if (ret) |
| goto out; |
| |
| ret = vpe_init_microcode(vpe); |
| if (ret) |
| goto out; |
| out: |
| return ret; |
| } |
| |
| static int vpe_sw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| |
| release_firmware(vpe->fw); |
| vpe->fw = NULL; |
| |
| vpe_ring_fini(vpe); |
| |
| amdgpu_bo_free_kernel(&adev->vpe.cmdbuf_obj, |
| &adev->vpe.cmdbuf_gpu_addr, |
| (void **)&adev->vpe.cmdbuf_cpu_addr); |
| |
| return 0; |
| } |
| |
| static int vpe_hw_init(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| int ret; |
| |
| ret = vpe_load_microcode(vpe); |
| if (ret) |
| return ret; |
| |
| ret = vpe_ring_start(vpe); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int vpe_hw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| |
| vpe_ring_stop(vpe); |
| |
| /* Power off VPE */ |
| amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); |
| |
| return 0; |
| } |
| |
| static int vpe_suspend(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| cancel_delayed_work_sync(&adev->vpe.idle_work); |
| |
| return vpe_hw_fini(adev); |
| } |
| |
| static int vpe_resume(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return vpe_hw_init(adev); |
| } |
| |
| static void vpe_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| if (i == 0) |
| amdgpu_ring_write(ring, ring->funcs->nop | |
| VPE_CMD_NOP_HEADER_COUNT(count - 1)); |
| else |
| amdgpu_ring_write(ring, ring->funcs->nop); |
| } |
| |
| static uint64_t vpe_get_csa_mc_addr(struct amdgpu_ring *ring, uint32_t vmid) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| uint32_t index = 0; |
| uint64_t csa_mc_addr; |
| |
| if (amdgpu_sriov_vf(adev) || vmid == 0 || !adev->gfx.mcbp) |
| return 0; |
| |
| csa_mc_addr = amdgpu_csa_vaddr(adev) + AMDGPU_CSA_VPE_OFFSET + |
| index * AMDGPU_CSA_VPE_SIZE; |
| |
| return csa_mc_addr; |
| } |
| |
| static void vpe_ring_emit_ib(struct amdgpu_ring *ring, |
| struct amdgpu_job *job, |
| struct amdgpu_ib *ib, |
| uint32_t flags) |
| { |
| uint32_t vmid = AMDGPU_JOB_GET_VMID(job); |
| uint64_t csa_mc_addr = vpe_get_csa_mc_addr(ring, vmid); |
| |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_INDIRECT, 0) | |
| VPE_CMD_INDIRECT_HEADER_VMID(vmid & 0xf)); |
| |
| /* base must be 32 byte aligned */ |
| amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0); |
| amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); |
| amdgpu_ring_write(ring, ib->length_dw); |
| amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); |
| } |
| |
| static void vpe_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr, |
| uint64_t seq, unsigned int flags) |
| { |
| int i = 0; |
| |
| do { |
| /* write the fence */ |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); |
| /* zero in first two bits */ |
| WARN_ON_ONCE(addr & 0x3); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, i == 0 ? lower_32_bits(seq) : upper_32_bits(seq)); |
| addr += 4; |
| } while ((flags & AMDGPU_FENCE_FLAG_64BIT) && (i++ < 1)); |
| |
| if (flags & AMDGPU_FENCE_FLAG_INT) { |
| /* generate an interrupt */ |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_TRAP, 0)); |
| amdgpu_ring_write(ring, 0); |
| } |
| |
| } |
| |
| static void vpe_ring_emit_pipeline_sync(struct amdgpu_ring *ring) |
| { |
| uint32_t seq = ring->fence_drv.sync_seq; |
| uint64_t addr = ring->fence_drv.gpu_addr; |
| |
| /* wait for idle */ |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, |
| VPE_POLL_REGMEM_SUBOP_REGMEM) | |
| VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ |
| VPE_CMD_POLL_REGMEM_HEADER_MEM(1)); |
| amdgpu_ring_write(ring, addr & 0xfffffffc); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, seq); /* reference */ |
| amdgpu_ring_write(ring, 0xffffffff); /* mask */ |
| amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| VPE_CMD_POLL_REGMEM_DW5_INTERVAL(4)); |
| } |
| |
| static void vpe_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) |
| { |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_REG_WRITE, 0)); |
| amdgpu_ring_write(ring, reg << 2); |
| amdgpu_ring_write(ring, val); |
| } |
| |
| static void vpe_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, |
| uint32_t val, uint32_t mask) |
| { |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, |
| VPE_POLL_REGMEM_SUBOP_REGMEM) | |
| VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ |
| VPE_CMD_POLL_REGMEM_HEADER_MEM(0)); |
| amdgpu_ring_write(ring, reg << 2); |
| amdgpu_ring_write(ring, 0); |
| amdgpu_ring_write(ring, val); /* reference */ |
| amdgpu_ring_write(ring, mask); /* mask */ |
| amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| VPE_CMD_POLL_REGMEM_DW5_INTERVAL(10)); |
| } |
| |
| static void vpe_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid, |
| uint64_t pd_addr) |
| { |
| amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); |
| } |
| |
| static unsigned int vpe_ring_init_cond_exec(struct amdgpu_ring *ring) |
| { |
| unsigned int ret; |
| |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_COND_EXE, 0)); |
| amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); |
| amdgpu_ring_write(ring, 1); |
| ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */ |
| amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */ |
| |
| return ret; |
| } |
| |
| static void vpe_ring_patch_cond_exec(struct amdgpu_ring *ring, unsigned int offset) |
| { |
| unsigned int cur; |
| |
| WARN_ON_ONCE(offset > ring->buf_mask); |
| WARN_ON_ONCE(ring->ring[offset] != 0x55aa55aa); |
| |
| cur = (ring->wptr - 1) & ring->buf_mask; |
| if (cur > offset) |
| ring->ring[offset] = cur - offset; |
| else |
| ring->ring[offset] = (ring->buf_mask + 1) - offset + cur; |
| } |
| |
| static int vpe_ring_preempt_ib(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| uint32_t preempt_reg = vpe->regs.queue0_preempt; |
| int i, r = 0; |
| |
| /* assert preemption condition */ |
| amdgpu_ring_set_preempt_cond_exec(ring, false); |
| |
| /* emit the trailing fence */ |
| ring->trail_seq += 1; |
| amdgpu_ring_alloc(ring, 10); |
| vpe_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0); |
| amdgpu_ring_commit(ring); |
| |
| /* assert IB preemption */ |
| WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 1); |
| |
| /* poll the trailing fence */ |
| for (i = 0; i < adev->usec_timeout; i++) { |
| if (ring->trail_seq == |
| le32_to_cpu(*(ring->trail_fence_cpu_addr))) |
| break; |
| udelay(1); |
| } |
| |
| if (i >= adev->usec_timeout) { |
| r = -EINVAL; |
| dev_err(adev->dev, "ring %d failed to be preempted\n", ring->idx); |
| } |
| |
| /* deassert IB preemption */ |
| WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 0); |
| |
| /* deassert the preemption condition */ |
| amdgpu_ring_set_preempt_cond_exec(ring, true); |
| |
| return r; |
| } |
| |
| static int vpe_set_clockgating_state(void *handle, |
| enum amd_clockgating_state state) |
| { |
| return 0; |
| } |
| |
| static int vpe_set_powergating_state(void *handle, |
| enum amd_powergating_state state) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| |
| if (!adev->pm.dpm_enabled) |
| dev_err(adev->dev, "Without PM, cannot support powergating\n"); |
| |
| dev_dbg(adev->dev, "%s: %s!\n", __func__, (state == AMD_PG_STATE_GATE) ? "GATE":"UNGATE"); |
| |
| if (state == AMD_PG_STATE_GATE) { |
| amdgpu_dpm_enable_vpe(adev, false); |
| vpe->context_started = false; |
| } else { |
| amdgpu_dpm_enable_vpe(adev, true); |
| } |
| |
| return 0; |
| } |
| |
| static uint64_t vpe_ring_get_rptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| uint64_t rptr; |
| |
| if (ring->use_doorbell) { |
| rptr = atomic64_read((atomic64_t *)ring->rptr_cpu_addr); |
| dev_dbg(adev->dev, "rptr/doorbell before shift == 0x%016llx\n", rptr); |
| } else { |
| rptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_hi)); |
| rptr = rptr << 32; |
| rptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_lo)); |
| dev_dbg(adev->dev, "rptr before shift [%i] == 0x%016llx\n", ring->me, rptr); |
| } |
| |
| return (rptr >> 2); |
| } |
| |
| static uint64_t vpe_ring_get_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| uint64_t wptr; |
| |
| if (ring->use_doorbell) { |
| wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr); |
| dev_dbg(adev->dev, "wptr/doorbell before shift == 0x%016llx\n", wptr); |
| } else { |
| wptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi)); |
| wptr = wptr << 32; |
| wptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo)); |
| dev_dbg(adev->dev, "wptr before shift [%i] == 0x%016llx\n", ring->me, wptr); |
| } |
| |
| return (wptr >> 2); |
| } |
| |
| static void vpe_ring_set_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| |
| if (ring->use_doorbell) { |
| dev_dbg(adev->dev, "Using doorbell, \ |
| wptr_offs == 0x%08x, \ |
| lower_32_bits(ring->wptr) << 2 == 0x%08x, \ |
| upper_32_bits(ring->wptr) << 2 == 0x%08x\n", |
| ring->wptr_offs, |
| lower_32_bits(ring->wptr << 2), |
| upper_32_bits(ring->wptr << 2)); |
| atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2); |
| WDOORBELL64(ring->doorbell_index, ring->wptr << 2); |
| } else { |
| dev_dbg(adev->dev, "Not using doorbell, \ |
| regVPEC_QUEUE0_RB_WPTR == 0x%08x, \ |
| regVPEC_QUEUE0_RB_WPTR_HI == 0x%08x\n", |
| lower_32_bits(ring->wptr << 2), |
| upper_32_bits(ring->wptr << 2)); |
| WREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo), |
| lower_32_bits(ring->wptr << 2)); |
| WREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi), |
| upper_32_bits(ring->wptr << 2)); |
| } |
| } |
| |
| static int vpe_ring_test_ring(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| const uint32_t test_pattern = 0xdeadbeef; |
| uint32_t index, i; |
| uint64_t wb_addr; |
| int ret; |
| |
| ret = amdgpu_device_wb_get(adev, &index); |
| if (ret) { |
| dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); |
| return ret; |
| } |
| |
| adev->wb.wb[index] = 0; |
| wb_addr = adev->wb.gpu_addr + (index * 4); |
| |
| ret = amdgpu_ring_alloc(ring, 4); |
| if (ret) { |
| dev_err(adev->dev, "amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, ret); |
| goto out; |
| } |
| |
| amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); |
| amdgpu_ring_write(ring, lower_32_bits(wb_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(wb_addr)); |
| amdgpu_ring_write(ring, test_pattern); |
| amdgpu_ring_commit(ring); |
| |
| for (i = 0; i < adev->usec_timeout; i++) { |
| if (le32_to_cpu(adev->wb.wb[index]) == test_pattern) |
| goto out; |
| udelay(1); |
| } |
| |
| ret = -ETIMEDOUT; |
| out: |
| amdgpu_device_wb_free(adev, index); |
| |
| return ret; |
| } |
| |
| static int vpe_ring_test_ib(struct amdgpu_ring *ring, long timeout) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| const uint32_t test_pattern = 0xdeadbeef; |
| struct amdgpu_ib ib = {}; |
| struct dma_fence *f = NULL; |
| uint32_t index; |
| uint64_t wb_addr; |
| int ret; |
| |
| ret = amdgpu_device_wb_get(adev, &index); |
| if (ret) { |
| dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); |
| return ret; |
| } |
| |
| adev->wb.wb[index] = 0; |
| wb_addr = adev->wb.gpu_addr + (index * 4); |
| |
| ret = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); |
| if (ret) |
| goto err0; |
| |
| ib.ptr[0] = VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0); |
| ib.ptr[1] = lower_32_bits(wb_addr); |
| ib.ptr[2] = upper_32_bits(wb_addr); |
| ib.ptr[3] = test_pattern; |
| ib.ptr[4] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); |
| ib.ptr[5] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); |
| ib.ptr[6] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); |
| ib.ptr[7] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); |
| ib.length_dw = 8; |
| |
| ret = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); |
| if (ret) |
| goto err1; |
| |
| ret = dma_fence_wait_timeout(f, false, timeout); |
| if (ret <= 0) { |
| ret = ret ? : -ETIMEDOUT; |
| goto err1; |
| } |
| |
| ret = (le32_to_cpu(adev->wb.wb[index]) == test_pattern) ? 0 : -EINVAL; |
| |
| err1: |
| amdgpu_ib_free(adev, &ib, NULL); |
| dma_fence_put(f); |
| err0: |
| amdgpu_device_wb_free(adev, index); |
| |
| return ret; |
| } |
| |
| static void vpe_ring_begin_use(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_vpe *vpe = &adev->vpe; |
| |
| cancel_delayed_work_sync(&adev->vpe.idle_work); |
| |
| /* Power on VPE and notify VPE of new context */ |
| if (!vpe->context_started) { |
| uint32_t context_notify; |
| |
| /* Power on VPE */ |
| amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE); |
| |
| /* Indicates that a job from a new context has been submitted. */ |
| context_notify = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator)); |
| if ((context_notify & 0x1) == 0) |
| context_notify |= 0x1; |
| else |
| context_notify &= ~(0x1); |
| WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator), context_notify); |
| vpe->context_started = true; |
| } |
| } |
| |
| static void vpe_ring_end_use(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| |
| schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); |
| } |
| |
| static const struct amdgpu_ring_funcs vpe_ring_funcs = { |
| .type = AMDGPU_RING_TYPE_VPE, |
| .align_mask = 0xf, |
| .nop = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0), |
| .support_64bit_ptrs = true, |
| .get_rptr = vpe_ring_get_rptr, |
| .get_wptr = vpe_ring_get_wptr, |
| .set_wptr = vpe_ring_set_wptr, |
| .emit_frame_size = |
| 5 + /* vpe_ring_init_cond_exec */ |
| 6 + /* vpe_ring_emit_pipeline_sync */ |
| 10 + 10 + 10 + /* vpe_ring_emit_fence */ |
| /* vpe_ring_emit_vm_flush */ |
| SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + |
| SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6, |
| .emit_ib_size = 7 + 6, |
| .emit_ib = vpe_ring_emit_ib, |
| .emit_pipeline_sync = vpe_ring_emit_pipeline_sync, |
| .emit_fence = vpe_ring_emit_fence, |
| .emit_vm_flush = vpe_ring_emit_vm_flush, |
| .emit_wreg = vpe_ring_emit_wreg, |
| .emit_reg_wait = vpe_ring_emit_reg_wait, |
| .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, |
| .insert_nop = vpe_ring_insert_nop, |
| .pad_ib = amdgpu_ring_generic_pad_ib, |
| .test_ring = vpe_ring_test_ring, |
| .test_ib = vpe_ring_test_ib, |
| .init_cond_exec = vpe_ring_init_cond_exec, |
| .patch_cond_exec = vpe_ring_patch_cond_exec, |
| .preempt_ib = vpe_ring_preempt_ib, |
| .begin_use = vpe_ring_begin_use, |
| .end_use = vpe_ring_end_use, |
| }; |
| |
| static void vpe_set_ring_funcs(struct amdgpu_device *adev) |
| { |
| adev->vpe.ring.funcs = &vpe_ring_funcs; |
| } |
| |
| const struct amd_ip_funcs vpe_ip_funcs = { |
| .name = "vpe_v6_1", |
| .early_init = vpe_early_init, |
| .late_init = NULL, |
| .sw_init = vpe_sw_init, |
| .sw_fini = vpe_sw_fini, |
| .hw_init = vpe_hw_init, |
| .hw_fini = vpe_hw_fini, |
| .suspend = vpe_suspend, |
| .resume = vpe_resume, |
| .soft_reset = NULL, |
| .set_clockgating_state = vpe_set_clockgating_state, |
| .set_powergating_state = vpe_set_powergating_state, |
| }; |
| |
| const struct amdgpu_ip_block_version vpe_v6_1_ip_block = { |
| .type = AMD_IP_BLOCK_TYPE_VPE, |
| .major = 6, |
| .minor = 1, |
| .rev = 0, |
| .funcs = &vpe_ip_funcs, |
| }; |