blob: b9a15d51eb5c30e554d4e4f7c1397e3ce51996d9 [file] [log] [blame]
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/firmware.h>
#include <drm/drm_drv.h>
#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_vpe.h"
#include "amdgpu_smu.h"
#include "soc15_common.h"
#include "vpe_v6_1.h"
#define AMDGPU_CSA_VPE_SIZE 64
/* VPE CSA resides in the 4th page of CSA */
#define AMDGPU_CSA_VPE_OFFSET (4096 * 3)
/* 1 second timeout */
#define VPE_IDLE_TIMEOUT msecs_to_jiffies(1000)
#define VPE_MAX_DPM_LEVEL 4
#define FIXED1_8_BITS_PER_FRACTIONAL_PART 8
#define GET_PRATIO_INTEGER_PART(x) ((x) >> FIXED1_8_BITS_PER_FRACTIONAL_PART)
static void vpe_set_ring_funcs(struct amdgpu_device *adev);
static inline uint16_t div16_u16_rem(uint16_t dividend, uint16_t divisor, uint16_t *remainder)
{
*remainder = dividend % divisor;
return dividend / divisor;
}
static inline uint16_t complete_integer_division_u16(
uint16_t dividend,
uint16_t divisor,
uint16_t *remainder)
{
return div16_u16_rem(dividend, divisor, (uint16_t *)remainder);
}
static uint16_t vpe_u1_8_from_fraction(uint16_t numerator, uint16_t denominator)
{
u16 arg1_value = numerator;
u16 arg2_value = denominator;
uint16_t remainder;
/* determine integer part */
uint16_t res_value = complete_integer_division_u16(
arg1_value, arg2_value, &remainder);
if (res_value > 127 /* CHAR_MAX */)
return 0;
/* determine fractional part */
{
unsigned int i = FIXED1_8_BITS_PER_FRACTIONAL_PART;
do {
remainder <<= 1;
res_value <<= 1;
if (remainder >= arg2_value) {
res_value |= 1;
remainder -= arg2_value;
}
} while (--i != 0);
}
/* round up LSB */
{
uint16_t summand = (remainder << 1) >= arg2_value;
if ((res_value + summand) > 32767 /* SHRT_MAX */)
return 0;
res_value += summand;
}
return res_value;
}
static uint16_t vpe_internal_get_pratio(uint16_t from_frequency, uint16_t to_frequency)
{
uint16_t pratio = vpe_u1_8_from_fraction(from_frequency, to_frequency);
if (GET_PRATIO_INTEGER_PART(pratio) > 1)
pratio = 0;
return pratio;
}
/*
* VPE has 4 DPM levels from level 0 (lowerest) to 3 (highest),
* VPE FW will dynamically decide which level should be used according to current loading.
*
* Get VPE and SOC clocks from PM, and select the appropriate four clock values,
* calculate the ratios of adjusting from one clock to another.
* The VPE FW can then request the appropriate frequency from the PMFW.
*/
int amdgpu_vpe_configure_dpm(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = vpe->ring.adev;
uint32_t dpm_ctl;
if (adev->pm.dpm_enabled) {
struct dpm_clocks clock_table = { 0 };
struct dpm_clock *VPEClks;
struct dpm_clock *SOCClks;
uint32_t idx;
uint32_t pratio_vmax_vnorm = 0, pratio_vnorm_vmid = 0, pratio_vmid_vmin = 0;
uint16_t pratio_vmin_freq = 0, pratio_vmid_freq = 0, pratio_vnorm_freq = 0, pratio_vmax_freq = 0;
dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable));
dpm_ctl |= 1; /* DPM enablement */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl);
/* Get VPECLK and SOCCLK */
if (amdgpu_dpm_get_dpm_clock_table(adev, &clock_table)) {
dev_dbg(adev->dev, "%s: get clock failed!\n", __func__);
goto disable_dpm;
}
SOCClks = clock_table.SocClocks;
VPEClks = clock_table.VPEClocks;
/* vpe dpm only cares 4 levels. */
for (idx = 0; idx < VPE_MAX_DPM_LEVEL; idx++) {
uint32_t soc_dpm_level;
uint32_t min_freq;
if (idx == 0)
soc_dpm_level = 0;
else
soc_dpm_level = (idx * 2) + 1;
/* clamp the max level */
if (soc_dpm_level > PP_SMU_NUM_VPECLK_DPM_LEVELS - 1)
soc_dpm_level = PP_SMU_NUM_VPECLK_DPM_LEVELS - 1;
min_freq = (SOCClks[soc_dpm_level].Freq < VPEClks[soc_dpm_level].Freq) ?
SOCClks[soc_dpm_level].Freq : VPEClks[soc_dpm_level].Freq;
switch (idx) {
case 0:
pratio_vmin_freq = min_freq;
break;
case 1:
pratio_vmid_freq = min_freq;
break;
case 2:
pratio_vnorm_freq = min_freq;
break;
case 3:
pratio_vmax_freq = min_freq;
break;
default:
break;
}
}
if (pratio_vmin_freq && pratio_vmid_freq && pratio_vnorm_freq && pratio_vmax_freq) {
uint32_t pratio_ctl;
pratio_vmax_vnorm = (uint32_t)vpe_internal_get_pratio(pratio_vmax_freq, pratio_vnorm_freq);
pratio_vnorm_vmid = (uint32_t)vpe_internal_get_pratio(pratio_vnorm_freq, pratio_vmid_freq);
pratio_vmid_vmin = (uint32_t)vpe_internal_get_pratio(pratio_vmid_freq, pratio_vmin_freq);
pratio_ctl = pratio_vmax_vnorm | (pratio_vnorm_vmid << 9) | (pratio_vmid_vmin << 18);
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_pratio), pratio_ctl); /* PRatio */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_request_interval), 24000); /* 1ms, unit=1/24MHz */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_decision_threshold), 1200000); /* 50ms */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_busy_clamp_threshold), 1200000);/* 50ms */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_idle_clamp_threshold), 1200000);/* 50ms */
dev_dbg(adev->dev, "%s: configure vpe dpm pratio done!\n", __func__);
} else {
dev_dbg(adev->dev, "%s: invalid pratio parameters!\n", __func__);
goto disable_dpm;
}
}
return 0;
disable_dpm:
dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable));
dpm_ctl &= 0xfffffffe; /* Disable DPM */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl);
dev_dbg(adev->dev, "%s: disable vpe dpm\n", __func__);
return 0;
}
int amdgpu_vpe_psp_update_sram(struct amdgpu_device *adev)
{
struct amdgpu_firmware_info ucode = {
.ucode_id = AMDGPU_UCODE_ID_VPE,
.mc_addr = adev->vpe.cmdbuf_gpu_addr,
.ucode_size = 8,
};
return psp_execute_ip_fw_load(&adev->psp, &ucode);
}
int amdgpu_vpe_init_microcode(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = vpe->ring.adev;
const struct vpe_firmware_header_v1_0 *vpe_hdr;
char fw_prefix[32], fw_name[64];
int ret;
amdgpu_ucode_ip_version_decode(adev, VPE_HWIP, fw_prefix, sizeof(fw_prefix));
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s.bin", fw_prefix);
ret = amdgpu_ucode_request(adev, &adev->vpe.fw, fw_name);
if (ret)
goto out;
vpe_hdr = (const struct vpe_firmware_header_v1_0 *)adev->vpe.fw->data;
adev->vpe.fw_version = le32_to_cpu(vpe_hdr->header.ucode_version);
adev->vpe.feature_version = le32_to_cpu(vpe_hdr->ucode_feature_version);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
struct amdgpu_firmware_info *info;
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTX];
info->ucode_id = AMDGPU_UCODE_ID_VPE_CTX;
info->fw = adev->vpe.fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(vpe_hdr->ctx_ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTL];
info->ucode_id = AMDGPU_UCODE_ID_VPE_CTL;
info->fw = adev->vpe.fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(vpe_hdr->ctl_ucode_size_bytes), PAGE_SIZE);
}
return 0;
out:
dev_err(adev->dev, "fail to initialize vpe microcode\n");
release_firmware(adev->vpe.fw);
adev->vpe.fw = NULL;
return ret;
}
int amdgpu_vpe_ring_init(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe);
struct amdgpu_ring *ring = &vpe->ring;
int ret;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->vm_hub = AMDGPU_MMHUB0(0);
ring->doorbell_index = (adev->doorbell_index.vpe_ring << 1);
snprintf(ring->name, 4, "vpe");
ret = amdgpu_ring_init(adev, ring, 1024, &vpe->trap_irq, 0,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (ret)
return ret;
return 0;
}
int amdgpu_vpe_ring_fini(struct amdgpu_vpe *vpe)
{
amdgpu_ring_fini(&vpe->ring);
return 0;
}
static int vpe_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
switch (amdgpu_ip_version(adev, VPE_HWIP, 0)) {
case IP_VERSION(6, 1, 0):
vpe_v6_1_set_funcs(vpe);
break;
default:
return -EINVAL;
}
vpe_set_ring_funcs(adev);
vpe_set_regs(vpe);
return 0;
}
static void vpe_idle_work_handler(struct work_struct *work)
{
struct amdgpu_device *adev =
container_of(work, struct amdgpu_device, vpe.idle_work.work);
unsigned int fences = 0;
fences += amdgpu_fence_count_emitted(&adev->vpe.ring);
if (fences == 0)
amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE);
else
schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT);
}
static int vpe_common_init(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe);
int r;
r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->vpe.cmdbuf_obj,
&adev->vpe.cmdbuf_gpu_addr,
(void **)&adev->vpe.cmdbuf_cpu_addr);
if (r) {
dev_err(adev->dev, "VPE: failed to allocate cmdbuf bo %d\n", r);
return r;
}
vpe->context_started = false;
INIT_DELAYED_WORK(&adev->vpe.idle_work, vpe_idle_work_handler);
return 0;
}
static int vpe_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
int ret;
ret = vpe_common_init(vpe);
if (ret)
goto out;
ret = vpe_irq_init(vpe);
if (ret)
goto out;
ret = vpe_ring_init(vpe);
if (ret)
goto out;
ret = vpe_init_microcode(vpe);
if (ret)
goto out;
out:
return ret;
}
static int vpe_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
release_firmware(vpe->fw);
vpe->fw = NULL;
vpe_ring_fini(vpe);
amdgpu_bo_free_kernel(&adev->vpe.cmdbuf_obj,
&adev->vpe.cmdbuf_gpu_addr,
(void **)&adev->vpe.cmdbuf_cpu_addr);
return 0;
}
static int vpe_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
int ret;
ret = vpe_load_microcode(vpe);
if (ret)
return ret;
ret = vpe_ring_start(vpe);
if (ret)
return ret;
return 0;
}
static int vpe_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
vpe_ring_stop(vpe);
/* Power off VPE */
amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE);
return 0;
}
static int vpe_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cancel_delayed_work_sync(&adev->vpe.idle_work);
return vpe_hw_fini(adev);
}
static int vpe_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return vpe_hw_init(adev);
}
static void vpe_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
int i;
for (i = 0; i < count; i++)
if (i == 0)
amdgpu_ring_write(ring, ring->funcs->nop |
VPE_CMD_NOP_HEADER_COUNT(count - 1));
else
amdgpu_ring_write(ring, ring->funcs->nop);
}
static uint64_t vpe_get_csa_mc_addr(struct amdgpu_ring *ring, uint32_t vmid)
{
struct amdgpu_device *adev = ring->adev;
uint32_t index = 0;
uint64_t csa_mc_addr;
if (amdgpu_sriov_vf(adev) || vmid == 0 || !adev->gfx.mcbp)
return 0;
csa_mc_addr = amdgpu_csa_vaddr(adev) + AMDGPU_CSA_VPE_OFFSET +
index * AMDGPU_CSA_VPE_SIZE;
return csa_mc_addr;
}
static void vpe_ring_emit_ib(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
uint32_t vmid = AMDGPU_JOB_GET_VMID(job);
uint64_t csa_mc_addr = vpe_get_csa_mc_addr(ring, vmid);
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_INDIRECT, 0) |
VPE_CMD_INDIRECT_HEADER_VMID(vmid & 0xf));
/* base must be 32 byte aligned */
amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0);
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, ib->length_dw);
amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
}
static void vpe_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr,
uint64_t seq, unsigned int flags)
{
int i = 0;
do {
/* write the fence */
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0));
/* zero in first two bits */
WARN_ON_ONCE(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, i == 0 ? lower_32_bits(seq) : upper_32_bits(seq));
addr += 4;
} while ((flags & AMDGPU_FENCE_FLAG_64BIT) && (i++ < 1));
if (flags & AMDGPU_FENCE_FLAG_INT) {
/* generate an interrupt */
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_TRAP, 0));
amdgpu_ring_write(ring, 0);
}
}
static void vpe_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
/* wait for idle */
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM,
VPE_POLL_REGMEM_SUBOP_REGMEM) |
VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
VPE_CMD_POLL_REGMEM_HEADER_MEM(1));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, seq); /* reference */
amdgpu_ring_write(ring, 0xffffffff); /* mask */
amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
VPE_CMD_POLL_REGMEM_DW5_INTERVAL(4));
}
static void vpe_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val)
{
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_REG_WRITE, 0));
amdgpu_ring_write(ring, reg << 2);
amdgpu_ring_write(ring, val);
}
static void vpe_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val, uint32_t mask)
{
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM,
VPE_POLL_REGMEM_SUBOP_REGMEM) |
VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
VPE_CMD_POLL_REGMEM_HEADER_MEM(0));
amdgpu_ring_write(ring, reg << 2);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val); /* reference */
amdgpu_ring_write(ring, mask); /* mask */
amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
VPE_CMD_POLL_REGMEM_DW5_INTERVAL(10));
}
static void vpe_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid,
uint64_t pd_addr)
{
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
}
static unsigned int vpe_ring_init_cond_exec(struct amdgpu_ring *ring)
{
unsigned int ret;
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_COND_EXE, 0));
amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
amdgpu_ring_write(ring, 1);
ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
return ret;
}
static void vpe_ring_patch_cond_exec(struct amdgpu_ring *ring, unsigned int offset)
{
unsigned int cur;
WARN_ON_ONCE(offset > ring->buf_mask);
WARN_ON_ONCE(ring->ring[offset] != 0x55aa55aa);
cur = (ring->wptr - 1) & ring->buf_mask;
if (cur > offset)
ring->ring[offset] = cur - offset;
else
ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
}
static int vpe_ring_preempt_ib(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
uint32_t preempt_reg = vpe->regs.queue0_preempt;
int i, r = 0;
/* assert preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, false);
/* emit the trailing fence */
ring->trail_seq += 1;
amdgpu_ring_alloc(ring, 10);
vpe_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0);
amdgpu_ring_commit(ring);
/* assert IB preemption */
WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 1);
/* poll the trailing fence */
for (i = 0; i < adev->usec_timeout; i++) {
if (ring->trail_seq ==
le32_to_cpu(*(ring->trail_fence_cpu_addr)))
break;
udelay(1);
}
if (i >= adev->usec_timeout) {
r = -EINVAL;
dev_err(adev->dev, "ring %d failed to be preempted\n", ring->idx);
}
/* deassert IB preemption */
WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 0);
/* deassert the preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, true);
return r;
}
static int vpe_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int vpe_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
if (!adev->pm.dpm_enabled)
dev_err(adev->dev, "Without PM, cannot support powergating\n");
dev_dbg(adev->dev, "%s: %s!\n", __func__, (state == AMD_PG_STATE_GATE) ? "GATE":"UNGATE");
if (state == AMD_PG_STATE_GATE) {
amdgpu_dpm_enable_vpe(adev, false);
vpe->context_started = false;
} else {
amdgpu_dpm_enable_vpe(adev, true);
}
return 0;
}
static uint64_t vpe_ring_get_rptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
uint64_t rptr;
if (ring->use_doorbell) {
rptr = atomic64_read((atomic64_t *)ring->rptr_cpu_addr);
dev_dbg(adev->dev, "rptr/doorbell before shift == 0x%016llx\n", rptr);
} else {
rptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_hi));
rptr = rptr << 32;
rptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_lo));
dev_dbg(adev->dev, "rptr before shift [%i] == 0x%016llx\n", ring->me, rptr);
}
return (rptr >> 2);
}
static uint64_t vpe_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
uint64_t wptr;
if (ring->use_doorbell) {
wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr);
dev_dbg(adev->dev, "wptr/doorbell before shift == 0x%016llx\n", wptr);
} else {
wptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi));
wptr = wptr << 32;
wptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo));
dev_dbg(adev->dev, "wptr before shift [%i] == 0x%016llx\n", ring->me, wptr);
}
return (wptr >> 2);
}
static void vpe_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
if (ring->use_doorbell) {
dev_dbg(adev->dev, "Using doorbell, \
wptr_offs == 0x%08x, \
lower_32_bits(ring->wptr) << 2 == 0x%08x, \
upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
ring->wptr_offs,
lower_32_bits(ring->wptr << 2),
upper_32_bits(ring->wptr << 2));
atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2);
WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
} else {
dev_dbg(adev->dev, "Not using doorbell, \
regVPEC_QUEUE0_RB_WPTR == 0x%08x, \
regVPEC_QUEUE0_RB_WPTR_HI == 0x%08x\n",
lower_32_bits(ring->wptr << 2),
upper_32_bits(ring->wptr << 2));
WREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo),
lower_32_bits(ring->wptr << 2));
WREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi),
upper_32_bits(ring->wptr << 2));
}
}
static int vpe_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
const uint32_t test_pattern = 0xdeadbeef;
uint32_t index, i;
uint64_t wb_addr;
int ret;
ret = amdgpu_device_wb_get(adev, &index);
if (ret) {
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret);
return ret;
}
adev->wb.wb[index] = 0;
wb_addr = adev->wb.gpu_addr + (index * 4);
ret = amdgpu_ring_alloc(ring, 4);
if (ret) {
dev_err(adev->dev, "amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, ret);
goto out;
}
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0));
amdgpu_ring_write(ring, lower_32_bits(wb_addr));
amdgpu_ring_write(ring, upper_32_bits(wb_addr));
amdgpu_ring_write(ring, test_pattern);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
if (le32_to_cpu(adev->wb.wb[index]) == test_pattern)
goto out;
udelay(1);
}
ret = -ETIMEDOUT;
out:
amdgpu_device_wb_free(adev, index);
return ret;
}
static int vpe_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
const uint32_t test_pattern = 0xdeadbeef;
struct amdgpu_ib ib = {};
struct dma_fence *f = NULL;
uint32_t index;
uint64_t wb_addr;
int ret;
ret = amdgpu_device_wb_get(adev, &index);
if (ret) {
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret);
return ret;
}
adev->wb.wb[index] = 0;
wb_addr = adev->wb.gpu_addr + (index * 4);
ret = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
if (ret)
goto err0;
ib.ptr[0] = VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0);
ib.ptr[1] = lower_32_bits(wb_addr);
ib.ptr[2] = upper_32_bits(wb_addr);
ib.ptr[3] = test_pattern;
ib.ptr[4] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.ptr[5] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.ptr[6] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.ptr[7] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.length_dw = 8;
ret = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (ret)
goto err1;
ret = dma_fence_wait_timeout(f, false, timeout);
if (ret <= 0) {
ret = ret ? : -ETIMEDOUT;
goto err1;
}
ret = (le32_to_cpu(adev->wb.wb[index]) == test_pattern) ? 0 : -EINVAL;
err1:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err0:
amdgpu_device_wb_free(adev, index);
return ret;
}
static void vpe_ring_begin_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
cancel_delayed_work_sync(&adev->vpe.idle_work);
/* Power on VPE and notify VPE of new context */
if (!vpe->context_started) {
uint32_t context_notify;
/* Power on VPE */
amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE);
/* Indicates that a job from a new context has been submitted. */
context_notify = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator));
if ((context_notify & 0x1) == 0)
context_notify |= 0x1;
else
context_notify &= ~(0x1);
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator), context_notify);
vpe->context_started = true;
}
}
static void vpe_ring_end_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT);
}
static const struct amdgpu_ring_funcs vpe_ring_funcs = {
.type = AMDGPU_RING_TYPE_VPE,
.align_mask = 0xf,
.nop = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0),
.support_64bit_ptrs = true,
.get_rptr = vpe_ring_get_rptr,
.get_wptr = vpe_ring_get_wptr,
.set_wptr = vpe_ring_set_wptr,
.emit_frame_size =
5 + /* vpe_ring_init_cond_exec */
6 + /* vpe_ring_emit_pipeline_sync */
10 + 10 + 10 + /* vpe_ring_emit_fence */
/* vpe_ring_emit_vm_flush */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6,
.emit_ib_size = 7 + 6,
.emit_ib = vpe_ring_emit_ib,
.emit_pipeline_sync = vpe_ring_emit_pipeline_sync,
.emit_fence = vpe_ring_emit_fence,
.emit_vm_flush = vpe_ring_emit_vm_flush,
.emit_wreg = vpe_ring_emit_wreg,
.emit_reg_wait = vpe_ring_emit_reg_wait,
.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
.insert_nop = vpe_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.test_ring = vpe_ring_test_ring,
.test_ib = vpe_ring_test_ib,
.init_cond_exec = vpe_ring_init_cond_exec,
.patch_cond_exec = vpe_ring_patch_cond_exec,
.preempt_ib = vpe_ring_preempt_ib,
.begin_use = vpe_ring_begin_use,
.end_use = vpe_ring_end_use,
};
static void vpe_set_ring_funcs(struct amdgpu_device *adev)
{
adev->vpe.ring.funcs = &vpe_ring_funcs;
}
const struct amd_ip_funcs vpe_ip_funcs = {
.name = "vpe_v6_1",
.early_init = vpe_early_init,
.late_init = NULL,
.sw_init = vpe_sw_init,
.sw_fini = vpe_sw_fini,
.hw_init = vpe_hw_init,
.hw_fini = vpe_hw_fini,
.suspend = vpe_suspend,
.resume = vpe_resume,
.soft_reset = NULL,
.set_clockgating_state = vpe_set_clockgating_state,
.set_powergating_state = vpe_set_powergating_state,
};
const struct amdgpu_ip_block_version vpe_v6_1_ip_block = {
.type = AMD_IP_BLOCK_TYPE_VPE,
.major = 6,
.minor = 1,
.rev = 0,
.funcs = &vpe_ip_funcs,
};