| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2013 - 2018 Intel Corporation. */ |
| |
| #include <linux/ptp_classify.h> |
| #include <linux/posix-clock.h> |
| #include "i40e.h" |
| #include "i40e_devids.h" |
| |
| /* The XL710 timesync is very much like Intel's 82599 design when it comes to |
| * the fundamental clock design. However, the clock operations are much simpler |
| * in the XL710 because the device supports a full 64 bits of nanoseconds. |
| * Because the field is so wide, we can forgo the cycle counter and just |
| * operate with the nanosecond field directly without fear of overflow. |
| * |
| * Much like the 82599, the update period is dependent upon the link speed: |
| * At 40Gb, 25Gb, or no link, the period is 1.6ns. |
| * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns) |
| * At 1Gb link, the period is multiplied by 20. (32ns) |
| * 1588 functionality is not supported at 100Mbps. |
| */ |
| #define I40E_PTP_40GB_INCVAL 0x0199999999ULL |
| #define I40E_PTP_10GB_INCVAL_MULT 2 |
| #define I40E_PTP_5GB_INCVAL_MULT 2 |
| #define I40E_PTP_1GB_INCVAL_MULT 20 |
| #define I40E_ISGN 0x80000000 |
| |
| #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) |
| #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ |
| I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) |
| #define I40E_SUBDEV_ID_25G_PTP_PIN 0xB |
| |
| enum i40e_ptp_pin { |
| SDP3_2 = 0, |
| SDP3_3, |
| GPIO_4 |
| }; |
| |
| enum i40e_can_set_pins { |
| CANT_DO_PINS = -1, |
| CAN_SET_PINS, |
| CAN_DO_PINS |
| }; |
| |
| static struct ptp_pin_desc sdp_desc[] = { |
| /* name idx func chan */ |
| {"SDP3_2", SDP3_2, PTP_PF_NONE, 0}, |
| {"SDP3_3", SDP3_3, PTP_PF_NONE, 1}, |
| {"GPIO_4", GPIO_4, PTP_PF_NONE, 1}, |
| }; |
| |
| enum i40e_ptp_gpio_pin_state { |
| end = -2, |
| invalid, |
| off, |
| in_A, |
| in_B, |
| out_A, |
| out_B, |
| }; |
| |
| static const char * const i40e_ptp_gpio_pin_state2str[] = { |
| "off", "in_A", "in_B", "out_A", "out_B" |
| }; |
| |
| enum i40e_ptp_led_pin_state { |
| led_end = -2, |
| low = 0, |
| high, |
| }; |
| |
| struct i40e_ptp_pins_settings { |
| enum i40e_ptp_gpio_pin_state sdp3_2; |
| enum i40e_ptp_gpio_pin_state sdp3_3; |
| enum i40e_ptp_gpio_pin_state gpio_4; |
| enum i40e_ptp_led_pin_state led2_0; |
| enum i40e_ptp_led_pin_state led2_1; |
| enum i40e_ptp_led_pin_state led3_0; |
| enum i40e_ptp_led_pin_state led3_1; |
| }; |
| |
| static const struct i40e_ptp_pins_settings |
| i40e_ptp_pin_led_allowed_states[] = { |
| {off, off, off, high, high, high, high}, |
| {off, in_A, off, high, high, high, low}, |
| {off, out_A, off, high, low, high, high}, |
| {off, in_B, off, high, high, high, low}, |
| {off, out_B, off, high, low, high, high}, |
| {in_A, off, off, high, high, high, low}, |
| {in_A, in_B, off, high, high, high, low}, |
| {in_A, out_B, off, high, low, high, high}, |
| {out_A, off, off, high, low, high, high}, |
| {out_A, in_B, off, high, low, high, high}, |
| {in_B, off, off, high, high, high, low}, |
| {in_B, in_A, off, high, high, high, low}, |
| {in_B, out_A, off, high, low, high, high}, |
| {out_B, off, off, high, low, high, high}, |
| {out_B, in_A, off, high, low, high, high}, |
| {off, off, in_A, high, high, low, high}, |
| {off, out_A, in_A, high, low, low, high}, |
| {off, in_B, in_A, high, high, low, low}, |
| {off, out_B, in_A, high, low, low, high}, |
| {out_A, off, in_A, high, low, low, high}, |
| {out_A, in_B, in_A, high, low, low, high}, |
| {in_B, off, in_A, high, high, low, low}, |
| {in_B, out_A, in_A, high, low, low, high}, |
| {out_B, off, in_A, high, low, low, high}, |
| {off, off, out_A, low, high, high, high}, |
| {off, in_A, out_A, low, high, high, low}, |
| {off, in_B, out_A, low, high, high, low}, |
| {off, out_B, out_A, low, low, high, high}, |
| {in_A, off, out_A, low, high, high, low}, |
| {in_A, in_B, out_A, low, high, high, low}, |
| {in_A, out_B, out_A, low, low, high, high}, |
| {in_B, off, out_A, low, high, high, low}, |
| {in_B, in_A, out_A, low, high, high, low}, |
| {out_B, off, out_A, low, low, high, high}, |
| {out_B, in_A, out_A, low, low, high, high}, |
| {off, off, in_B, high, high, low, high}, |
| {off, in_A, in_B, high, high, low, low}, |
| {off, out_A, in_B, high, low, low, high}, |
| {off, out_B, in_B, high, low, low, high}, |
| {in_A, off, in_B, high, high, low, low}, |
| {in_A, out_B, in_B, high, low, low, high}, |
| {out_A, off, in_B, high, low, low, high}, |
| {out_B, off, in_B, high, low, low, high}, |
| {out_B, in_A, in_B, high, low, low, high}, |
| {off, off, out_B, low, high, high, high}, |
| {off, in_A, out_B, low, high, high, low}, |
| {off, out_A, out_B, low, low, high, high}, |
| {off, in_B, out_B, low, high, high, low}, |
| {in_A, off, out_B, low, high, high, low}, |
| {in_A, in_B, out_B, low, high, high, low}, |
| {out_A, off, out_B, low, low, high, high}, |
| {out_A, in_B, out_B, low, low, high, high}, |
| {in_B, off, out_B, low, high, high, low}, |
| {in_B, in_A, out_B, low, high, high, low}, |
| {in_B, out_A, out_B, low, low, high, high}, |
| {end, end, end, led_end, led_end, led_end, led_end} |
| }; |
| |
| static int i40e_ptp_set_pins(struct i40e_pf *pf, |
| struct i40e_ptp_pins_settings *pins); |
| |
| /** |
| * i40e_ptp_extts0_work - workqueue task function |
| * @work: workqueue task structure |
| * |
| * Service for PTP external clock event |
| **/ |
| static void i40e_ptp_extts0_work(struct work_struct *work) |
| { |
| struct i40e_pf *pf = container_of(work, struct i40e_pf, |
| ptp_extts0_work); |
| struct i40e_hw *hw = &pf->hw; |
| struct ptp_clock_event event; |
| u32 hi, lo; |
| |
| /* Event time is captured by one of the two matched registers |
| * PRTTSYN_EVNT_L: 32 LSB of sampled time event |
| * PRTTSYN_EVNT_H: 32 MSB of sampled time event |
| * Event is defined in PRTTSYN_EVNT_0 register |
| */ |
| lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0)); |
| hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0)); |
| |
| event.timestamp = (((u64)hi) << 32) | lo; |
| |
| event.type = PTP_CLOCK_EXTTS; |
| event.index = hw->pf_id; |
| |
| /* fire event */ |
| ptp_clock_event(pf->ptp_clock, &event); |
| } |
| |
| /** |
| * i40e_is_ptp_pin_dev - check if device supports PTP pins |
| * @hw: pointer to the hardware structure |
| * |
| * Return true if device supports PTP pins, false otherwise. |
| **/ |
| static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw) |
| { |
| return hw->device_id == I40E_DEV_ID_25G_SFP28 && |
| hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN; |
| } |
| |
| /** |
| * i40e_can_set_pins - check possibility of manipulating the pins |
| * @pf: board private structure |
| * |
| * Check if all conditions are satisfied to manipulate PTP pins. |
| * Return CAN_SET_PINS if pins can be set on a specific PF or |
| * return CAN_DO_PINS if pins can be manipulated within a NIC or |
| * return CANT_DO_PINS otherwise. |
| **/ |
| static enum i40e_can_set_pins i40e_can_set_pins(struct i40e_pf *pf) |
| { |
| if (!i40e_is_ptp_pin_dev(&pf->hw)) { |
| dev_warn(&pf->pdev->dev, |
| "PTP external clock not supported.\n"); |
| return CANT_DO_PINS; |
| } |
| |
| if (!pf->ptp_pins) { |
| dev_warn(&pf->pdev->dev, |
| "PTP PIN manipulation not allowed.\n"); |
| return CANT_DO_PINS; |
| } |
| |
| if (pf->hw.pf_id) { |
| dev_warn(&pf->pdev->dev, |
| "PTP PINs should be accessed via PF0.\n"); |
| return CAN_DO_PINS; |
| } |
| |
| return CAN_SET_PINS; |
| } |
| |
| /** |
| * i40_ptp_reset_timing_events - Reset PTP timing events |
| * @pf: Board private structure |
| * |
| * This function resets timing events for pf. |
| **/ |
| static void i40_ptp_reset_timing_events(struct i40e_pf *pf) |
| { |
| u32 i; |
| |
| spin_lock_bh(&pf->ptp_rx_lock); |
| for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) { |
| /* reading and automatically clearing timing events registers */ |
| rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i)); |
| rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i)); |
| pf->latch_events[i] = 0; |
| } |
| /* reading and automatically clearing timing events registers */ |
| rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L); |
| rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H); |
| |
| pf->tx_hwtstamp_timeouts = 0; |
| pf->tx_hwtstamp_skipped = 0; |
| pf->rx_hwtstamp_cleared = 0; |
| pf->latch_event_flags = 0; |
| spin_unlock_bh(&pf->ptp_rx_lock); |
| } |
| |
| /** |
| * i40e_ptp_verify - check pins |
| * @ptp: ptp clock |
| * @pin: pin index |
| * @func: assigned function |
| * @chan: channel |
| * |
| * Check pins consistency. |
| * Return 0 on success or error on failure. |
| **/ |
| static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, |
| enum ptp_pin_function func, unsigned int chan) |
| { |
| switch (func) { |
| case PTP_PF_NONE: |
| case PTP_PF_EXTTS: |
| case PTP_PF_PEROUT: |
| break; |
| case PTP_PF_PHYSYNC: |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_read - Read the PHC time from the device |
| * @pf: Board private structure |
| * @ts: timespec structure to hold the current time value |
| * @sts: structure to hold the system time before and after reading the PHC |
| * |
| * This function reads the PRTTSYN_TIME registers and stores them in a |
| * timespec. However, since the registers are 64 bits of nanoseconds, we must |
| * convert the result to a timespec before we can return. |
| **/ |
| static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| u32 hi, lo; |
| u64 ns; |
| |
| /* The timer latches on the lowest register read. */ |
| ptp_read_system_prets(sts); |
| lo = rd32(hw, I40E_PRTTSYN_TIME_L); |
| ptp_read_system_postts(sts); |
| hi = rd32(hw, I40E_PRTTSYN_TIME_H); |
| |
| ns = (((u64)hi) << 32) | lo; |
| |
| *ts = ns_to_timespec64(ns); |
| } |
| |
| /** |
| * i40e_ptp_write - Write the PHC time to the device |
| * @pf: Board private structure |
| * @ts: timespec structure that holds the new time value |
| * |
| * This function writes the PRTTSYN_TIME registers with the user value. Since |
| * we receive a timespec from the stack, we must convert that timespec into |
| * nanoseconds before programming the registers. |
| **/ |
| static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| u64 ns = timespec64_to_ns(ts); |
| |
| /* The timer will not update until the high register is written, so |
| * write the low register first. |
| */ |
| wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); |
| wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); |
| } |
| |
| /** |
| * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time |
| * @hwtstamps: Timestamp structure to update |
| * @timestamp: Timestamp from the hardware |
| * |
| * We need to convert the NIC clock value into a hwtstamp which can be used by |
| * the upper level timestamping functions. Since the timestamp is simply a 64- |
| * bit nanosecond value, we can call ns_to_ktime directly to handle this. |
| **/ |
| static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, |
| u64 timestamp) |
| { |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| |
| hwtstamps->hwtstamp = ns_to_ktime(timestamp); |
| } |
| |
| /** |
| * i40e_ptp_adjfine - Adjust the PHC frequency |
| * @ptp: The PTP clock structure |
| * @scaled_ppm: Scaled parts per million adjustment from base |
| * |
| * Adjust the frequency of the PHC by the indicated delta from the base |
| * frequency. |
| * |
| * Scaled parts per million is ppm with a 16 bit binary fractional field. |
| **/ |
| static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| struct i40e_hw *hw = &pf->hw; |
| u64 adj, base_adj; |
| |
| smp_mb(); /* Force any pending update before accessing. */ |
| base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult); |
| |
| adj = adjust_by_scaled_ppm(base_adj, scaled_ppm); |
| |
| wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); |
| wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins |
| * @pf: the PF private data structure |
| * |
| * Configure 1PPS signal used for PTP pins |
| **/ |
| static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| struct timespec64 now; |
| u64 ns; |
| |
| wr32(hw, I40E_PRTTSYN_AUX_0(1), 0); |
| wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); |
| wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE); |
| |
| i40e_ptp_read(pf, &now, NULL); |
| now.tv_sec += I40E_PTP_2_SEC_DELAY; |
| now.tv_nsec = 0; |
| ns = timespec64_to_ns(&now); |
| |
| /* I40E_PRTTSYN_TGT_L(1) */ |
| wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF); |
| /* I40E_PRTTSYN_TGT_H(1) */ |
| wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32); |
| wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND); |
| wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); |
| wr32(hw, I40E_PRTTSYN_AUX_0(1), |
| I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD); |
| } |
| |
| /** |
| * i40e_ptp_adjtime - Adjust the PHC time |
| * @ptp: The PTP clock structure |
| * @delta: Offset in nanoseconds to adjust the PHC time by |
| * |
| * Adjust the current clock time by a delta specified in nanoseconds. |
| **/ |
| static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| struct i40e_hw *hw = &pf->hw; |
| |
| mutex_lock(&pf->tmreg_lock); |
| |
| if (delta > -999999900LL && delta < 999999900LL) { |
| int neg_adj = 0; |
| u32 timadj; |
| u64 tohw; |
| |
| if (delta < 0) { |
| neg_adj = 1; |
| tohw = -delta; |
| } else { |
| tohw = delta; |
| } |
| |
| timadj = tohw & 0x3FFFFFFF; |
| if (neg_adj) |
| timadj |= I40E_ISGN; |
| wr32(hw, I40E_PRTTSYN_ADJ, timadj); |
| } else { |
| struct timespec64 then, now; |
| |
| then = ns_to_timespec64(delta); |
| i40e_ptp_read(pf, &now, NULL); |
| now = timespec64_add(now, then); |
| i40e_ptp_write(pf, (const struct timespec64 *)&now); |
| i40e_ptp_set_1pps_signal_hw(pf); |
| } |
| |
| mutex_unlock(&pf->tmreg_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_gettimex - Get the time of the PHC |
| * @ptp: The PTP clock structure |
| * @ts: timespec structure to hold the current time value |
| * @sts: structure to hold the system time before and after reading the PHC |
| * |
| * Read the device clock and return the correct value on ns, after converting it |
| * into a timespec struct. |
| **/ |
| static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| |
| mutex_lock(&pf->tmreg_lock); |
| i40e_ptp_read(pf, ts, sts); |
| mutex_unlock(&pf->tmreg_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_settime - Set the time of the PHC |
| * @ptp: The PTP clock structure |
| * @ts: timespec64 structure that holds the new time value |
| * |
| * Set the device clock to the user input value. The conversion from timespec |
| * to ns happens in the write function. |
| **/ |
| static int i40e_ptp_settime(struct ptp_clock_info *ptp, |
| const struct timespec64 *ts) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| |
| mutex_lock(&pf->tmreg_lock); |
| i40e_ptp_write(pf, ts); |
| mutex_unlock(&pf->tmreg_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_pps_configure - configure PPS events |
| * @ptp: ptp clock |
| * @rq: clock request |
| * @on: status |
| * |
| * Configure PPS events for external clock source. |
| * Return 0 on success or error on failure. |
| **/ |
| static int i40e_pps_configure(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, |
| int on) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| |
| if (!!on) |
| i40e_ptp_set_1pps_signal_hw(pf); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_pin_state - determine PIN state |
| * @index: PIN index |
| * @func: function assigned to PIN |
| * |
| * Determine PIN state based on PIN index and function assigned. |
| * Return PIN state. |
| **/ |
| static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func) |
| { |
| enum i40e_ptp_gpio_pin_state state = off; |
| |
| if (index == 0 && func == PTP_PF_EXTTS) |
| state = in_A; |
| if (index == 1 && func == PTP_PF_EXTTS) |
| state = in_B; |
| if (index == 0 && func == PTP_PF_PEROUT) |
| state = out_A; |
| if (index == 1 && func == PTP_PF_PEROUT) |
| state = out_B; |
| |
| return state; |
| } |
| |
| /** |
| * i40e_ptp_enable_pin - enable PINs. |
| * @pf: private board structure |
| * @chan: channel |
| * @func: PIN function |
| * @on: state |
| * |
| * Enable PTP pins for external clock source. |
| * Return 0 on success or error code on failure. |
| **/ |
| static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan, |
| enum ptp_pin_function func, int on) |
| { |
| enum i40e_ptp_gpio_pin_state *pin = NULL; |
| struct i40e_ptp_pins_settings pins; |
| int pin_index; |
| |
| /* Use PF0 to set pins. Return success for user space tools */ |
| if (pf->hw.pf_id) |
| return 0; |
| |
| /* Preserve previous state of pins that we don't touch */ |
| pins.sdp3_2 = pf->ptp_pins->sdp3_2; |
| pins.sdp3_3 = pf->ptp_pins->sdp3_3; |
| pins.gpio_4 = pf->ptp_pins->gpio_4; |
| |
| /* To turn on the pin - find the corresponding one based on |
| * the given index. To to turn the function off - find |
| * which pin had it assigned. Don't use ptp_find_pin here |
| * because it tries to lock the pincfg_mux which is locked by |
| * ptp_pin_store() that calls here. |
| */ |
| if (on) { |
| pin_index = ptp_find_pin(pf->ptp_clock, func, chan); |
| if (pin_index < 0) |
| return -EBUSY; |
| |
| switch (pin_index) { |
| case SDP3_2: |
| pin = &pins.sdp3_2; |
| break; |
| case SDP3_3: |
| pin = &pins.sdp3_3; |
| break; |
| case GPIO_4: |
| pin = &pins.gpio_4; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *pin = i40e_pin_state(chan, func); |
| } else { |
| pins.sdp3_2 = off; |
| pins.sdp3_3 = off; |
| pins.gpio_4 = off; |
| } |
| |
| return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0; |
| } |
| |
| /** |
| * i40e_ptp_feature_enable - Enable external clock pins |
| * @ptp: The PTP clock structure |
| * @rq: The PTP clock request structure |
| * @on: To turn feature on/off |
| * |
| * Setting on/off PTP PPS feature for pin. |
| **/ |
| static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, |
| int on) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| |
| enum ptp_pin_function func; |
| unsigned int chan; |
| |
| /* TODO: Implement flags handling for EXTTS and PEROUT */ |
| switch (rq->type) { |
| case PTP_CLK_REQ_EXTTS: |
| func = PTP_PF_EXTTS; |
| chan = rq->extts.index; |
| break; |
| case PTP_CLK_REQ_PEROUT: |
| func = PTP_PF_PEROUT; |
| chan = rq->perout.index; |
| break; |
| case PTP_CLK_REQ_PPS: |
| return i40e_pps_configure(ptp, rq, on); |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return i40e_ptp_enable_pin(pf, chan, func, on); |
| } |
| |
| /** |
| * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events |
| * @pf: the PF data structure |
| * |
| * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers |
| * for noticed latch events. This allows the driver to keep track of the first |
| * time a latch event was noticed which will be used to help clear out Rx |
| * timestamps for packets that got dropped or lost. |
| * |
| * This function will return the current value of I40E_PRTTSYN_STAT_1 and is |
| * expected to be called only while under the ptp_rx_lock. |
| **/ |
| static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| u32 prttsyn_stat, new_latch_events; |
| int i; |
| |
| prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); |
| new_latch_events = prttsyn_stat & ~pf->latch_event_flags; |
| |
| /* Update the jiffies time for any newly latched timestamp. This |
| * ensures that we store the time that we first discovered a timestamp |
| * was latched by the hardware. The service task will later determine |
| * if we should free the latch and drop that timestamp should too much |
| * time pass. This flow ensures that we only update jiffies for new |
| * events latched since the last time we checked, and not all events |
| * currently latched, so that the service task accounting remains |
| * accurate. |
| */ |
| for (i = 0; i < 4; i++) { |
| if (new_latch_events & BIT(i)) |
| pf->latch_events[i] = jiffies; |
| } |
| |
| /* Finally, we store the current status of the Rx timestamp latches */ |
| pf->latch_event_flags = prttsyn_stat; |
| |
| return prttsyn_stat; |
| } |
| |
| /** |
| * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung |
| * @pf: The PF private data structure |
| * |
| * This watchdog task is scheduled to detect error case where hardware has |
| * dropped an Rx packet that was timestamped when the ring is full. The |
| * particular error is rare but leaves the device in a state unable to timestamp |
| * any future packets. |
| **/ |
| void i40e_ptp_rx_hang(struct i40e_pf *pf) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| unsigned int i, cleared = 0; |
| |
| /* Since we cannot turn off the Rx timestamp logic if the device is |
| * configured for Tx timestamping, we check if Rx timestamping is |
| * configured. We don't want to spuriously warn about Rx timestamp |
| * hangs if we don't care about the timestamps. |
| */ |
| if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx) |
| return; |
| |
| spin_lock_bh(&pf->ptp_rx_lock); |
| |
| /* Update current latch times for Rx events */ |
| i40e_ptp_get_rx_events(pf); |
| |
| /* Check all the currently latched Rx events and see whether they have |
| * been latched for over a second. It is assumed that any timestamp |
| * should have been cleared within this time, or else it was captured |
| * for a dropped frame that the driver never received. Thus, we will |
| * clear any timestamp that has been latched for over 1 second. |
| */ |
| for (i = 0; i < 4; i++) { |
| if ((pf->latch_event_flags & BIT(i)) && |
| time_is_before_jiffies(pf->latch_events[i] + HZ)) { |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); |
| pf->latch_event_flags &= ~BIT(i); |
| cleared++; |
| } |
| } |
| |
| spin_unlock_bh(&pf->ptp_rx_lock); |
| |
| /* Log a warning if more than 2 timestamps got dropped in the same |
| * check. We don't want to warn about all drops because it can occur |
| * in normal scenarios such as PTP frames on multicast addresses we |
| * aren't listening to. However, administrator should know if this is |
| * the reason packets aren't receiving timestamps. |
| */ |
| if (cleared > 2) |
| dev_dbg(&pf->pdev->dev, |
| "Dropped %d missed RXTIME timestamp events\n", |
| cleared); |
| |
| /* Finally, update the rx_hwtstamp_cleared counter */ |
| pf->rx_hwtstamp_cleared += cleared; |
| } |
| |
| /** |
| * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung |
| * @pf: The PF private data structure |
| * |
| * This watchdog task is run periodically to make sure that we clear the Tx |
| * timestamp logic if we don't obtain a timestamp in a reasonable amount of |
| * time. It is unexpected in the normal case but if it occurs it results in |
| * permanently preventing timestamps of future packets. |
| **/ |
| void i40e_ptp_tx_hang(struct i40e_pf *pf) |
| { |
| struct sk_buff *skb; |
| |
| if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx) |
| return; |
| |
| /* Nothing to do if we're not already waiting for a timestamp */ |
| if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) |
| return; |
| |
| /* We already have a handler routine which is run when we are notified |
| * of a Tx timestamp in the hardware. If we don't get an interrupt |
| * within a second it is reasonable to assume that we never will. |
| */ |
| if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { |
| skb = pf->ptp_tx_skb; |
| pf->ptp_tx_skb = NULL; |
| clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); |
| |
| /* Free the skb after we clear the bitlock */ |
| dev_kfree_skb_any(skb); |
| pf->tx_hwtstamp_timeouts++; |
| } |
| } |
| |
| /** |
| * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp |
| * @pf: Board private structure |
| * |
| * Read the value of the Tx timestamp from the registers, convert it into a |
| * value consumable by the stack, and store that result into the shhwtstamps |
| * struct before returning it up the stack. |
| **/ |
| void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) |
| { |
| struct skb_shared_hwtstamps shhwtstamps; |
| struct sk_buff *skb = pf->ptp_tx_skb; |
| struct i40e_hw *hw = &pf->hw; |
| u32 hi, lo; |
| u64 ns; |
| |
| if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx) |
| return; |
| |
| /* don't attempt to timestamp if we don't have an skb */ |
| if (!pf->ptp_tx_skb) |
| return; |
| |
| lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); |
| hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); |
| |
| ns = (((u64)hi) << 32) | lo; |
| i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); |
| |
| /* Clear the bit lock as soon as possible after reading the register, |
| * and prior to notifying the stack via skb_tstamp_tx(). Otherwise |
| * applications might wake up and attempt to request another transmit |
| * timestamp prior to the bit lock being cleared. |
| */ |
| pf->ptp_tx_skb = NULL; |
| clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); |
| |
| /* Notify the stack and free the skb after we've unlocked */ |
| skb_tstamp_tx(skb, &shhwtstamps); |
| dev_kfree_skb_any(skb); |
| } |
| |
| /** |
| * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp |
| * @pf: Board private structure |
| * @skb: Particular skb to send timestamp with |
| * @index: Index into the receive timestamp registers for the timestamp |
| * |
| * The XL710 receives a notification in the receive descriptor with an offset |
| * into the set of RXTIME registers where the timestamp is for that skb. This |
| * function goes and fetches the receive timestamp from that offset, if a valid |
| * one exists. The RXTIME registers are in ns, so we must convert the result |
| * first. |
| **/ |
| void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) |
| { |
| u32 prttsyn_stat, hi, lo; |
| struct i40e_hw *hw; |
| u64 ns; |
| |
| /* Since we cannot turn off the Rx timestamp logic if the device is |
| * doing Tx timestamping, check if Rx timestamping is configured. |
| */ |
| if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx) |
| return; |
| |
| hw = &pf->hw; |
| |
| spin_lock_bh(&pf->ptp_rx_lock); |
| |
| /* Get current Rx events and update latch times */ |
| prttsyn_stat = i40e_ptp_get_rx_events(pf); |
| |
| /* TODO: Should we warn about missing Rx timestamp event? */ |
| if (!(prttsyn_stat & BIT(index))) { |
| spin_unlock_bh(&pf->ptp_rx_lock); |
| return; |
| } |
| |
| /* Clear the latched event since we're about to read its register */ |
| pf->latch_event_flags &= ~BIT(index); |
| |
| lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); |
| hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); |
| |
| spin_unlock_bh(&pf->ptp_rx_lock); |
| |
| ns = (((u64)hi) << 32) | lo; |
| |
| i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); |
| } |
| |
| /** |
| * i40e_ptp_set_increment - Utility function to update clock increment rate |
| * @pf: Board private structure |
| * |
| * During a link change, the DMA frequency that drives the 1588 logic will |
| * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, |
| * we must update the increment value per clock tick. |
| **/ |
| void i40e_ptp_set_increment(struct i40e_pf *pf) |
| { |
| struct i40e_link_status *hw_link_info; |
| struct i40e_hw *hw = &pf->hw; |
| u64 incval; |
| u32 mult; |
| |
| hw_link_info = &hw->phy.link_info; |
| |
| i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); |
| |
| switch (hw_link_info->link_speed) { |
| case I40E_LINK_SPEED_10GB: |
| mult = I40E_PTP_10GB_INCVAL_MULT; |
| break; |
| case I40E_LINK_SPEED_5GB: |
| mult = I40E_PTP_5GB_INCVAL_MULT; |
| break; |
| case I40E_LINK_SPEED_1GB: |
| mult = I40E_PTP_1GB_INCVAL_MULT; |
| break; |
| case I40E_LINK_SPEED_100MB: |
| { |
| static int warn_once; |
| |
| if (!warn_once) { |
| dev_warn(&pf->pdev->dev, |
| "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); |
| warn_once++; |
| } |
| mult = 0; |
| break; |
| } |
| case I40E_LINK_SPEED_40GB: |
| default: |
| mult = 1; |
| break; |
| } |
| |
| /* The increment value is calculated by taking the base 40GbE incvalue |
| * and multiplying it by a factor based on the link speed. |
| */ |
| incval = I40E_PTP_40GB_INCVAL * mult; |
| |
| /* Write the new increment value into the increment register. The |
| * hardware will not update the clock until both registers have been |
| * written. |
| */ |
| wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); |
| wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); |
| |
| /* Update the base adjustement value. */ |
| WRITE_ONCE(pf->ptp_adj_mult, mult); |
| smp_mb(); /* Force the above update. */ |
| } |
| |
| /** |
| * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping |
| * @pf: Board private structure |
| * @ifr: ioctl data |
| * |
| * Obtain the current hardware timestamping settigs as requested. To do this, |
| * keep a shadow copy of the timestamp settings rather than attempting to |
| * deconstruct it from the registers. |
| **/ |
| int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) |
| { |
| struct hwtstamp_config *config = &pf->tstamp_config; |
| |
| if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) |
| return -EOPNOTSUPP; |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * i40e_ptp_free_pins - free memory used by PTP pins |
| * @pf: Board private structure |
| * |
| * Release memory allocated for PTP pins. |
| **/ |
| static void i40e_ptp_free_pins(struct i40e_pf *pf) |
| { |
| if (i40e_is_ptp_pin_dev(&pf->hw)) { |
| kfree(pf->ptp_pins); |
| kfree(pf->ptp_caps.pin_config); |
| pf->ptp_pins = NULL; |
| } |
| } |
| |
| /** |
| * i40e_ptp_set_pin_hw - Set HW GPIO pin |
| * @hw: pointer to the hardware structure |
| * @pin: pin index |
| * @state: pin state |
| * |
| * Set status of GPIO pin for external clock handling. |
| **/ |
| static void i40e_ptp_set_pin_hw(struct i40e_hw *hw, |
| unsigned int pin, |
| enum i40e_ptp_gpio_pin_state state) |
| { |
| switch (state) { |
| case off: |
| wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0); |
| break; |
| case in_A: |
| wr32(hw, I40E_GLGEN_GPIO_CTL(pin), |
| I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0); |
| break; |
| case in_B: |
| wr32(hw, I40E_GLGEN_GPIO_CTL(pin), |
| I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0); |
| break; |
| case out_A: |
| wr32(hw, I40E_GLGEN_GPIO_CTL(pin), |
| I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1); |
| break; |
| case out_B: |
| wr32(hw, I40E_GLGEN_GPIO_CTL(pin), |
| I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * i40e_ptp_set_led_hw - Set HW GPIO led |
| * @hw: pointer to the hardware structure |
| * @led: led index |
| * @state: led state |
| * |
| * Set status of GPIO led for external clock handling. |
| **/ |
| static void i40e_ptp_set_led_hw(struct i40e_hw *hw, |
| unsigned int led, |
| enum i40e_ptp_led_pin_state state) |
| { |
| switch (state) { |
| case low: |
| wr32(hw, I40E_GLGEN_GPIO_SET, |
| I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led); |
| break; |
| case high: |
| wr32(hw, I40E_GLGEN_GPIO_SET, |
| I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | |
| I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * i40e_ptp_init_leds_hw - init LEDs |
| * @hw: pointer to a hardware structure |
| * |
| * Set initial state of LEDs |
| **/ |
| static void i40e_ptp_init_leds_hw(struct i40e_hw *hw) |
| { |
| wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0), |
| I40E_GLGEN_GPIO_CTL_LED_INIT); |
| wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1), |
| I40E_GLGEN_GPIO_CTL_LED_INIT); |
| wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0), |
| I40E_GLGEN_GPIO_CTL_LED_INIT); |
| wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1), |
| I40E_GLGEN_GPIO_CTL_LED_INIT); |
| } |
| |
| /** |
| * i40e_ptp_set_pins_hw - Set HW GPIO pins |
| * @pf: Board private structure |
| * |
| * This function sets GPIO pins for PTP |
| **/ |
| static void i40e_ptp_set_pins_hw(struct i40e_pf *pf) |
| { |
| const struct i40e_ptp_pins_settings *pins = pf->ptp_pins; |
| struct i40e_hw *hw = &pf->hw; |
| |
| /* pin must be disabled before it may be used */ |
| i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); |
| i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); |
| i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); |
| |
| i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2); |
| i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3); |
| i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4); |
| |
| i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0); |
| i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1); |
| i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0); |
| i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1); |
| |
| dev_info(&pf->pdev->dev, |
| "PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", |
| i40e_ptp_gpio_pin_state2str[pins->sdp3_2], |
| i40e_ptp_gpio_pin_state2str[pins->sdp3_3], |
| i40e_ptp_gpio_pin_state2str[pins->gpio_4]); |
| } |
| |
| /** |
| * i40e_ptp_set_pins - set PTP pins in HW |
| * @pf: Board private structure |
| * @pins: PTP pins to be applied |
| * |
| * Validate and set PTP pins in HW for specific PF. |
| * Return 0 on success or negative value on error. |
| **/ |
| static int i40e_ptp_set_pins(struct i40e_pf *pf, |
| struct i40e_ptp_pins_settings *pins) |
| { |
| enum i40e_can_set_pins pin_caps = i40e_can_set_pins(pf); |
| int i = 0; |
| |
| if (pin_caps == CANT_DO_PINS) |
| return -EOPNOTSUPP; |
| else if (pin_caps == CAN_DO_PINS) |
| return 0; |
| |
| if (pins->sdp3_2 == invalid) |
| pins->sdp3_2 = pf->ptp_pins->sdp3_2; |
| if (pins->sdp3_3 == invalid) |
| pins->sdp3_3 = pf->ptp_pins->sdp3_3; |
| if (pins->gpio_4 == invalid) |
| pins->gpio_4 = pf->ptp_pins->gpio_4; |
| while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) { |
| if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 && |
| pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 && |
| pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) { |
| pins->led2_0 = |
| i40e_ptp_pin_led_allowed_states[i].led2_0; |
| pins->led2_1 = |
| i40e_ptp_pin_led_allowed_states[i].led2_1; |
| pins->led3_0 = |
| i40e_ptp_pin_led_allowed_states[i].led3_0; |
| pins->led3_1 = |
| i40e_ptp_pin_led_allowed_states[i].led3_1; |
| break; |
| } |
| i++; |
| } |
| if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) { |
| dev_warn(&pf->pdev->dev, |
| "Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", |
| i40e_ptp_gpio_pin_state2str[pins->sdp3_2], |
| i40e_ptp_gpio_pin_state2str[pins->sdp3_3], |
| i40e_ptp_gpio_pin_state2str[pins->gpio_4]); |
| |
| return -EPERM; |
| } |
| memcpy(pf->ptp_pins, pins, sizeof(*pins)); |
| i40e_ptp_set_pins_hw(pf); |
| i40_ptp_reset_timing_events(pf); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_alloc_pins - allocate PTP pins structure |
| * @pf: Board private structure |
| * |
| * allocate PTP pins structure |
| **/ |
| int i40e_ptp_alloc_pins(struct i40e_pf *pf) |
| { |
| if (!i40e_is_ptp_pin_dev(&pf->hw)) |
| return 0; |
| |
| pf->ptp_pins = |
| kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL); |
| |
| if (!pf->ptp_pins) { |
| dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n"); |
| return -ENOMEM; |
| } |
| |
| pf->ptp_pins->sdp3_2 = off; |
| pf->ptp_pins->sdp3_3 = off; |
| pf->ptp_pins->gpio_4 = off; |
| pf->ptp_pins->led2_0 = high; |
| pf->ptp_pins->led2_1 = high; |
| pf->ptp_pins->led3_0 = high; |
| pf->ptp_pins->led3_1 = high; |
| |
| /* Use PF0 to set pins in HW. Return success for user space tools */ |
| if (pf->hw.pf_id) |
| return 0; |
| |
| i40e_ptp_init_leds_hw(&pf->hw); |
| i40e_ptp_set_pins_hw(pf); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode |
| * @pf: Board private structure |
| * @config: hwtstamp settings requested or saved |
| * |
| * Control hardware registers to enter the specific mode requested by the |
| * user. Also used during reset path to ensure that timestamp settings are |
| * maintained. |
| * |
| * Note: modifies config in place, and may update the requested mode to be |
| * more broad if the specific filter is not directly supported. |
| **/ |
| static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, |
| struct hwtstamp_config *config) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| u32 tsyntype, regval; |
| |
| /* Selects external trigger to cause event */ |
| regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); |
| /* Bit 17:16 is EVNTLVL, 01B rising edge */ |
| regval &= 0; |
| regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT); |
| /* regval: 0001 0000 0000 0000 0000 */ |
| wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); |
| |
| /* Enabel interrupts */ |
| regval = rd32(hw, I40E_PRTTSYN_CTL0); |
| regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT; |
| wr32(hw, I40E_PRTTSYN_CTL0, regval); |
| |
| INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work); |
| |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| pf->ptp_tx = false; |
| break; |
| case HWTSTAMP_TX_ON: |
| pf->ptp_tx = true; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| pf->ptp_rx = false; |
| /* We set the type to V1, but do not enable UDP packet |
| * recognition. In this way, we should be as close to |
| * disabling PTP Rx timestamps as possible since V1 packets |
| * are always UDP, since L2 packets are a V2 feature. |
| */ |
| tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) |
| return -ERANGE; |
| pf->ptp_rx = true; |
| tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | |
| I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | |
| I40E_PRTTSYN_CTL1_UDP_ENA_MASK; |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) |
| return -ERANGE; |
| fallthrough; |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| pf->ptp_rx = true; |
| tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | |
| I40E_PRTTSYN_CTL1_TSYNTYPE_V2; |
| if (test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) { |
| tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| } else { |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; |
| } |
| break; |
| case HWTSTAMP_FILTER_NTP_ALL: |
| case HWTSTAMP_FILTER_ALL: |
| default: |
| return -ERANGE; |
| } |
| |
| /* Clear out all 1588-related registers to clear and unlatch them. */ |
| spin_lock_bh(&pf->ptp_rx_lock); |
| rd32(hw, I40E_PRTTSYN_STAT_0); |
| rd32(hw, I40E_PRTTSYN_TXTIME_H); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); |
| pf->latch_event_flags = 0; |
| spin_unlock_bh(&pf->ptp_rx_lock); |
| |
| /* Enable/disable the Tx timestamp interrupt based on user input. */ |
| regval = rd32(hw, I40E_PRTTSYN_CTL0); |
| if (pf->ptp_tx) |
| regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; |
| else |
| regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; |
| wr32(hw, I40E_PRTTSYN_CTL0, regval); |
| |
| regval = rd32(hw, I40E_PFINT_ICR0_ENA); |
| if (pf->ptp_tx) |
| regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; |
| else |
| regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; |
| wr32(hw, I40E_PFINT_ICR0_ENA, regval); |
| |
| /* Although there is no simple on/off switch for Rx, we "disable" Rx |
| * timestamps by setting to V1 only mode and clear the UDP |
| * recognition. This ought to disable all PTP Rx timestamps as V1 |
| * packets are always over UDP. Note that software is configured to |
| * ignore Rx timestamps via the pf->ptp_rx flag. |
| */ |
| regval = rd32(hw, I40E_PRTTSYN_CTL1); |
| /* clear everything but the enable bit */ |
| regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; |
| /* now enable bits for desired Rx timestamps */ |
| regval |= tsyntype; |
| wr32(hw, I40E_PRTTSYN_CTL1, regval); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping |
| * @pf: Board private structure |
| * @ifr: ioctl data |
| * |
| * Respond to the user filter requests and make the appropriate hardware |
| * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping |
| * logic, so keep track in software of whether to indicate these timestamps |
| * or not. |
| * |
| * It is permissible to "upgrade" the user request to a broader filter, as long |
| * as the user receives the timestamps they care about and the user is notified |
| * the filter has been broadened. |
| **/ |
| int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) |
| { |
| struct hwtstamp_config config; |
| int err; |
| |
| if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) |
| return -EOPNOTSUPP; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| err = i40e_ptp_set_timestamp_mode(pf, &config); |
| if (err) |
| return err; |
| |
| /* save these settings for future reference */ |
| pf->tstamp_config = config; |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * i40e_init_pin_config - initialize pins. |
| * @pf: private board structure |
| * |
| * Initialize pins for external clock source. |
| * Return 0 on success or error code on failure. |
| **/ |
| static int i40e_init_pin_config(struct i40e_pf *pf) |
| { |
| int i; |
| |
| pf->ptp_caps.n_pins = 3; |
| pf->ptp_caps.n_ext_ts = 2; |
| pf->ptp_caps.pps = 1; |
| pf->ptp_caps.n_per_out = 2; |
| |
| pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins, |
| sizeof(*pf->ptp_caps.pin_config), |
| GFP_KERNEL); |
| if (!pf->ptp_caps.pin_config) |
| return -ENOMEM; |
| |
| for (i = 0; i < pf->ptp_caps.n_pins; i++) { |
| snprintf(pf->ptp_caps.pin_config[i].name, |
| sizeof(pf->ptp_caps.pin_config[i].name), |
| "%s", sdp_desc[i].name); |
| pf->ptp_caps.pin_config[i].index = sdp_desc[i].index; |
| pf->ptp_caps.pin_config[i].func = PTP_PF_NONE; |
| pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan; |
| } |
| |
| pf->ptp_caps.verify = i40e_ptp_verify; |
| pf->ptp_caps.enable = i40e_ptp_feature_enable; |
| |
| pf->ptp_caps.pps = 1; |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_create_clock - Create PTP clock device for userspace |
| * @pf: Board private structure |
| * |
| * This function creates a new PTP clock device. It only creates one if we |
| * don't already have one, so it is safe to call. Will return error if it |
| * can't create one, but success if we already have a device. Should be used |
| * by i40e_ptp_init to create clock initially, and prevent global resets from |
| * creating new clock devices. |
| **/ |
| static long i40e_ptp_create_clock(struct i40e_pf *pf) |
| { |
| /* no need to create a clock device if we already have one */ |
| if (!IS_ERR_OR_NULL(pf->ptp_clock)) |
| return 0; |
| |
| strscpy(pf->ptp_caps.name, i40e_driver_name, |
| sizeof(pf->ptp_caps.name) - 1); |
| pf->ptp_caps.owner = THIS_MODULE; |
| pf->ptp_caps.max_adj = 999999999; |
| pf->ptp_caps.adjfine = i40e_ptp_adjfine; |
| pf->ptp_caps.adjtime = i40e_ptp_adjtime; |
| pf->ptp_caps.gettimex64 = i40e_ptp_gettimex; |
| pf->ptp_caps.settime64 = i40e_ptp_settime; |
| if (i40e_is_ptp_pin_dev(&pf->hw)) { |
| int err = i40e_init_pin_config(pf); |
| |
| if (err) |
| return err; |
| } |
| |
| /* Attempt to register the clock before enabling the hardware. */ |
| pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); |
| if (IS_ERR(pf->ptp_clock)) |
| return PTR_ERR(pf->ptp_clock); |
| |
| /* clear the hwtstamp settings here during clock create, instead of |
| * during regular init, so that we can maintain settings across a |
| * reset or suspend. |
| */ |
| pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; |
| pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; |
| |
| /* Set the previous "reset" time to the current Kernel clock time */ |
| ktime_get_real_ts64(&pf->ptp_prev_hw_time); |
| pf->ptp_reset_start = ktime_get(); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time |
| * @pf: Board private structure |
| * |
| * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should |
| * be called at the end of preparing to reset, just before hardware reset |
| * occurs, in order to preserve the PTP time as close as possible across |
| * resets. |
| */ |
| void i40e_ptp_save_hw_time(struct i40e_pf *pf) |
| { |
| /* don't try to access the PTP clock if it's not enabled */ |
| if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) |
| return; |
| |
| i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL); |
| /* Get a monotonic starting time for this reset */ |
| pf->ptp_reset_start = ktime_get(); |
| } |
| |
| /** |
| * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs |
| * @pf: Board private structure |
| * |
| * Restore the PTP hardware clock registers. We previously cached the PTP |
| * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible, |
| * update this value based on the time delta since the time was saved, using |
| * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference. |
| * |
| * This ensures that the hardware clock is restored to nearly what it should |
| * have been if a reset had not occurred. |
| */ |
| void i40e_ptp_restore_hw_time(struct i40e_pf *pf) |
| { |
| ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start); |
| |
| /* Update the previous HW time with the ktime delta */ |
| timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta)); |
| |
| /* Restore the hardware clock registers */ |
| i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time); |
| } |
| |
| /** |
| * i40e_ptp_init - Initialize the 1588 support after device probe or reset |
| * @pf: Board private structure |
| * |
| * This function sets device up for 1588 support. The first time it is run, it |
| * will create a PHC clock device. It does not create a clock device if one |
| * already exists. It also reconfigures the device after a reset. |
| * |
| * The first time a clock is created, i40e_ptp_create_clock will set |
| * pf->ptp_prev_hw_time to the current system time. During resets, it is |
| * expected that this timespec will be set to the last known PTP clock time, |
| * in order to preserve the clock time as close as possible across a reset. |
| **/ |
| void i40e_ptp_init(struct i40e_pf *pf) |
| { |
| struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; |
| struct i40e_hw *hw = &pf->hw; |
| u32 pf_id; |
| long err; |
| |
| /* Only one PF is assigned to control 1588 logic per port. Do not |
| * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID |
| */ |
| pf_id = FIELD_GET(I40E_PRTTSYN_CTL0_PF_ID_MASK, |
| rd32(hw, I40E_PRTTSYN_CTL0)); |
| if (hw->pf_id != pf_id) { |
| clear_bit(I40E_FLAG_PTP_ENA, pf->flags); |
| dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", |
| __func__, |
| netdev->name); |
| return; |
| } |
| |
| mutex_init(&pf->tmreg_lock); |
| spin_lock_init(&pf->ptp_rx_lock); |
| |
| /* ensure we have a clock device */ |
| err = i40e_ptp_create_clock(pf); |
| if (err) { |
| pf->ptp_clock = NULL; |
| dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", |
| __func__); |
| } else if (pf->ptp_clock) { |
| u32 regval; |
| |
| if (pf->hw.debug_mask & I40E_DEBUG_LAN) |
| dev_info(&pf->pdev->dev, "PHC enabled\n"); |
| set_bit(I40E_FLAG_PTP_ENA, pf->flags); |
| |
| /* Ensure the clocks are running. */ |
| regval = rd32(hw, I40E_PRTTSYN_CTL0); |
| regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; |
| wr32(hw, I40E_PRTTSYN_CTL0, regval); |
| regval = rd32(hw, I40E_PRTTSYN_CTL1); |
| regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; |
| wr32(hw, I40E_PRTTSYN_CTL1, regval); |
| |
| /* Set the increment value per clock tick. */ |
| i40e_ptp_set_increment(pf); |
| |
| /* reset timestamping mode */ |
| i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); |
| |
| /* Restore the clock time based on last known value */ |
| i40e_ptp_restore_hw_time(pf); |
| } |
| |
| i40e_ptp_set_1pps_signal_hw(pf); |
| } |
| |
| /** |
| * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC |
| * @pf: Board private structure |
| * |
| * This function handles the cleanup work required from the initialization by |
| * clearing out the important information and unregistering the PHC. |
| **/ |
| void i40e_ptp_stop(struct i40e_pf *pf) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| u32 regval; |
| |
| clear_bit(I40E_FLAG_PTP_ENA, pf->flags); |
| pf->ptp_tx = false; |
| pf->ptp_rx = false; |
| |
| if (pf->ptp_tx_skb) { |
| struct sk_buff *skb = pf->ptp_tx_skb; |
| |
| pf->ptp_tx_skb = NULL; |
| clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); |
| dev_kfree_skb_any(skb); |
| } |
| |
| if (pf->ptp_clock) { |
| ptp_clock_unregister(pf->ptp_clock); |
| pf->ptp_clock = NULL; |
| dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, |
| pf->vsi[pf->lan_vsi]->netdev->name); |
| } |
| |
| if (i40e_is_ptp_pin_dev(&pf->hw)) { |
| i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); |
| i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); |
| i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); |
| } |
| |
| regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); |
| regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK; |
| wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); |
| |
| /* Disable interrupts */ |
| regval = rd32(hw, I40E_PRTTSYN_CTL0); |
| regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK; |
| wr32(hw, I40E_PRTTSYN_CTL0, regval); |
| |
| i40e_ptp_free_pins(pf); |
| } |