| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Stack depot - a stack trace storage that avoids duplication. |
| * |
| * Internally, stack depot maintains a hash table of unique stacktraces. The |
| * stack traces themselves are stored contiguously one after another in a set |
| * of separate page allocations. |
| * |
| * Author: Alexander Potapenko <glider@google.com> |
| * Copyright (C) 2016 Google, Inc. |
| * |
| * Based on the code by Dmitry Chernenkov. |
| */ |
| |
| #define pr_fmt(fmt) "stackdepot: " fmt |
| |
| #include <linux/debugfs.h> |
| #include <linux/gfp.h> |
| #include <linux/jhash.h> |
| #include <linux/kernel.h> |
| #include <linux/kmsan.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/mutex.h> |
| #include <linux/poison.h> |
| #include <linux/printk.h> |
| #include <linux/rculist.h> |
| #include <linux/rcupdate.h> |
| #include <linux/refcount.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/stacktrace.h> |
| #include <linux/stackdepot.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/memblock.h> |
| #include <linux/kasan-enabled.h> |
| |
| #define DEPOT_HANDLE_BITS (sizeof(depot_stack_handle_t) * 8) |
| |
| #define DEPOT_POOL_ORDER 2 /* Pool size order, 4 pages */ |
| #define DEPOT_POOL_SIZE (1LL << (PAGE_SHIFT + DEPOT_POOL_ORDER)) |
| #define DEPOT_STACK_ALIGN 4 |
| #define DEPOT_OFFSET_BITS (DEPOT_POOL_ORDER + PAGE_SHIFT - DEPOT_STACK_ALIGN) |
| #define DEPOT_POOL_INDEX_BITS (DEPOT_HANDLE_BITS - DEPOT_OFFSET_BITS - \ |
| STACK_DEPOT_EXTRA_BITS) |
| #define DEPOT_POOLS_CAP 8192 |
| #define DEPOT_MAX_POOLS \ |
| (((1LL << (DEPOT_POOL_INDEX_BITS)) < DEPOT_POOLS_CAP) ? \ |
| (1LL << (DEPOT_POOL_INDEX_BITS)) : DEPOT_POOLS_CAP) |
| |
| /* Compact structure that stores a reference to a stack. */ |
| union handle_parts { |
| depot_stack_handle_t handle; |
| struct { |
| u32 pool_index : DEPOT_POOL_INDEX_BITS; |
| u32 offset : DEPOT_OFFSET_BITS; |
| u32 extra : STACK_DEPOT_EXTRA_BITS; |
| }; |
| }; |
| |
| struct stack_record { |
| struct list_head hash_list; /* Links in the hash table */ |
| u32 hash; /* Hash in hash table */ |
| u32 size; /* Number of stored frames */ |
| union handle_parts handle; /* Constant after initialization */ |
| refcount_t count; |
| union { |
| unsigned long entries[CONFIG_STACKDEPOT_MAX_FRAMES]; /* Frames */ |
| struct { |
| /* |
| * An important invariant of the implementation is to |
| * only place a stack record onto the freelist iff its |
| * refcount is zero. Because stack records with a zero |
| * refcount are never considered as valid, it is safe to |
| * union @entries and freelist management state below. |
| * Conversely, as soon as an entry is off the freelist |
| * and its refcount becomes non-zero, the below must not |
| * be accessed until being placed back on the freelist. |
| */ |
| struct list_head free_list; /* Links in the freelist */ |
| unsigned long rcu_state; /* RCU cookie */ |
| }; |
| }; |
| }; |
| |
| static bool stack_depot_disabled; |
| static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT); |
| static bool __stack_depot_early_init_passed __initdata; |
| |
| /* Use one hash table bucket per 16 KB of memory. */ |
| #define STACK_HASH_TABLE_SCALE 14 |
| /* Limit the number of buckets between 4K and 1M. */ |
| #define STACK_BUCKET_NUMBER_ORDER_MIN 12 |
| #define STACK_BUCKET_NUMBER_ORDER_MAX 20 |
| /* Initial seed for jhash2. */ |
| #define STACK_HASH_SEED 0x9747b28c |
| |
| /* Hash table of stored stack records. */ |
| static struct list_head *stack_table; |
| /* Fixed order of the number of table buckets. Used when KASAN is enabled. */ |
| static unsigned int stack_bucket_number_order; |
| /* Hash mask for indexing the table. */ |
| static unsigned int stack_hash_mask; |
| |
| /* Array of memory regions that store stack records. */ |
| static void *stack_pools[DEPOT_MAX_POOLS]; |
| /* Newly allocated pool that is not yet added to stack_pools. */ |
| static void *new_pool; |
| /* Number of pools in stack_pools. */ |
| static int pools_num; |
| /* Offset to the unused space in the currently used pool. */ |
| static size_t pool_offset = DEPOT_POOL_SIZE; |
| /* Freelist of stack records within stack_pools. */ |
| static LIST_HEAD(free_stacks); |
| /* The lock must be held when performing pool or freelist modifications. */ |
| static DEFINE_RAW_SPINLOCK(pool_lock); |
| |
| /* Statistics counters for debugfs. */ |
| enum depot_counter_id { |
| DEPOT_COUNTER_REFD_ALLOCS, |
| DEPOT_COUNTER_REFD_FREES, |
| DEPOT_COUNTER_REFD_INUSE, |
| DEPOT_COUNTER_FREELIST_SIZE, |
| DEPOT_COUNTER_PERSIST_COUNT, |
| DEPOT_COUNTER_PERSIST_BYTES, |
| DEPOT_COUNTER_COUNT, |
| }; |
| static long counters[DEPOT_COUNTER_COUNT]; |
| static const char *const counter_names[] = { |
| [DEPOT_COUNTER_REFD_ALLOCS] = "refcounted_allocations", |
| [DEPOT_COUNTER_REFD_FREES] = "refcounted_frees", |
| [DEPOT_COUNTER_REFD_INUSE] = "refcounted_in_use", |
| [DEPOT_COUNTER_FREELIST_SIZE] = "freelist_size", |
| [DEPOT_COUNTER_PERSIST_COUNT] = "persistent_count", |
| [DEPOT_COUNTER_PERSIST_BYTES] = "persistent_bytes", |
| }; |
| static_assert(ARRAY_SIZE(counter_names) == DEPOT_COUNTER_COUNT); |
| |
| static int __init disable_stack_depot(char *str) |
| { |
| return kstrtobool(str, &stack_depot_disabled); |
| } |
| early_param("stack_depot_disable", disable_stack_depot); |
| |
| void __init stack_depot_request_early_init(void) |
| { |
| /* Too late to request early init now. */ |
| WARN_ON(__stack_depot_early_init_passed); |
| |
| __stack_depot_early_init_requested = true; |
| } |
| |
| /* Initialize list_head's within the hash table. */ |
| static void init_stack_table(unsigned long entries) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < entries; i++) |
| INIT_LIST_HEAD(&stack_table[i]); |
| } |
| |
| /* Allocates a hash table via memblock. Can only be used during early boot. */ |
| int __init stack_depot_early_init(void) |
| { |
| unsigned long entries = 0; |
| |
| /* This function must be called only once, from mm_init(). */ |
| if (WARN_ON(__stack_depot_early_init_passed)) |
| return 0; |
| __stack_depot_early_init_passed = true; |
| |
| /* |
| * Print disabled message even if early init has not been requested: |
| * stack_depot_init() will not print one. |
| */ |
| if (stack_depot_disabled) { |
| pr_info("disabled\n"); |
| return 0; |
| } |
| |
| /* |
| * If KASAN is enabled, use the maximum order: KASAN is frequently used |
| * in fuzzing scenarios, which leads to a large number of different |
| * stack traces being stored in stack depot. |
| */ |
| if (kasan_enabled() && !stack_bucket_number_order) |
| stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX; |
| |
| /* |
| * Check if early init has been requested after setting |
| * stack_bucket_number_order: stack_depot_init() uses its value. |
| */ |
| if (!__stack_depot_early_init_requested) |
| return 0; |
| |
| /* |
| * If stack_bucket_number_order is not set, leave entries as 0 to rely |
| * on the automatic calculations performed by alloc_large_system_hash(). |
| */ |
| if (stack_bucket_number_order) |
| entries = 1UL << stack_bucket_number_order; |
| pr_info("allocating hash table via alloc_large_system_hash\n"); |
| stack_table = alloc_large_system_hash("stackdepot", |
| sizeof(struct list_head), |
| entries, |
| STACK_HASH_TABLE_SCALE, |
| HASH_EARLY, |
| NULL, |
| &stack_hash_mask, |
| 1UL << STACK_BUCKET_NUMBER_ORDER_MIN, |
| 1UL << STACK_BUCKET_NUMBER_ORDER_MAX); |
| if (!stack_table) { |
| pr_err("hash table allocation failed, disabling\n"); |
| stack_depot_disabled = true; |
| return -ENOMEM; |
| } |
| if (!entries) { |
| /* |
| * Obtain the number of entries that was calculated by |
| * alloc_large_system_hash(). |
| */ |
| entries = stack_hash_mask + 1; |
| } |
| init_stack_table(entries); |
| |
| return 0; |
| } |
| |
| /* Allocates a hash table via kvcalloc. Can be used after boot. */ |
| int stack_depot_init(void) |
| { |
| static DEFINE_MUTEX(stack_depot_init_mutex); |
| unsigned long entries; |
| int ret = 0; |
| |
| mutex_lock(&stack_depot_init_mutex); |
| |
| if (stack_depot_disabled || stack_table) |
| goto out_unlock; |
| |
| /* |
| * Similarly to stack_depot_early_init, use stack_bucket_number_order |
| * if assigned, and rely on automatic scaling otherwise. |
| */ |
| if (stack_bucket_number_order) { |
| entries = 1UL << stack_bucket_number_order; |
| } else { |
| int scale = STACK_HASH_TABLE_SCALE; |
| |
| entries = nr_free_buffer_pages(); |
| entries = roundup_pow_of_two(entries); |
| |
| if (scale > PAGE_SHIFT) |
| entries >>= (scale - PAGE_SHIFT); |
| else |
| entries <<= (PAGE_SHIFT - scale); |
| } |
| |
| if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN) |
| entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN; |
| if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX) |
| entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX; |
| |
| pr_info("allocating hash table of %lu entries via kvcalloc\n", entries); |
| stack_table = kvcalloc(entries, sizeof(struct list_head), GFP_KERNEL); |
| if (!stack_table) { |
| pr_err("hash table allocation failed, disabling\n"); |
| stack_depot_disabled = true; |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| stack_hash_mask = entries - 1; |
| init_stack_table(entries); |
| |
| out_unlock: |
| mutex_unlock(&stack_depot_init_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_init); |
| |
| /* |
| * Initializes new stack pool, and updates the list of pools. |
| */ |
| static bool depot_init_pool(void **prealloc) |
| { |
| lockdep_assert_held(&pool_lock); |
| |
| if (unlikely(pools_num >= DEPOT_MAX_POOLS)) { |
| /* Bail out if we reached the pool limit. */ |
| WARN_ON_ONCE(pools_num > DEPOT_MAX_POOLS); /* should never happen */ |
| WARN_ON_ONCE(!new_pool); /* to avoid unnecessary pre-allocation */ |
| WARN_ONCE(1, "Stack depot reached limit capacity"); |
| return false; |
| } |
| |
| if (!new_pool && *prealloc) { |
| /* We have preallocated memory, use it. */ |
| WRITE_ONCE(new_pool, *prealloc); |
| *prealloc = NULL; |
| } |
| |
| if (!new_pool) |
| return false; /* new_pool and *prealloc are NULL */ |
| |
| /* Save reference to the pool to be used by depot_fetch_stack(). */ |
| stack_pools[pools_num] = new_pool; |
| |
| /* |
| * Stack depot tries to keep an extra pool allocated even before it runs |
| * out of space in the currently used pool. |
| * |
| * To indicate that a new preallocation is needed new_pool is reset to |
| * NULL; do not reset to NULL if we have reached the maximum number of |
| * pools. |
| */ |
| if (pools_num < DEPOT_MAX_POOLS) |
| WRITE_ONCE(new_pool, NULL); |
| else |
| WRITE_ONCE(new_pool, STACK_DEPOT_POISON); |
| |
| /* Pairs with concurrent READ_ONCE() in depot_fetch_stack(). */ |
| WRITE_ONCE(pools_num, pools_num + 1); |
| ASSERT_EXCLUSIVE_WRITER(pools_num); |
| |
| pool_offset = 0; |
| |
| return true; |
| } |
| |
| /* Keeps the preallocated memory to be used for a new stack depot pool. */ |
| static void depot_keep_new_pool(void **prealloc) |
| { |
| lockdep_assert_held(&pool_lock); |
| |
| /* |
| * If a new pool is already saved or the maximum number of |
| * pools is reached, do not use the preallocated memory. |
| */ |
| if (new_pool) |
| return; |
| |
| WRITE_ONCE(new_pool, *prealloc); |
| *prealloc = NULL; |
| } |
| |
| /* |
| * Try to initialize a new stack record from the current pool, a cached pool, or |
| * the current pre-allocation. |
| */ |
| static struct stack_record *depot_pop_free_pool(void **prealloc, size_t size) |
| { |
| struct stack_record *stack; |
| void *current_pool; |
| u32 pool_index; |
| |
| lockdep_assert_held(&pool_lock); |
| |
| if (pool_offset + size > DEPOT_POOL_SIZE) { |
| if (!depot_init_pool(prealloc)) |
| return NULL; |
| } |
| |
| if (WARN_ON_ONCE(pools_num < 1)) |
| return NULL; |
| pool_index = pools_num - 1; |
| current_pool = stack_pools[pool_index]; |
| if (WARN_ON_ONCE(!current_pool)) |
| return NULL; |
| |
| stack = current_pool + pool_offset; |
| |
| /* Pre-initialize handle once. */ |
| stack->handle.pool_index = pool_index; |
| stack->handle.offset = pool_offset >> DEPOT_STACK_ALIGN; |
| stack->handle.extra = 0; |
| INIT_LIST_HEAD(&stack->hash_list); |
| |
| pool_offset += size; |
| |
| return stack; |
| } |
| |
| /* Try to find next free usable entry from the freelist. */ |
| static struct stack_record *depot_pop_free(void) |
| { |
| struct stack_record *stack; |
| |
| lockdep_assert_held(&pool_lock); |
| |
| if (list_empty(&free_stacks)) |
| return NULL; |
| |
| /* |
| * We maintain the invariant that the elements in front are least |
| * recently used, and are therefore more likely to be associated with an |
| * RCU grace period in the past. Consequently it is sufficient to only |
| * check the first entry. |
| */ |
| stack = list_first_entry(&free_stacks, struct stack_record, free_list); |
| if (!poll_state_synchronize_rcu(stack->rcu_state)) |
| return NULL; |
| |
| list_del(&stack->free_list); |
| counters[DEPOT_COUNTER_FREELIST_SIZE]--; |
| |
| return stack; |
| } |
| |
| static inline size_t depot_stack_record_size(struct stack_record *s, unsigned int nr_entries) |
| { |
| const size_t used = flex_array_size(s, entries, nr_entries); |
| const size_t unused = sizeof(s->entries) - used; |
| |
| WARN_ON_ONCE(sizeof(s->entries) < used); |
| |
| return ALIGN(sizeof(struct stack_record) - unused, 1 << DEPOT_STACK_ALIGN); |
| } |
| |
| /* Allocates a new stack in a stack depot pool. */ |
| static struct stack_record * |
| depot_alloc_stack(unsigned long *entries, unsigned int nr_entries, u32 hash, depot_flags_t flags, void **prealloc) |
| { |
| struct stack_record *stack = NULL; |
| size_t record_size; |
| |
| lockdep_assert_held(&pool_lock); |
| |
| /* This should already be checked by public API entry points. */ |
| if (WARN_ON_ONCE(!nr_entries)) |
| return NULL; |
| |
| /* Limit number of saved frames to CONFIG_STACKDEPOT_MAX_FRAMES. */ |
| if (nr_entries > CONFIG_STACKDEPOT_MAX_FRAMES) |
| nr_entries = CONFIG_STACKDEPOT_MAX_FRAMES; |
| |
| if (flags & STACK_DEPOT_FLAG_GET) { |
| /* |
| * Evictable entries have to allocate the max. size so they may |
| * safely be re-used by differently sized allocations. |
| */ |
| record_size = depot_stack_record_size(stack, CONFIG_STACKDEPOT_MAX_FRAMES); |
| stack = depot_pop_free(); |
| } else { |
| record_size = depot_stack_record_size(stack, nr_entries); |
| } |
| |
| if (!stack) { |
| stack = depot_pop_free_pool(prealloc, record_size); |
| if (!stack) |
| return NULL; |
| } |
| |
| /* Save the stack trace. */ |
| stack->hash = hash; |
| stack->size = nr_entries; |
| /* stack->handle is already filled in by depot_pop_free_pool(). */ |
| memcpy(stack->entries, entries, flex_array_size(stack, entries, nr_entries)); |
| |
| if (flags & STACK_DEPOT_FLAG_GET) { |
| refcount_set(&stack->count, 1); |
| counters[DEPOT_COUNTER_REFD_ALLOCS]++; |
| counters[DEPOT_COUNTER_REFD_INUSE]++; |
| } else { |
| /* Warn on attempts to switch to refcounting this entry. */ |
| refcount_set(&stack->count, REFCOUNT_SATURATED); |
| counters[DEPOT_COUNTER_PERSIST_COUNT]++; |
| counters[DEPOT_COUNTER_PERSIST_BYTES] += record_size; |
| } |
| |
| /* |
| * Let KMSAN know the stored stack record is initialized. This shall |
| * prevent false positive reports if instrumented code accesses it. |
| */ |
| kmsan_unpoison_memory(stack, record_size); |
| |
| return stack; |
| } |
| |
| static struct stack_record *depot_fetch_stack(depot_stack_handle_t handle) |
| { |
| const int pools_num_cached = READ_ONCE(pools_num); |
| union handle_parts parts = { .handle = handle }; |
| void *pool; |
| size_t offset = parts.offset << DEPOT_STACK_ALIGN; |
| struct stack_record *stack; |
| |
| lockdep_assert_not_held(&pool_lock); |
| |
| if (parts.pool_index > pools_num_cached) { |
| WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n", |
| parts.pool_index, pools_num_cached, handle); |
| return NULL; |
| } |
| |
| pool = stack_pools[parts.pool_index]; |
| if (WARN_ON(!pool)) |
| return NULL; |
| |
| stack = pool + offset; |
| if (WARN_ON(!refcount_read(&stack->count))) |
| return NULL; |
| |
| return stack; |
| } |
| |
| /* Links stack into the freelist. */ |
| static void depot_free_stack(struct stack_record *stack) |
| { |
| unsigned long flags; |
| |
| lockdep_assert_not_held(&pool_lock); |
| |
| raw_spin_lock_irqsave(&pool_lock, flags); |
| printk_deferred_enter(); |
| |
| /* |
| * Remove the entry from the hash list. Concurrent list traversal may |
| * still observe the entry, but since the refcount is zero, this entry |
| * will no longer be considered as valid. |
| */ |
| list_del_rcu(&stack->hash_list); |
| |
| /* |
| * Due to being used from constrained contexts such as the allocators, |
| * NMI, or even RCU itself, stack depot cannot rely on primitives that |
| * would sleep (such as synchronize_rcu()) or recursively call into |
| * stack depot again (such as call_rcu()). |
| * |
| * Instead, get an RCU cookie, so that we can ensure this entry isn't |
| * moved onto another list until the next grace period, and concurrent |
| * RCU list traversal remains safe. |
| */ |
| stack->rcu_state = get_state_synchronize_rcu(); |
| |
| /* |
| * Add the entry to the freelist tail, so that older entries are |
| * considered first - their RCU cookie is more likely to no longer be |
| * associated with the current grace period. |
| */ |
| list_add_tail(&stack->free_list, &free_stacks); |
| |
| counters[DEPOT_COUNTER_FREELIST_SIZE]++; |
| counters[DEPOT_COUNTER_REFD_FREES]++; |
| counters[DEPOT_COUNTER_REFD_INUSE]--; |
| |
| printk_deferred_exit(); |
| raw_spin_unlock_irqrestore(&pool_lock, flags); |
| } |
| |
| /* Calculates the hash for a stack. */ |
| static inline u32 hash_stack(unsigned long *entries, unsigned int size) |
| { |
| return jhash2((u32 *)entries, |
| array_size(size, sizeof(*entries)) / sizeof(u32), |
| STACK_HASH_SEED); |
| } |
| |
| /* |
| * Non-instrumented version of memcmp(). |
| * Does not check the lexicographical order, only the equality. |
| */ |
| static inline |
| int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2, |
| unsigned int n) |
| { |
| for ( ; n-- ; u1++, u2++) { |
| if (*u1 != *u2) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Finds a stack in a bucket of the hash table. */ |
| static inline struct stack_record *find_stack(struct list_head *bucket, |
| unsigned long *entries, int size, |
| u32 hash, depot_flags_t flags) |
| { |
| struct stack_record *stack, *ret = NULL; |
| |
| /* |
| * Stack depot may be used from instrumentation that instruments RCU or |
| * tracing itself; use variant that does not call into RCU and cannot be |
| * traced. |
| * |
| * Note: Such use cases must take care when using refcounting to evict |
| * unused entries, because the stack record free-then-reuse code paths |
| * do call into RCU. |
| */ |
| rcu_read_lock_sched_notrace(); |
| |
| list_for_each_entry_rcu(stack, bucket, hash_list) { |
| if (stack->hash != hash || stack->size != size) |
| continue; |
| |
| /* |
| * This may race with depot_free_stack() accessing the freelist |
| * management state unioned with @entries. The refcount is zero |
| * in that case and the below refcount_inc_not_zero() will fail. |
| */ |
| if (data_race(stackdepot_memcmp(entries, stack->entries, size))) |
| continue; |
| |
| /* |
| * Try to increment refcount. If this succeeds, the stack record |
| * is valid and has not yet been freed. |
| * |
| * If STACK_DEPOT_FLAG_GET is not used, it is undefined behavior |
| * to then call stack_depot_put() later, and we can assume that |
| * a stack record is never placed back on the freelist. |
| */ |
| if ((flags & STACK_DEPOT_FLAG_GET) && !refcount_inc_not_zero(&stack->count)) |
| continue; |
| |
| ret = stack; |
| break; |
| } |
| |
| rcu_read_unlock_sched_notrace(); |
| |
| return ret; |
| } |
| |
| depot_stack_handle_t stack_depot_save_flags(unsigned long *entries, |
| unsigned int nr_entries, |
| gfp_t alloc_flags, |
| depot_flags_t depot_flags) |
| { |
| struct list_head *bucket; |
| struct stack_record *found = NULL; |
| depot_stack_handle_t handle = 0; |
| struct page *page = NULL; |
| void *prealloc = NULL; |
| bool can_alloc = depot_flags & STACK_DEPOT_FLAG_CAN_ALLOC; |
| unsigned long flags; |
| u32 hash; |
| |
| if (WARN_ON(depot_flags & ~STACK_DEPOT_FLAGS_MASK)) |
| return 0; |
| |
| /* |
| * If this stack trace is from an interrupt, including anything before |
| * interrupt entry usually leads to unbounded stack depot growth. |
| * |
| * Since use of filter_irq_stacks() is a requirement to ensure stack |
| * depot can efficiently deduplicate interrupt stacks, always |
| * filter_irq_stacks() to simplify all callers' use of stack depot. |
| */ |
| nr_entries = filter_irq_stacks(entries, nr_entries); |
| |
| if (unlikely(nr_entries == 0) || stack_depot_disabled) |
| return 0; |
| |
| hash = hash_stack(entries, nr_entries); |
| bucket = &stack_table[hash & stack_hash_mask]; |
| |
| /* Fast path: look the stack trace up without locking. */ |
| found = find_stack(bucket, entries, nr_entries, hash, depot_flags); |
| if (found) |
| goto exit; |
| |
| /* |
| * Allocate memory for a new pool if required now: |
| * we won't be able to do that under the lock. |
| */ |
| if (unlikely(can_alloc && !READ_ONCE(new_pool))) { |
| /* |
| * Zero out zone modifiers, as we don't have specific zone |
| * requirements. Keep the flags related to allocation in atomic |
| * contexts and I/O. |
| */ |
| alloc_flags &= ~GFP_ZONEMASK; |
| alloc_flags &= (GFP_ATOMIC | GFP_KERNEL); |
| alloc_flags |= __GFP_NOWARN; |
| page = alloc_pages(alloc_flags, DEPOT_POOL_ORDER); |
| if (page) |
| prealloc = page_address(page); |
| } |
| |
| raw_spin_lock_irqsave(&pool_lock, flags); |
| printk_deferred_enter(); |
| |
| /* Try to find again, to avoid concurrently inserting duplicates. */ |
| found = find_stack(bucket, entries, nr_entries, hash, depot_flags); |
| if (!found) { |
| struct stack_record *new = |
| depot_alloc_stack(entries, nr_entries, hash, depot_flags, &prealloc); |
| |
| if (new) { |
| /* |
| * This releases the stack record into the bucket and |
| * makes it visible to readers in find_stack(). |
| */ |
| list_add_rcu(&new->hash_list, bucket); |
| found = new; |
| } |
| } |
| |
| if (prealloc) { |
| /* |
| * Either stack depot already contains this stack trace, or |
| * depot_alloc_stack() did not consume the preallocated memory. |
| * Try to keep the preallocated memory for future. |
| */ |
| depot_keep_new_pool(&prealloc); |
| } |
| |
| printk_deferred_exit(); |
| raw_spin_unlock_irqrestore(&pool_lock, flags); |
| exit: |
| if (prealloc) { |
| /* Stack depot didn't use this memory, free it. */ |
| free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER); |
| } |
| if (found) |
| handle = found->handle.handle; |
| return handle; |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_save_flags); |
| |
| depot_stack_handle_t stack_depot_save(unsigned long *entries, |
| unsigned int nr_entries, |
| gfp_t alloc_flags) |
| { |
| return stack_depot_save_flags(entries, nr_entries, alloc_flags, |
| STACK_DEPOT_FLAG_CAN_ALLOC); |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_save); |
| |
| unsigned int stack_depot_fetch(depot_stack_handle_t handle, |
| unsigned long **entries) |
| { |
| struct stack_record *stack; |
| |
| *entries = NULL; |
| /* |
| * Let KMSAN know *entries is initialized. This shall prevent false |
| * positive reports if instrumented code accesses it. |
| */ |
| kmsan_unpoison_memory(entries, sizeof(*entries)); |
| |
| if (!handle || stack_depot_disabled) |
| return 0; |
| |
| stack = depot_fetch_stack(handle); |
| /* |
| * Should never be NULL, otherwise this is a use-after-put (or just a |
| * corrupt handle). |
| */ |
| if (WARN(!stack, "corrupt handle or use after stack_depot_put()")) |
| return 0; |
| |
| *entries = stack->entries; |
| return stack->size; |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_fetch); |
| |
| void stack_depot_put(depot_stack_handle_t handle) |
| { |
| struct stack_record *stack; |
| |
| if (!handle || stack_depot_disabled) |
| return; |
| |
| stack = depot_fetch_stack(handle); |
| /* |
| * Should always be able to find the stack record, otherwise this is an |
| * unbalanced put attempt (or corrupt handle). |
| */ |
| if (WARN(!stack, "corrupt handle or unbalanced stack_depot_put()")) |
| return; |
| |
| if (refcount_dec_and_test(&stack->count)) |
| depot_free_stack(stack); |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_put); |
| |
| void stack_depot_print(depot_stack_handle_t stack) |
| { |
| unsigned long *entries; |
| unsigned int nr_entries; |
| |
| nr_entries = stack_depot_fetch(stack, &entries); |
| if (nr_entries > 0) |
| stack_trace_print(entries, nr_entries, 0); |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_print); |
| |
| int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size, |
| int spaces) |
| { |
| unsigned long *entries; |
| unsigned int nr_entries; |
| |
| nr_entries = stack_depot_fetch(handle, &entries); |
| return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries, |
| spaces) : 0; |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_snprint); |
| |
| depot_stack_handle_t __must_check stack_depot_set_extra_bits( |
| depot_stack_handle_t handle, unsigned int extra_bits) |
| { |
| union handle_parts parts = { .handle = handle }; |
| |
| /* Don't set extra bits on empty handles. */ |
| if (!handle) |
| return 0; |
| |
| parts.extra = extra_bits; |
| return parts.handle; |
| } |
| EXPORT_SYMBOL(stack_depot_set_extra_bits); |
| |
| unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle) |
| { |
| union handle_parts parts = { .handle = handle }; |
| |
| return parts.extra; |
| } |
| EXPORT_SYMBOL(stack_depot_get_extra_bits); |
| |
| static int stats_show(struct seq_file *seq, void *v) |
| { |
| /* |
| * data race ok: These are just statistics counters, and approximate |
| * statistics are ok for debugging. |
| */ |
| seq_printf(seq, "pools: %d\n", data_race(pools_num)); |
| for (int i = 0; i < DEPOT_COUNTER_COUNT; i++) |
| seq_printf(seq, "%s: %ld\n", counter_names[i], data_race(counters[i])); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(stats); |
| |
| static int depot_debugfs_init(void) |
| { |
| struct dentry *dir; |
| |
| if (stack_depot_disabled) |
| return 0; |
| |
| dir = debugfs_create_dir("stackdepot", NULL); |
| debugfs_create_file("stats", 0444, dir, NULL, &stats_fops); |
| return 0; |
| } |
| late_initcall(depot_debugfs_init); |