| /* |
| * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC |
| * |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * Copyright (C) 2001 IBM |
| * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) |
| * |
| * Derived from "arch/i386/kernel/signal.c" |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/kernel.h> |
| #include <linux/signal.h> |
| #include <linux/errno.h> |
| #include <linux/elf.h> |
| #include <linux/ptrace.h> |
| #include <linux/ratelimit.h> |
| #ifdef CONFIG_PPC64 |
| #include <linux/syscalls.h> |
| #include <linux/compat.h> |
| #else |
| #include <linux/wait.h> |
| #include <linux/unistd.h> |
| #include <linux/stddef.h> |
| #include <linux/tty.h> |
| #include <linux/binfmts.h> |
| #endif |
| |
| #include <asm/uaccess.h> |
| #include <asm/cacheflush.h> |
| #include <asm/syscalls.h> |
| #include <asm/sigcontext.h> |
| #include <asm/vdso.h> |
| #include <asm/switch_to.h> |
| #include <asm/tm.h> |
| #ifdef CONFIG_PPC64 |
| #include "ppc32.h" |
| #include <asm/unistd.h> |
| #else |
| #include <asm/ucontext.h> |
| #include <asm/pgtable.h> |
| #endif |
| |
| #include "signal.h" |
| |
| #undef DEBUG_SIG |
| |
| #ifdef CONFIG_PPC64 |
| #define sys_rt_sigreturn compat_sys_rt_sigreturn |
| #define sys_swapcontext compat_sys_swapcontext |
| #define sys_sigreturn compat_sys_sigreturn |
| |
| #define old_sigaction old_sigaction32 |
| #define sigcontext sigcontext32 |
| #define mcontext mcontext32 |
| #define ucontext ucontext32 |
| |
| #define __save_altstack __compat_save_altstack |
| |
| /* |
| * Userspace code may pass a ucontext which doesn't include VSX added |
| * at the end. We need to check for this case. |
| */ |
| #define UCONTEXTSIZEWITHOUTVSX \ |
| (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) |
| |
| /* |
| * Returning 0 means we return to userspace via |
| * ret_from_except and thus restore all user |
| * registers from *regs. This is what we need |
| * to do when a signal has been delivered. |
| */ |
| |
| #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) |
| #undef __SIGNAL_FRAMESIZE |
| #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 |
| #undef ELF_NVRREG |
| #define ELF_NVRREG ELF_NVRREG32 |
| |
| /* |
| * Functions for flipping sigsets (thanks to brain dead generic |
| * implementation that makes things simple for little endian only) |
| */ |
| static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) |
| { |
| compat_sigset_t cset; |
| |
| switch (_NSIG_WORDS) { |
| case 4: cset.sig[6] = set->sig[3] & 0xffffffffull; |
| cset.sig[7] = set->sig[3] >> 32; |
| case 3: cset.sig[4] = set->sig[2] & 0xffffffffull; |
| cset.sig[5] = set->sig[2] >> 32; |
| case 2: cset.sig[2] = set->sig[1] & 0xffffffffull; |
| cset.sig[3] = set->sig[1] >> 32; |
| case 1: cset.sig[0] = set->sig[0] & 0xffffffffull; |
| cset.sig[1] = set->sig[0] >> 32; |
| } |
| return copy_to_user(uset, &cset, sizeof(*uset)); |
| } |
| |
| static inline int get_sigset_t(sigset_t *set, |
| const compat_sigset_t __user *uset) |
| { |
| compat_sigset_t s32; |
| |
| if (copy_from_user(&s32, uset, sizeof(*uset))) |
| return -EFAULT; |
| |
| /* |
| * Swap the 2 words of the 64-bit sigset_t (they are stored |
| * in the "wrong" endian in 32-bit user storage). |
| */ |
| switch (_NSIG_WORDS) { |
| case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); |
| case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); |
| case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); |
| case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); |
| } |
| return 0; |
| } |
| |
| #define to_user_ptr(p) ptr_to_compat(p) |
| #define from_user_ptr(p) compat_ptr(p) |
| |
| static inline int save_general_regs(struct pt_regs *regs, |
| struct mcontext __user *frame) |
| { |
| elf_greg_t64 *gregs = (elf_greg_t64 *)regs; |
| int i; |
| |
| WARN_ON(!FULL_REGS(regs)); |
| |
| for (i = 0; i <= PT_RESULT; i ++) { |
| if (i == 14 && !FULL_REGS(regs)) |
| i = 32; |
| if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| static inline int restore_general_regs(struct pt_regs *regs, |
| struct mcontext __user *sr) |
| { |
| elf_greg_t64 *gregs = (elf_greg_t64 *)regs; |
| int i; |
| |
| for (i = 0; i <= PT_RESULT; i++) { |
| if ((i == PT_MSR) || (i == PT_SOFTE)) |
| continue; |
| if (__get_user(gregs[i], &sr->mc_gregs[i])) |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| #else /* CONFIG_PPC64 */ |
| |
| #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) |
| |
| static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) |
| { |
| return copy_to_user(uset, set, sizeof(*uset)); |
| } |
| |
| static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) |
| { |
| return copy_from_user(set, uset, sizeof(*uset)); |
| } |
| |
| #define to_user_ptr(p) ((unsigned long)(p)) |
| #define from_user_ptr(p) ((void __user *)(p)) |
| |
| static inline int save_general_regs(struct pt_regs *regs, |
| struct mcontext __user *frame) |
| { |
| WARN_ON(!FULL_REGS(regs)); |
| return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); |
| } |
| |
| static inline int restore_general_regs(struct pt_regs *regs, |
| struct mcontext __user *sr) |
| { |
| /* copy up to but not including MSR */ |
| if (__copy_from_user(regs, &sr->mc_gregs, |
| PT_MSR * sizeof(elf_greg_t))) |
| return -EFAULT; |
| /* copy from orig_r3 (the word after the MSR) up to the end */ |
| if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], |
| GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) |
| return -EFAULT; |
| return 0; |
| } |
| #endif |
| |
| /* |
| * When we have signals to deliver, we set up on the |
| * user stack, going down from the original stack pointer: |
| * an ABI gap of 56 words |
| * an mcontext struct |
| * a sigcontext struct |
| * a gap of __SIGNAL_FRAMESIZE bytes |
| * |
| * Each of these things must be a multiple of 16 bytes in size. The following |
| * structure represent all of this except the __SIGNAL_FRAMESIZE gap |
| * |
| */ |
| struct sigframe { |
| struct sigcontext sctx; /* the sigcontext */ |
| struct mcontext mctx; /* all the register values */ |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| struct sigcontext sctx_transact; |
| struct mcontext mctx_transact; |
| #endif |
| /* |
| * Programs using the rs6000/xcoff abi can save up to 19 gp |
| * regs and 18 fp regs below sp before decrementing it. |
| */ |
| int abigap[56]; |
| }; |
| |
| /* We use the mc_pad field for the signal return trampoline. */ |
| #define tramp mc_pad |
| |
| /* |
| * When we have rt signals to deliver, we set up on the |
| * user stack, going down from the original stack pointer: |
| * one rt_sigframe struct (siginfo + ucontext + ABI gap) |
| * a gap of __SIGNAL_FRAMESIZE+16 bytes |
| * (the +16 is to get the siginfo and ucontext in the same |
| * positions as in older kernels). |
| * |
| * Each of these things must be a multiple of 16 bytes in size. |
| * |
| */ |
| struct rt_sigframe { |
| #ifdef CONFIG_PPC64 |
| compat_siginfo_t info; |
| #else |
| struct siginfo info; |
| #endif |
| struct ucontext uc; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| struct ucontext uc_transact; |
| #endif |
| /* |
| * Programs using the rs6000/xcoff abi can save up to 19 gp |
| * regs and 18 fp regs below sp before decrementing it. |
| */ |
| int abigap[56]; |
| }; |
| |
| #ifdef CONFIG_VSX |
| unsigned long copy_fpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| buf[i] = task->thread.TS_FPR(i); |
| buf[i] = task->thread.fp_state.fpscr; |
| return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); |
| } |
| |
| unsigned long copy_fpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| task->thread.TS_FPR(i) = buf[i]; |
| task->thread.fp_state.fpscr = buf[i]; |
| |
| return 0; |
| } |
| |
| unsigned long copy_vsx_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < ELF_NVSRHALFREG; i++) |
| buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; |
| return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); |
| } |
| |
| unsigned long copy_vsx_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < ELF_NVSRHALFREG ; i++) |
| task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| unsigned long copy_transact_fpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| buf[i] = task->thread.TS_TRANS_FPR(i); |
| buf[i] = task->thread.transact_fp.fpscr; |
| return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); |
| } |
| |
| unsigned long copy_transact_fpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| task->thread.TS_TRANS_FPR(i) = buf[i]; |
| task->thread.transact_fp.fpscr = buf[i]; |
| |
| return 0; |
| } |
| |
| unsigned long copy_transact_vsx_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < ELF_NVSRHALFREG; i++) |
| buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET]; |
| return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); |
| } |
| |
| unsigned long copy_transact_vsx_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < ELF_NVSRHALFREG ; i++) |
| task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| return 0; |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| #else |
| inline unsigned long copy_fpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| return __copy_to_user(to, task->thread.fp_state.fpr, |
| ELF_NFPREG * sizeof(double)); |
| } |
| |
| inline unsigned long copy_fpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| return __copy_from_user(task->thread.fp_state.fpr, from, |
| ELF_NFPREG * sizeof(double)); |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| inline unsigned long copy_transact_fpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| return __copy_to_user(to, task->thread.transact_fp.fpr, |
| ELF_NFPREG * sizeof(double)); |
| } |
| |
| inline unsigned long copy_transact_fpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| return __copy_from_user(task->thread.transact_fp.fpr, from, |
| ELF_NFPREG * sizeof(double)); |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| #endif |
| |
| /* |
| * Save the current user registers on the user stack. |
| * We only save the altivec/spe registers if the process has used |
| * altivec/spe instructions at some point. |
| */ |
| static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, |
| struct mcontext __user *tm_frame, int sigret, |
| int ctx_has_vsx_region) |
| { |
| unsigned long msr = regs->msr; |
| |
| /* Make sure floating point registers are stored in regs */ |
| flush_fp_to_thread(current); |
| |
| /* save general registers */ |
| if (save_general_regs(regs, frame)) |
| return 1; |
| |
| #ifdef CONFIG_ALTIVEC |
| /* save altivec registers */ |
| if (current->thread.used_vr) { |
| flush_altivec_to_thread(current); |
| if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, |
| ELF_NVRREG * sizeof(vector128))) |
| return 1; |
| /* set MSR_VEC in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data */ |
| msr |= MSR_VEC; |
| } |
| /* else assert((regs->msr & MSR_VEC) == 0) */ |
| |
| /* We always copy to/from vrsave, it's 0 if we don't have or don't |
| * use altivec. Since VSCR only contains 32 bits saved in the least |
| * significant bits of a vector, we "cheat" and stuff VRSAVE in the |
| * most significant bits of that same vector. --BenH |
| * Note that the current VRSAVE value is in the SPR at this point. |
| */ |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| current->thread.vrsave = mfspr(SPRN_VRSAVE); |
| if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) |
| return 1; |
| #endif /* CONFIG_ALTIVEC */ |
| if (copy_fpr_to_user(&frame->mc_fregs, current)) |
| return 1; |
| #ifdef CONFIG_VSX |
| /* |
| * Copy VSR 0-31 upper half from thread_struct to local |
| * buffer, then write that to userspace. Also set MSR_VSX in |
| * the saved MSR value to indicate that frame->mc_vregs |
| * contains valid data |
| */ |
| if (current->thread.used_vsr && ctx_has_vsx_region) { |
| __giveup_vsx(current); |
| if (copy_vsx_to_user(&frame->mc_vsregs, current)) |
| return 1; |
| msr |= MSR_VSX; |
| } |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_SPE |
| /* save spe registers */ |
| if (current->thread.used_spe) { |
| flush_spe_to_thread(current); |
| if (__copy_to_user(&frame->mc_vregs, current->thread.evr, |
| ELF_NEVRREG * sizeof(u32))) |
| return 1; |
| /* set MSR_SPE in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data */ |
| msr |= MSR_SPE; |
| } |
| /* else assert((regs->msr & MSR_SPE) == 0) */ |
| |
| /* We always copy to/from spefscr */ |
| if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) |
| return 1; |
| #endif /* CONFIG_SPE */ |
| |
| if (__put_user(msr, &frame->mc_gregs[PT_MSR])) |
| return 1; |
| /* We need to write 0 the MSR top 32 bits in the tm frame so that we |
| * can check it on the restore to see if TM is active |
| */ |
| if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) |
| return 1; |
| |
| if (sigret) { |
| /* Set up the sigreturn trampoline: li r0,sigret; sc */ |
| if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) |
| || __put_user(0x44000002UL, &frame->tramp[1])) |
| return 1; |
| flush_icache_range((unsigned long) &frame->tramp[0], |
| (unsigned long) &frame->tramp[2]); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * Save the current user registers on the user stack. |
| * We only save the altivec/spe registers if the process has used |
| * altivec/spe instructions at some point. |
| * We also save the transactional registers to a second ucontext in the |
| * frame. |
| * |
| * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). |
| */ |
| static int save_tm_user_regs(struct pt_regs *regs, |
| struct mcontext __user *frame, |
| struct mcontext __user *tm_frame, int sigret) |
| { |
| unsigned long msr = regs->msr; |
| |
| /* Make sure floating point registers are stored in regs */ |
| flush_fp_to_thread(current); |
| |
| /* Save both sets of general registers */ |
| if (save_general_regs(¤t->thread.ckpt_regs, frame) |
| || save_general_regs(regs, tm_frame)) |
| return 1; |
| |
| /* Stash the top half of the 64bit MSR into the 32bit MSR word |
| * of the transactional mcontext. This way we have a backward-compatible |
| * MSR in the 'normal' (checkpointed) mcontext and additionally one can |
| * also look at what type of transaction (T or S) was active at the |
| * time of the signal. |
| */ |
| if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) |
| return 1; |
| |
| #ifdef CONFIG_ALTIVEC |
| /* save altivec registers */ |
| if (current->thread.used_vr) { |
| flush_altivec_to_thread(current); |
| if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, |
| ELF_NVRREG * sizeof(vector128))) |
| return 1; |
| if (msr & MSR_VEC) { |
| if (__copy_to_user(&tm_frame->mc_vregs, |
| ¤t->thread.transact_vr, |
| ELF_NVRREG * sizeof(vector128))) |
| return 1; |
| } else { |
| if (__copy_to_user(&tm_frame->mc_vregs, |
| ¤t->thread.vr_state, |
| ELF_NVRREG * sizeof(vector128))) |
| return 1; |
| } |
| |
| /* set MSR_VEC in the saved MSR value to indicate that |
| * frame->mc_vregs contains valid data |
| */ |
| msr |= MSR_VEC; |
| } |
| |
| /* We always copy to/from vrsave, it's 0 if we don't have or don't |
| * use altivec. Since VSCR only contains 32 bits saved in the least |
| * significant bits of a vector, we "cheat" and stuff VRSAVE in the |
| * most significant bits of that same vector. --BenH |
| */ |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| current->thread.vrsave = mfspr(SPRN_VRSAVE); |
| if (__put_user(current->thread.vrsave, |
| (u32 __user *)&frame->mc_vregs[32])) |
| return 1; |
| if (msr & MSR_VEC) { |
| if (__put_user(current->thread.transact_vrsave, |
| (u32 __user *)&tm_frame->mc_vregs[32])) |
| return 1; |
| } else { |
| if (__put_user(current->thread.vrsave, |
| (u32 __user *)&tm_frame->mc_vregs[32])) |
| return 1; |
| } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| if (copy_fpr_to_user(&frame->mc_fregs, current)) |
| return 1; |
| if (msr & MSR_FP) { |
| if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current)) |
| return 1; |
| } else { |
| if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) |
| return 1; |
| } |
| |
| #ifdef CONFIG_VSX |
| /* |
| * Copy VSR 0-31 upper half from thread_struct to local |
| * buffer, then write that to userspace. Also set MSR_VSX in |
| * the saved MSR value to indicate that frame->mc_vregs |
| * contains valid data |
| */ |
| if (current->thread.used_vsr) { |
| __giveup_vsx(current); |
| if (copy_vsx_to_user(&frame->mc_vsregs, current)) |
| return 1; |
| if (msr & MSR_VSX) { |
| if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs, |
| current)) |
| return 1; |
| } else { |
| if (copy_vsx_to_user(&tm_frame->mc_vsregs, current)) |
| return 1; |
| } |
| |
| msr |= MSR_VSX; |
| } |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_SPE |
| /* SPE regs are not checkpointed with TM, so this section is |
| * simply the same as in save_user_regs(). |
| */ |
| if (current->thread.used_spe) { |
| flush_spe_to_thread(current); |
| if (__copy_to_user(&frame->mc_vregs, current->thread.evr, |
| ELF_NEVRREG * sizeof(u32))) |
| return 1; |
| /* set MSR_SPE in the saved MSR value to indicate that |
| * frame->mc_vregs contains valid data */ |
| msr |= MSR_SPE; |
| } |
| |
| /* We always copy to/from spefscr */ |
| if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) |
| return 1; |
| #endif /* CONFIG_SPE */ |
| |
| if (__put_user(msr, &frame->mc_gregs[PT_MSR])) |
| return 1; |
| if (sigret) { |
| /* Set up the sigreturn trampoline: li r0,sigret; sc */ |
| if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) |
| || __put_user(0x44000002UL, &frame->tramp[1])) |
| return 1; |
| flush_icache_range((unsigned long) &frame->tramp[0], |
| (unsigned long) &frame->tramp[2]); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Restore the current user register values from the user stack, |
| * (except for MSR). |
| */ |
| static long restore_user_regs(struct pt_regs *regs, |
| struct mcontext __user *sr, int sig) |
| { |
| long err; |
| unsigned int save_r2 = 0; |
| unsigned long msr; |
| #ifdef CONFIG_VSX |
| int i; |
| #endif |
| |
| /* |
| * restore general registers but not including MSR or SOFTE. Also |
| * take care of keeping r2 (TLS) intact if not a signal |
| */ |
| if (!sig) |
| save_r2 = (unsigned int)regs->gpr[2]; |
| err = restore_general_regs(regs, sr); |
| regs->trap = 0; |
| err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); |
| if (!sig) |
| regs->gpr[2] = (unsigned long) save_r2; |
| if (err) |
| return 1; |
| |
| /* if doing signal return, restore the previous little-endian mode */ |
| if (sig) |
| regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); |
| |
| /* |
| * Do this before updating the thread state in |
| * current->thread.fpr/vr/evr. That way, if we get preempted |
| * and another task grabs the FPU/Altivec/SPE, it won't be |
| * tempted to save the current CPU state into the thread_struct |
| * and corrupt what we are writing there. |
| */ |
| discard_lazy_cpu_state(); |
| |
| #ifdef CONFIG_ALTIVEC |
| /* |
| * Force the process to reload the altivec registers from |
| * current->thread when it next does altivec instructions |
| */ |
| regs->msr &= ~MSR_VEC; |
| if (msr & MSR_VEC) { |
| /* restore altivec registers from the stack */ |
| if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, |
| sizeof(sr->mc_vregs))) |
| return 1; |
| } else if (current->thread.used_vr) |
| memset(¤t->thread.vr_state, 0, |
| ELF_NVRREG * sizeof(vector128)); |
| |
| /* Always get VRSAVE back */ |
| if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) |
| return 1; |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| mtspr(SPRN_VRSAVE, current->thread.vrsave); |
| #endif /* CONFIG_ALTIVEC */ |
| if (copy_fpr_from_user(current, &sr->mc_fregs)) |
| return 1; |
| |
| #ifdef CONFIG_VSX |
| /* |
| * Force the process to reload the VSX registers from |
| * current->thread when it next does VSX instruction. |
| */ |
| regs->msr &= ~MSR_VSX; |
| if (msr & MSR_VSX) { |
| /* |
| * Restore altivec registers from the stack to a local |
| * buffer, then write this out to the thread_struct |
| */ |
| if (copy_vsx_from_user(current, &sr->mc_vsregs)) |
| return 1; |
| } else if (current->thread.used_vsr) |
| for (i = 0; i < 32 ; i++) |
| current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| #endif /* CONFIG_VSX */ |
| /* |
| * force the process to reload the FP registers from |
| * current->thread when it next does FP instructions |
| */ |
| regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); |
| |
| #ifdef CONFIG_SPE |
| /* force the process to reload the spe registers from |
| current->thread when it next does spe instructions */ |
| regs->msr &= ~MSR_SPE; |
| if (msr & MSR_SPE) { |
| /* restore spe registers from the stack */ |
| if (__copy_from_user(current->thread.evr, &sr->mc_vregs, |
| ELF_NEVRREG * sizeof(u32))) |
| return 1; |
| } else if (current->thread.used_spe) |
| memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); |
| |
| /* Always get SPEFSCR back */ |
| if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) |
| return 1; |
| #endif /* CONFIG_SPE */ |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * Restore the current user register values from the user stack, except for |
| * MSR, and recheckpoint the original checkpointed register state for processes |
| * in transactions. |
| */ |
| static long restore_tm_user_regs(struct pt_regs *regs, |
| struct mcontext __user *sr, |
| struct mcontext __user *tm_sr) |
| { |
| long err; |
| unsigned long msr, msr_hi; |
| #ifdef CONFIG_VSX |
| int i; |
| #endif |
| |
| /* |
| * restore general registers but not including MSR or SOFTE. Also |
| * take care of keeping r2 (TLS) intact if not a signal. |
| * See comment in signal_64.c:restore_tm_sigcontexts(); |
| * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR |
| * were set by the signal delivery. |
| */ |
| err = restore_general_regs(regs, tm_sr); |
| err |= restore_general_regs(¤t->thread.ckpt_regs, sr); |
| |
| err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); |
| |
| err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); |
| if (err) |
| return 1; |
| |
| /* Restore the previous little-endian mode */ |
| regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); |
| |
| /* |
| * Do this before updating the thread state in |
| * current->thread.fpr/vr/evr. That way, if we get preempted |
| * and another task grabs the FPU/Altivec/SPE, it won't be |
| * tempted to save the current CPU state into the thread_struct |
| * and corrupt what we are writing there. |
| */ |
| discard_lazy_cpu_state(); |
| |
| #ifdef CONFIG_ALTIVEC |
| regs->msr &= ~MSR_VEC; |
| if (msr & MSR_VEC) { |
| /* restore altivec registers from the stack */ |
| if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, |
| sizeof(sr->mc_vregs)) || |
| __copy_from_user(¤t->thread.transact_vr, |
| &tm_sr->mc_vregs, |
| sizeof(sr->mc_vregs))) |
| return 1; |
| } else if (current->thread.used_vr) { |
| memset(¤t->thread.vr_state, 0, |
| ELF_NVRREG * sizeof(vector128)); |
| memset(¤t->thread.transact_vr, 0, |
| ELF_NVRREG * sizeof(vector128)); |
| } |
| |
| /* Always get VRSAVE back */ |
| if (__get_user(current->thread.vrsave, |
| (u32 __user *)&sr->mc_vregs[32]) || |
| __get_user(current->thread.transact_vrsave, |
| (u32 __user *)&tm_sr->mc_vregs[32])) |
| return 1; |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| mtspr(SPRN_VRSAVE, current->thread.vrsave); |
| #endif /* CONFIG_ALTIVEC */ |
| |
| regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); |
| |
| if (copy_fpr_from_user(current, &sr->mc_fregs) || |
| copy_transact_fpr_from_user(current, &tm_sr->mc_fregs)) |
| return 1; |
| |
| #ifdef CONFIG_VSX |
| regs->msr &= ~MSR_VSX; |
| if (msr & MSR_VSX) { |
| /* |
| * Restore altivec registers from the stack to a local |
| * buffer, then write this out to the thread_struct |
| */ |
| if (copy_vsx_from_user(current, &sr->mc_vsregs) || |
| copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs)) |
| return 1; |
| } else if (current->thread.used_vsr) |
| for (i = 0; i < 32 ; i++) { |
| current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0; |
| } |
| #endif /* CONFIG_VSX */ |
| |
| #ifdef CONFIG_SPE |
| /* SPE regs are not checkpointed with TM, so this section is |
| * simply the same as in restore_user_regs(). |
| */ |
| regs->msr &= ~MSR_SPE; |
| if (msr & MSR_SPE) { |
| if (__copy_from_user(current->thread.evr, &sr->mc_vregs, |
| ELF_NEVRREG * sizeof(u32))) |
| return 1; |
| } else if (current->thread.used_spe) |
| memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); |
| |
| /* Always get SPEFSCR back */ |
| if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs |
| + ELF_NEVRREG)) |
| return 1; |
| #endif /* CONFIG_SPE */ |
| |
| /* Now, recheckpoint. This loads up all of the checkpointed (older) |
| * registers, including FP and V[S]Rs. After recheckpointing, the |
| * transactional versions should be loaded. |
| */ |
| tm_enable(); |
| /* This loads the checkpointed FP/VEC state, if used */ |
| tm_recheckpoint(¤t->thread, msr); |
| /* Get the top half of the MSR */ |
| if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) |
| return 1; |
| /* Pull in MSR TM from user context */ |
| regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK); |
| |
| /* This loads the speculative FP/VEC state, if used */ |
| if (msr & MSR_FP) { |
| do_load_up_transact_fpu(¤t->thread); |
| regs->msr |= (MSR_FP | current->thread.fpexc_mode); |
| } |
| #ifdef CONFIG_ALTIVEC |
| if (msr & MSR_VEC) { |
| do_load_up_transact_altivec(¤t->thread); |
| regs->msr |= MSR_VEC; |
| } |
| #endif |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC64 |
| int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s) |
| { |
| int err; |
| |
| if (!access_ok (VERIFY_WRITE, d, sizeof(*d))) |
| return -EFAULT; |
| |
| /* If you change siginfo_t structure, please be sure |
| * this code is fixed accordingly. |
| * It should never copy any pad contained in the structure |
| * to avoid security leaks, but must copy the generic |
| * 3 ints plus the relevant union member. |
| * This routine must convert siginfo from 64bit to 32bit as well |
| * at the same time. |
| */ |
| err = __put_user(s->si_signo, &d->si_signo); |
| err |= __put_user(s->si_errno, &d->si_errno); |
| err |= __put_user((short)s->si_code, &d->si_code); |
| if (s->si_code < 0) |
| err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad, |
| SI_PAD_SIZE32); |
| else switch(s->si_code >> 16) { |
| case __SI_CHLD >> 16: |
| err |= __put_user(s->si_pid, &d->si_pid); |
| err |= __put_user(s->si_uid, &d->si_uid); |
| err |= __put_user(s->si_utime, &d->si_utime); |
| err |= __put_user(s->si_stime, &d->si_stime); |
| err |= __put_user(s->si_status, &d->si_status); |
| break; |
| case __SI_FAULT >> 16: |
| err |= __put_user((unsigned int)(unsigned long)s->si_addr, |
| &d->si_addr); |
| break; |
| case __SI_POLL >> 16: |
| err |= __put_user(s->si_band, &d->si_band); |
| err |= __put_user(s->si_fd, &d->si_fd); |
| break; |
| case __SI_TIMER >> 16: |
| err |= __put_user(s->si_tid, &d->si_tid); |
| err |= __put_user(s->si_overrun, &d->si_overrun); |
| err |= __put_user(s->si_int, &d->si_int); |
| break; |
| case __SI_RT >> 16: /* This is not generated by the kernel as of now. */ |
| case __SI_MESGQ >> 16: |
| err |= __put_user(s->si_int, &d->si_int); |
| /* fallthrough */ |
| case __SI_KILL >> 16: |
| default: |
| err |= __put_user(s->si_pid, &d->si_pid); |
| err |= __put_user(s->si_uid, &d->si_uid); |
| break; |
| } |
| return err; |
| } |
| |
| #define copy_siginfo_to_user copy_siginfo_to_user32 |
| |
| int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from) |
| { |
| memset(to, 0, sizeof *to); |
| |
| if (copy_from_user(to, from, 3*sizeof(int)) || |
| copy_from_user(to->_sifields._pad, |
| from->_sifields._pad, SI_PAD_SIZE32)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| /* |
| * Set up a signal frame for a "real-time" signal handler |
| * (one which gets siginfo). |
| */ |
| int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka, |
| siginfo_t *info, sigset_t *oldset, |
| struct pt_regs *regs) |
| { |
| struct rt_sigframe __user *rt_sf; |
| struct mcontext __user *frame; |
| struct mcontext __user *tm_frame = NULL; |
| void __user *addr; |
| unsigned long newsp = 0; |
| int sigret; |
| unsigned long tramp; |
| |
| /* Set up Signal Frame */ |
| /* Put a Real Time Context onto stack */ |
| rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1); |
| addr = rt_sf; |
| if (unlikely(rt_sf == NULL)) |
| goto badframe; |
| |
| /* Put the siginfo & fill in most of the ucontext */ |
| if (copy_siginfo_to_user(&rt_sf->info, info) |
| || __put_user(0, &rt_sf->uc.uc_flags) |
| || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) |
| || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), |
| &rt_sf->uc.uc_regs) |
| || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) |
| goto badframe; |
| |
| /* Save user registers on the stack */ |
| frame = &rt_sf->uc.uc_mcontext; |
| addr = frame; |
| if (vdso32_rt_sigtramp && current->mm->context.vdso_base) { |
| sigret = 0; |
| tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp; |
| } else { |
| sigret = __NR_rt_sigreturn; |
| tramp = (unsigned long) frame->tramp; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| tm_frame = &rt_sf->uc_transact.uc_mcontext; |
| if (MSR_TM_ACTIVE(regs->msr)) { |
| if (save_tm_user_regs(regs, frame, tm_frame, sigret)) |
| goto badframe; |
| } |
| else |
| #endif |
| { |
| if (save_user_regs(regs, frame, tm_frame, sigret, 1)) |
| goto badframe; |
| } |
| regs->link = tramp; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(regs->msr)) { |
| if (__put_user((unsigned long)&rt_sf->uc_transact, |
| &rt_sf->uc.uc_link) |
| || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs)) |
| goto badframe; |
| } |
| else |
| #endif |
| if (__put_user(0, &rt_sf->uc.uc_link)) |
| goto badframe; |
| |
| current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ |
| |
| /* create a stack frame for the caller of the handler */ |
| newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); |
| addr = (void __user *)regs->gpr[1]; |
| if (put_user(regs->gpr[1], (u32 __user *)newsp)) |
| goto badframe; |
| |
| /* Fill registers for signal handler */ |
| regs->gpr[1] = newsp; |
| regs->gpr[3] = sig; |
| regs->gpr[4] = (unsigned long) &rt_sf->info; |
| regs->gpr[5] = (unsigned long) &rt_sf->uc; |
| regs->gpr[6] = (unsigned long) rt_sf; |
| regs->nip = (unsigned long) ka->sa.sa_handler; |
| /* enter the signal handler in native-endian mode */ |
| regs->msr &= ~MSR_LE; |
| regs->msr |= (MSR_KERNEL & MSR_LE); |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* Remove TM bits from thread's MSR. The MSR in the sigcontext |
| * just indicates to userland that we were doing a transaction, but we |
| * don't want to return in transactional state: |
| */ |
| regs->msr &= ~MSR_TS_MASK; |
| #endif |
| return 1; |
| |
| badframe: |
| #ifdef DEBUG_SIG |
| printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n", |
| regs, frame, newsp); |
| #endif |
| if (show_unhandled_signals) |
| printk_ratelimited(KERN_INFO |
| "%s[%d]: bad frame in handle_rt_signal32: " |
| "%p nip %08lx lr %08lx\n", |
| current->comm, current->pid, |
| addr, regs->nip, regs->link); |
| |
| force_sigsegv(sig, current); |
| return 0; |
| } |
| |
| static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) |
| { |
| sigset_t set; |
| struct mcontext __user *mcp; |
| |
| if (get_sigset_t(&set, &ucp->uc_sigmask)) |
| return -EFAULT; |
| #ifdef CONFIG_PPC64 |
| { |
| u32 cmcp; |
| |
| if (__get_user(cmcp, &ucp->uc_regs)) |
| return -EFAULT; |
| mcp = (struct mcontext __user *)(u64)cmcp; |
| /* no need to check access_ok(mcp), since mcp < 4GB */ |
| } |
| #else |
| if (__get_user(mcp, &ucp->uc_regs)) |
| return -EFAULT; |
| if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) |
| return -EFAULT; |
| #endif |
| set_current_blocked(&set); |
| if (restore_user_regs(regs, mcp, sig)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static int do_setcontext_tm(struct ucontext __user *ucp, |
| struct ucontext __user *tm_ucp, |
| struct pt_regs *regs) |
| { |
| sigset_t set; |
| struct mcontext __user *mcp; |
| struct mcontext __user *tm_mcp; |
| u32 cmcp; |
| u32 tm_cmcp; |
| |
| if (get_sigset_t(&set, &ucp->uc_sigmask)) |
| return -EFAULT; |
| |
| if (__get_user(cmcp, &ucp->uc_regs) || |
| __get_user(tm_cmcp, &tm_ucp->uc_regs)) |
| return -EFAULT; |
| mcp = (struct mcontext __user *)(u64)cmcp; |
| tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; |
| /* no need to check access_ok(mcp), since mcp < 4GB */ |
| |
| set_current_blocked(&set); |
| if (restore_tm_user_regs(regs, mcp, tm_mcp)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| #endif |
| |
| long sys_swapcontext(struct ucontext __user *old_ctx, |
| struct ucontext __user *new_ctx, |
| int ctx_size, int r6, int r7, int r8, struct pt_regs *regs) |
| { |
| unsigned char tmp; |
| int ctx_has_vsx_region = 0; |
| |
| #ifdef CONFIG_PPC64 |
| unsigned long new_msr = 0; |
| |
| if (new_ctx) { |
| struct mcontext __user *mcp; |
| u32 cmcp; |
| |
| /* |
| * Get pointer to the real mcontext. No need for |
| * access_ok since we are dealing with compat |
| * pointers. |
| */ |
| if (__get_user(cmcp, &new_ctx->uc_regs)) |
| return -EFAULT; |
| mcp = (struct mcontext __user *)(u64)cmcp; |
| if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) |
| return -EFAULT; |
| } |
| /* |
| * Check that the context is not smaller than the original |
| * size (with VMX but without VSX) |
| */ |
| if (ctx_size < UCONTEXTSIZEWITHOUTVSX) |
| return -EINVAL; |
| /* |
| * If the new context state sets the MSR VSX bits but |
| * it doesn't provide VSX state. |
| */ |
| if ((ctx_size < sizeof(struct ucontext)) && |
| (new_msr & MSR_VSX)) |
| return -EINVAL; |
| /* Does the context have enough room to store VSX data? */ |
| if (ctx_size >= sizeof(struct ucontext)) |
| ctx_has_vsx_region = 1; |
| #else |
| /* Context size is for future use. Right now, we only make sure |
| * we are passed something we understand |
| */ |
| if (ctx_size < sizeof(struct ucontext)) |
| return -EINVAL; |
| #endif |
| if (old_ctx != NULL) { |
| struct mcontext __user *mctx; |
| |
| /* |
| * old_ctx might not be 16-byte aligned, in which |
| * case old_ctx->uc_mcontext won't be either. |
| * Because we have the old_ctx->uc_pad2 field |
| * before old_ctx->uc_mcontext, we need to round down |
| * from &old_ctx->uc_mcontext to a 16-byte boundary. |
| */ |
| mctx = (struct mcontext __user *) |
| ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); |
| if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) |
| || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) |
| || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) |
| || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) |
| return -EFAULT; |
| } |
| if (new_ctx == NULL) |
| return 0; |
| if (!access_ok(VERIFY_READ, new_ctx, ctx_size) |
| || __get_user(tmp, (u8 __user *) new_ctx) |
| || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) |
| return -EFAULT; |
| |
| /* |
| * If we get a fault copying the context into the kernel's |
| * image of the user's registers, we can't just return -EFAULT |
| * because the user's registers will be corrupted. For instance |
| * the NIP value may have been updated but not some of the |
| * other registers. Given that we have done the access_ok |
| * and successfully read the first and last bytes of the region |
| * above, this should only happen in an out-of-memory situation |
| * or if another thread unmaps the region containing the context. |
| * We kill the task with a SIGSEGV in this situation. |
| */ |
| if (do_setcontext(new_ctx, regs, 0)) |
| do_exit(SIGSEGV); |
| |
| set_thread_flag(TIF_RESTOREALL); |
| return 0; |
| } |
| |
| long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, |
| struct pt_regs *regs) |
| { |
| struct rt_sigframe __user *rt_sf; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| struct ucontext __user *uc_transact; |
| unsigned long msr_hi; |
| unsigned long tmp; |
| int tm_restore = 0; |
| #endif |
| /* Always make any pending restarted system calls return -EINTR */ |
| current_thread_info()->restart_block.fn = do_no_restart_syscall; |
| |
| rt_sf = (struct rt_sigframe __user *) |
| (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); |
| if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) |
| goto bad; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (__get_user(tmp, &rt_sf->uc.uc_link)) |
| goto bad; |
| uc_transact = (struct ucontext __user *)(uintptr_t)tmp; |
| if (uc_transact) { |
| u32 cmcp; |
| struct mcontext __user *mcp; |
| |
| if (__get_user(cmcp, &uc_transact->uc_regs)) |
| return -EFAULT; |
| mcp = (struct mcontext __user *)(u64)cmcp; |
| /* The top 32 bits of the MSR are stashed in the transactional |
| * ucontext. */ |
| if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) |
| goto bad; |
| |
| if (MSR_TM_ACTIVE(msr_hi<<32)) { |
| /* We only recheckpoint on return if we're |
| * transaction. |
| */ |
| tm_restore = 1; |
| if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) |
| goto bad; |
| } |
| } |
| if (!tm_restore) |
| /* Fall through, for non-TM restore */ |
| #endif |
| if (do_setcontext(&rt_sf->uc, regs, 1)) |
| goto bad; |
| |
| /* |
| * It's not clear whether or why it is desirable to save the |
| * sigaltstack setting on signal delivery and restore it on |
| * signal return. But other architectures do this and we have |
| * always done it up until now so it is probably better not to |
| * change it. -- paulus |
| */ |
| #ifdef CONFIG_PPC64 |
| if (compat_restore_altstack(&rt_sf->uc.uc_stack)) |
| goto bad; |
| #else |
| if (restore_altstack(&rt_sf->uc.uc_stack)) |
| goto bad; |
| #endif |
| set_thread_flag(TIF_RESTOREALL); |
| return 0; |
| |
| bad: |
| if (show_unhandled_signals) |
| printk_ratelimited(KERN_INFO |
| "%s[%d]: bad frame in sys_rt_sigreturn: " |
| "%p nip %08lx lr %08lx\n", |
| current->comm, current->pid, |
| rt_sf, regs->nip, regs->link); |
| |
| force_sig(SIGSEGV, current); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC32 |
| int sys_debug_setcontext(struct ucontext __user *ctx, |
| int ndbg, struct sig_dbg_op __user *dbg, |
| int r6, int r7, int r8, |
| struct pt_regs *regs) |
| { |
| struct sig_dbg_op op; |
| int i; |
| unsigned char tmp; |
| unsigned long new_msr = regs->msr; |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| unsigned long new_dbcr0 = current->thread.debug.dbcr0; |
| #endif |
| |
| for (i=0; i<ndbg; i++) { |
| if (copy_from_user(&op, dbg + i, sizeof(op))) |
| return -EFAULT; |
| switch (op.dbg_type) { |
| case SIG_DBG_SINGLE_STEPPING: |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| if (op.dbg_value) { |
| new_msr |= MSR_DE; |
| new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); |
| } else { |
| new_dbcr0 &= ~DBCR0_IC; |
| if (!DBCR_ACTIVE_EVENTS(new_dbcr0, |
| current->thread.debug.dbcr1)) { |
| new_msr &= ~MSR_DE; |
| new_dbcr0 &= ~DBCR0_IDM; |
| } |
| } |
| #else |
| if (op.dbg_value) |
| new_msr |= MSR_SE; |
| else |
| new_msr &= ~MSR_SE; |
| #endif |
| break; |
| case SIG_DBG_BRANCH_TRACING: |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| return -EINVAL; |
| #else |
| if (op.dbg_value) |
| new_msr |= MSR_BE; |
| else |
| new_msr &= ~MSR_BE; |
| #endif |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* We wait until here to actually install the values in the |
| registers so if we fail in the above loop, it will not |
| affect the contents of these registers. After this point, |
| failure is a problem, anyway, and it's very unlikely unless |
| the user is really doing something wrong. */ |
| regs->msr = new_msr; |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| current->thread.debug.dbcr0 = new_dbcr0; |
| #endif |
| |
| if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) |
| || __get_user(tmp, (u8 __user *) ctx) |
| || __get_user(tmp, (u8 __user *) (ctx + 1) - 1)) |
| return -EFAULT; |
| |
| /* |
| * If we get a fault copying the context into the kernel's |
| * image of the user's registers, we can't just return -EFAULT |
| * because the user's registers will be corrupted. For instance |
| * the NIP value may have been updated but not some of the |
| * other registers. Given that we have done the access_ok |
| * and successfully read the first and last bytes of the region |
| * above, this should only happen in an out-of-memory situation |
| * or if another thread unmaps the region containing the context. |
| * We kill the task with a SIGSEGV in this situation. |
| */ |
| if (do_setcontext(ctx, regs, 1)) { |
| if (show_unhandled_signals) |
| printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " |
| "sys_debug_setcontext: %p nip %08lx " |
| "lr %08lx\n", |
| current->comm, current->pid, |
| ctx, regs->nip, regs->link); |
| |
| force_sig(SIGSEGV, current); |
| goto out; |
| } |
| |
| /* |
| * It's not clear whether or why it is desirable to save the |
| * sigaltstack setting on signal delivery and restore it on |
| * signal return. But other architectures do this and we have |
| * always done it up until now so it is probably better not to |
| * change it. -- paulus |
| */ |
| restore_altstack(&ctx->uc_stack); |
| |
| set_thread_flag(TIF_RESTOREALL); |
| out: |
| return 0; |
| } |
| #endif |
| |
| /* |
| * OK, we're invoking a handler |
| */ |
| int handle_signal32(unsigned long sig, struct k_sigaction *ka, |
| siginfo_t *info, sigset_t *oldset, struct pt_regs *regs) |
| { |
| struct sigcontext __user *sc; |
| struct sigframe __user *frame; |
| struct mcontext __user *tm_mctx = NULL; |
| unsigned long newsp = 0; |
| int sigret; |
| unsigned long tramp; |
| |
| /* Set up Signal Frame */ |
| frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1); |
| if (unlikely(frame == NULL)) |
| goto badframe; |
| sc = (struct sigcontext __user *) &frame->sctx; |
| |
| #if _NSIG != 64 |
| #error "Please adjust handle_signal()" |
| #endif |
| if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler) |
| || __put_user(oldset->sig[0], &sc->oldmask) |
| #ifdef CONFIG_PPC64 |
| || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) |
| #else |
| || __put_user(oldset->sig[1], &sc->_unused[3]) |
| #endif |
| || __put_user(to_user_ptr(&frame->mctx), &sc->regs) |
| || __put_user(sig, &sc->signal)) |
| goto badframe; |
| |
| if (vdso32_sigtramp && current->mm->context.vdso_base) { |
| sigret = 0; |
| tramp = current->mm->context.vdso_base + vdso32_sigtramp; |
| } else { |
| sigret = __NR_sigreturn; |
| tramp = (unsigned long) frame->mctx.tramp; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| tm_mctx = &frame->mctx_transact; |
| if (MSR_TM_ACTIVE(regs->msr)) { |
| if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, |
| sigret)) |
| goto badframe; |
| } |
| else |
| #endif |
| { |
| if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) |
| goto badframe; |
| } |
| |
| regs->link = tramp; |
| |
| current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ |
| |
| /* create a stack frame for the caller of the handler */ |
| newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; |
| if (put_user(regs->gpr[1], (u32 __user *)newsp)) |
| goto badframe; |
| |
| regs->gpr[1] = newsp; |
| regs->gpr[3] = sig; |
| regs->gpr[4] = (unsigned long) sc; |
| regs->nip = (unsigned long) ka->sa.sa_handler; |
| /* enter the signal handler in big-endian mode */ |
| regs->msr &= ~MSR_LE; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* Remove TM bits from thread's MSR. The MSR in the sigcontext |
| * just indicates to userland that we were doing a transaction, but we |
| * don't want to return in transactional state: |
| */ |
| regs->msr &= ~MSR_TS_MASK; |
| #endif |
| return 1; |
| |
| badframe: |
| #ifdef DEBUG_SIG |
| printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n", |
| regs, frame, newsp); |
| #endif |
| if (show_unhandled_signals) |
| printk_ratelimited(KERN_INFO |
| "%s[%d]: bad frame in handle_signal32: " |
| "%p nip %08lx lr %08lx\n", |
| current->comm, current->pid, |
| frame, regs->nip, regs->link); |
| |
| force_sigsegv(sig, current); |
| return 0; |
| } |
| |
| /* |
| * Do a signal return; undo the signal stack. |
| */ |
| long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, |
| struct pt_regs *regs) |
| { |
| struct sigframe __user *sf; |
| struct sigcontext __user *sc; |
| struct sigcontext sigctx; |
| struct mcontext __user *sr; |
| void __user *addr; |
| sigset_t set; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| struct mcontext __user *mcp, *tm_mcp; |
| unsigned long msr_hi; |
| #endif |
| |
| /* Always make any pending restarted system calls return -EINTR */ |
| current_thread_info()->restart_block.fn = do_no_restart_syscall; |
| |
| sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); |
| sc = &sf->sctx; |
| addr = sc; |
| if (copy_from_user(&sigctx, sc, sizeof(sigctx))) |
| goto badframe; |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * Note that PPC32 puts the upper 32 bits of the sigmask in the |
| * unused part of the signal stackframe |
| */ |
| set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); |
| #else |
| set.sig[0] = sigctx.oldmask; |
| set.sig[1] = sigctx._unused[3]; |
| #endif |
| set_current_blocked(&set); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| mcp = (struct mcontext __user *)&sf->mctx; |
| tm_mcp = (struct mcontext __user *)&sf->mctx_transact; |
| if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) |
| goto badframe; |
| if (MSR_TM_ACTIVE(msr_hi<<32)) { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| goto badframe; |
| if (restore_tm_user_regs(regs, mcp, tm_mcp)) |
| goto badframe; |
| } else |
| #endif |
| { |
| sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); |
| addr = sr; |
| if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) |
| || restore_user_regs(regs, sr, 1)) |
| goto badframe; |
| } |
| |
| set_thread_flag(TIF_RESTOREALL); |
| return 0; |
| |
| badframe: |
| if (show_unhandled_signals) |
| printk_ratelimited(KERN_INFO |
| "%s[%d]: bad frame in sys_sigreturn: " |
| "%p nip %08lx lr %08lx\n", |
| current->comm, current->pid, |
| addr, regs->nip, regs->link); |
| |
| force_sig(SIGSEGV, current); |
| return 0; |
| } |