| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Generation of main entry point for the guest, exception handling. |
| * |
| * Copyright (C) 2012 MIPS Technologies, Inc. |
| * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| * |
| * Copyright (C) 2016 Imagination Technologies Ltd. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/log2.h> |
| #include <asm/mmu_context.h> |
| #include <asm/msa.h> |
| #include <asm/setup.h> |
| #include <asm/tlbex.h> |
| #include <asm/uasm.h> |
| |
| /* Register names */ |
| #define ZERO 0 |
| #define AT 1 |
| #define V0 2 |
| #define V1 3 |
| #define A0 4 |
| #define A1 5 |
| |
| #if _MIPS_SIM == _MIPS_SIM_ABI32 |
| #define T0 8 |
| #define T1 9 |
| #define T2 10 |
| #define T3 11 |
| #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */ |
| |
| #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 |
| #define T0 12 |
| #define T1 13 |
| #define T2 14 |
| #define T3 15 |
| #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */ |
| |
| #define S0 16 |
| #define S1 17 |
| #define T9 25 |
| #define K0 26 |
| #define K1 27 |
| #define GP 28 |
| #define SP 29 |
| #define RA 31 |
| |
| /* Some CP0 registers */ |
| #define C0_PWBASE 5, 5 |
| #define C0_HWRENA 7, 0 |
| #define C0_BADVADDR 8, 0 |
| #define C0_BADINSTR 8, 1 |
| #define C0_BADINSTRP 8, 2 |
| #define C0_PGD 9, 7 |
| #define C0_ENTRYHI 10, 0 |
| #define C0_GUESTCTL1 10, 4 |
| #define C0_STATUS 12, 0 |
| #define C0_GUESTCTL0 12, 6 |
| #define C0_CAUSE 13, 0 |
| #define C0_EPC 14, 0 |
| #define C0_EBASE 15, 1 |
| #define C0_CONFIG5 16, 5 |
| #define C0_DDATA_LO 28, 3 |
| #define C0_ERROREPC 30, 0 |
| |
| #define CALLFRAME_SIZ 32 |
| |
| #ifdef CONFIG_64BIT |
| #define ST0_KX_IF_64 ST0_KX |
| #else |
| #define ST0_KX_IF_64 0 |
| #endif |
| |
| static unsigned int scratch_vcpu[2] = { C0_DDATA_LO }; |
| static unsigned int scratch_tmp[2] = { C0_ERROREPC }; |
| |
| enum label_id { |
| label_fpu_1 = 1, |
| label_msa_1, |
| label_return_to_host, |
| label_kernel_asid, |
| label_exit_common, |
| }; |
| |
| UASM_L_LA(_fpu_1) |
| UASM_L_LA(_msa_1) |
| UASM_L_LA(_return_to_host) |
| UASM_L_LA(_kernel_asid) |
| UASM_L_LA(_exit_common) |
| |
| static void *kvm_mips_build_enter_guest(void *addr); |
| static void *kvm_mips_build_ret_from_exit(void *addr); |
| static void *kvm_mips_build_ret_to_guest(void *addr); |
| static void *kvm_mips_build_ret_to_host(void *addr); |
| |
| /* |
| * The version of this function in tlbex.c uses current_cpu_type(), but for KVM |
| * we assume symmetry. |
| */ |
| static int c0_kscratch(void) |
| { |
| switch (boot_cpu_type()) { |
| case CPU_XLP: |
| case CPU_XLR: |
| return 22; |
| default: |
| return 31; |
| } |
| } |
| |
| /** |
| * kvm_mips_entry_setup() - Perform global setup for entry code. |
| * |
| * Perform global setup for entry code, such as choosing a scratch register. |
| * |
| * Returns: 0 on success. |
| * -errno on failure. |
| */ |
| int kvm_mips_entry_setup(void) |
| { |
| /* |
| * We prefer to use KScratchN registers if they are available over the |
| * defaults above, which may not work on all cores. |
| */ |
| unsigned int kscratch_mask = cpu_data[0].kscratch_mask; |
| |
| if (pgd_reg != -1) |
| kscratch_mask &= ~BIT(pgd_reg); |
| |
| /* Pick a scratch register for storing VCPU */ |
| if (kscratch_mask) { |
| scratch_vcpu[0] = c0_kscratch(); |
| scratch_vcpu[1] = ffs(kscratch_mask) - 1; |
| kscratch_mask &= ~BIT(scratch_vcpu[1]); |
| } |
| |
| /* Pick a scratch register to use as a temp for saving state */ |
| if (kscratch_mask) { |
| scratch_tmp[0] = c0_kscratch(); |
| scratch_tmp[1] = ffs(kscratch_mask) - 1; |
| kscratch_mask &= ~BIT(scratch_tmp[1]); |
| } |
| |
| return 0; |
| } |
| |
| static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp, |
| unsigned int frame) |
| { |
| /* Save the VCPU scratch register value in cp0_epc of the stack frame */ |
| UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); |
| UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); |
| |
| /* Save the temp scratch register value in cp0_cause of stack frame */ |
| if (scratch_tmp[0] == c0_kscratch()) { |
| UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); |
| UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); |
| } |
| } |
| |
| static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp, |
| unsigned int frame) |
| { |
| /* |
| * Restore host scratch register values saved by |
| * kvm_mips_build_save_scratch(). |
| */ |
| UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); |
| UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); |
| |
| if (scratch_tmp[0] == c0_kscratch()) { |
| UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); |
| UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); |
| } |
| } |
| |
| /** |
| * build_set_exc_base() - Assemble code to write exception base address. |
| * @p: Code buffer pointer. |
| * @reg: Source register (generated code may set WG bit in @reg). |
| * |
| * Assemble code to modify the exception base address in the EBase register, |
| * using the appropriately sized access and setting the WG bit if necessary. |
| */ |
| static inline void build_set_exc_base(u32 **p, unsigned int reg) |
| { |
| if (cpu_has_ebase_wg) { |
| /* Set WG so that all the bits get written */ |
| uasm_i_ori(p, reg, reg, MIPS_EBASE_WG); |
| UASM_i_MTC0(p, reg, C0_EBASE); |
| } else { |
| uasm_i_mtc0(p, reg, C0_EBASE); |
| } |
| } |
| |
| /** |
| * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU. |
| * @addr: Address to start writing code. |
| * |
| * Assemble the start of the vcpu_run function to run a guest VCPU. The function |
| * conforms to the following prototype: |
| * |
| * int vcpu_run(struct kvm_vcpu *vcpu); |
| * |
| * The exit from the guest and return to the caller is handled by the code |
| * generated by kvm_mips_build_ret_to_host(). |
| * |
| * Returns: Next address after end of written function. |
| */ |
| void *kvm_mips_build_vcpu_run(void *addr) |
| { |
| u32 *p = addr; |
| unsigned int i; |
| |
| /* |
| * A0: vcpu |
| */ |
| |
| /* k0/k1 not being used in host kernel context */ |
| UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs)); |
| for (i = 16; i < 32; ++i) { |
| if (i == 24) |
| i = 28; |
| UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1); |
| } |
| |
| /* Save host status */ |
| uasm_i_mfc0(&p, V0, C0_STATUS); |
| UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1); |
| |
| /* Save scratch registers, will be used to store pointer to vcpu etc */ |
| kvm_mips_build_save_scratch(&p, V1, K1); |
| |
| /* VCPU scratch register has pointer to vcpu */ |
| UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]); |
| |
| /* Offset into vcpu->arch */ |
| UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch)); |
| |
| /* |
| * Save the host stack to VCPU, used for exception processing |
| * when we exit from the Guest |
| */ |
| UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); |
| |
| /* Save the kernel gp as well */ |
| UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); |
| |
| /* |
| * Setup status register for running the guest in UM, interrupts |
| * are disabled |
| */ |
| UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64); |
| uasm_i_mtc0(&p, K0, C0_STATUS); |
| uasm_i_ehb(&p); |
| |
| /* load up the new EBASE */ |
| UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); |
| build_set_exc_base(&p, K0); |
| |
| /* |
| * Now that the new EBASE has been loaded, unset BEV, set |
| * interrupt mask as it was but make sure that timer interrupts |
| * are enabled |
| */ |
| uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64); |
| uasm_i_andi(&p, V0, V0, ST0_IM); |
| uasm_i_or(&p, K0, K0, V0); |
| uasm_i_mtc0(&p, K0, C0_STATUS); |
| uasm_i_ehb(&p); |
| |
| p = kvm_mips_build_enter_guest(p); |
| |
| return p; |
| } |
| |
| /** |
| * kvm_mips_build_enter_guest() - Assemble code to resume guest execution. |
| * @addr: Address to start writing code. |
| * |
| * Assemble the code to resume guest execution. This code is common between the |
| * initial entry into the guest from the host, and returning from the exit |
| * handler back to the guest. |
| * |
| * Returns: Next address after end of written function. |
| */ |
| static void *kvm_mips_build_enter_guest(void *addr) |
| { |
| u32 *p = addr; |
| unsigned int i; |
| struct uasm_label labels[2]; |
| struct uasm_reloc relocs[2]; |
| struct uasm_label __maybe_unused *l = labels; |
| struct uasm_reloc __maybe_unused *r = relocs; |
| |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| /* Set Guest EPC */ |
| UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1); |
| UASM_i_MTC0(&p, T0, C0_EPC); |
| |
| /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */ |
| if (cpu_has_ldpte) |
| UASM_i_MFC0(&p, K0, C0_PWBASE); |
| else |
| UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg); |
| UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1); |
| |
| /* |
| * Set up KVM GPA pgd. |
| * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): |
| * - call tlbmiss_handler_setup_pgd(mm->pgd) |
| * - write mm->pgd into CP0_PWBase |
| * |
| * We keep S0 pointing at struct kvm so we can load the ASID below. |
| */ |
| UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) - |
| (int)offsetof(struct kvm_vcpu, arch), K1); |
| UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0); |
| UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); |
| uasm_i_jalr(&p, RA, T9); |
| /* delay slot */ |
| if (cpu_has_htw) |
| UASM_i_MTC0(&p, A0, C0_PWBASE); |
| else |
| uasm_i_nop(&p); |
| |
| /* Set GM bit to setup eret to VZ guest context */ |
| uasm_i_addiu(&p, V1, ZERO, 1); |
| uasm_i_mfc0(&p, K0, C0_GUESTCTL0); |
| uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1); |
| uasm_i_mtc0(&p, K0, C0_GUESTCTL0); |
| |
| if (cpu_has_guestid) { |
| /* |
| * Set root mode GuestID, so that root TLB refill handler can |
| * use the correct GuestID in the root TLB. |
| */ |
| |
| /* Get current GuestID */ |
| uasm_i_mfc0(&p, T0, C0_GUESTCTL1); |
| /* Set GuestCtl1.RID = GuestCtl1.ID */ |
| uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT, |
| MIPS_GCTL1_ID_WIDTH); |
| uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT, |
| MIPS_GCTL1_RID_WIDTH); |
| uasm_i_mtc0(&p, T0, C0_GUESTCTL1); |
| |
| /* GuestID handles dealiasing so we don't need to touch ASID */ |
| goto skip_asid_restore; |
| } |
| |
| /* Root ASID Dealias (RAD) */ |
| |
| /* Save host ASID */ |
| UASM_i_MFC0(&p, K0, C0_ENTRYHI); |
| UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), |
| K1); |
| |
| /* Set the root ASID for the Guest */ |
| UASM_i_ADDIU(&p, T1, S0, |
| offsetof(struct kvm, arch.gpa_mm.context.asid)); |
| |
| /* t1: contains the base of the ASID array, need to get the cpu id */ |
| /* smp_processor_id */ |
| uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP); |
| /* index the ASID array */ |
| uasm_i_sll(&p, T2, T2, ilog2(sizeof(long))); |
| UASM_i_ADDU(&p, T3, T1, T2); |
| UASM_i_LW(&p, K0, 0, T3); |
| #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE |
| /* |
| * reuse ASID array offset |
| * cpuinfo_mips is a multiple of sizeof(long) |
| */ |
| uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long)); |
| uasm_i_mul(&p, T2, T2, T3); |
| |
| UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask); |
| UASM_i_ADDU(&p, AT, AT, T2); |
| UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT); |
| uasm_i_and(&p, K0, K0, T2); |
| #else |
| uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID); |
| #endif |
| |
| /* Set up KVM VZ root ASID (!guestid) */ |
| uasm_i_mtc0(&p, K0, C0_ENTRYHI); |
| skip_asid_restore: |
| uasm_i_ehb(&p); |
| |
| /* Disable RDHWR access */ |
| uasm_i_mtc0(&p, ZERO, C0_HWRENA); |
| |
| /* load the guest context from VCPU and return */ |
| for (i = 1; i < 32; ++i) { |
| /* Guest k0/k1 loaded later */ |
| if (i == K0 || i == K1) |
| continue; |
| UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); |
| } |
| |
| #ifndef CONFIG_CPU_MIPSR6 |
| /* Restore hi/lo */ |
| UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1); |
| uasm_i_mthi(&p, K0); |
| |
| UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1); |
| uasm_i_mtlo(&p, K0); |
| #endif |
| |
| /* Restore the guest's k0/k1 registers */ |
| UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); |
| UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); |
| |
| /* Jump to guest */ |
| uasm_i_eret(&p); |
| |
| uasm_resolve_relocs(relocs, labels); |
| |
| return p; |
| } |
| |
| /** |
| * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler. |
| * @addr: Address to start writing code. |
| * @handler: Address of common handler (within range of @addr). |
| * |
| * Assemble TLB refill exception fast path handler for guest execution. |
| * |
| * Returns: Next address after end of written function. |
| */ |
| void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler) |
| { |
| u32 *p = addr; |
| struct uasm_label labels[2]; |
| struct uasm_reloc relocs[2]; |
| #ifndef CONFIG_CPU_LOONGSON64 |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| #endif |
| |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| /* Save guest k1 into scratch register */ |
| UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); |
| |
| /* Get the VCPU pointer from the VCPU scratch register */ |
| UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); |
| |
| /* Save guest k0 into VCPU structure */ |
| UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); |
| |
| /* |
| * Some of the common tlbex code uses current_cpu_type(). For KVM we |
| * assume symmetry and just disable preemption to silence the warning. |
| */ |
| preempt_disable(); |
| |
| #ifdef CONFIG_CPU_LOONGSON64 |
| UASM_i_MFC0(&p, K1, C0_PGD); |
| uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ |
| #ifndef __PAGETABLE_PMD_FOLDED |
| uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ |
| #endif |
| uasm_i_ldpte(&p, K1, 0); /* even */ |
| uasm_i_ldpte(&p, K1, 1); /* odd */ |
| uasm_i_tlbwr(&p); |
| #else |
| /* |
| * Now for the actual refill bit. A lot of this can be common with the |
| * Linux TLB refill handler, however we don't need to handle so many |
| * cases. We only need to handle user mode refills, and user mode runs |
| * with 32-bit addressing. |
| * |
| * Therefore the branch to label_vmalloc generated by build_get_pmde64() |
| * that isn't resolved should never actually get taken and is harmless |
| * to leave in place for now. |
| */ |
| |
| #ifdef CONFIG_64BIT |
| build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ |
| #else |
| build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ |
| #endif |
| |
| /* we don't support huge pages yet */ |
| |
| build_get_ptep(&p, K0, K1); |
| build_update_entries(&p, K0, K1); |
| build_tlb_write_entry(&p, &l, &r, tlb_random); |
| #endif |
| |
| preempt_enable(); |
| |
| /* Get the VCPU pointer from the VCPU scratch register again */ |
| UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); |
| |
| /* Restore the guest's k0/k1 registers */ |
| UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); |
| uasm_i_ehb(&p); |
| UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); |
| |
| /* Jump to guest */ |
| uasm_i_eret(&p); |
| |
| return p; |
| } |
| |
| /** |
| * kvm_mips_build_exception() - Assemble first level guest exception handler. |
| * @addr: Address to start writing code. |
| * @handler: Address of common handler (within range of @addr). |
| * |
| * Assemble exception vector code for guest execution. The generated vector will |
| * branch to the common exception handler generated by kvm_mips_build_exit(). |
| * |
| * Returns: Next address after end of written function. |
| */ |
| void *kvm_mips_build_exception(void *addr, void *handler) |
| { |
| u32 *p = addr; |
| struct uasm_label labels[2]; |
| struct uasm_reloc relocs[2]; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| /* Save guest k1 into scratch register */ |
| UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); |
| |
| /* Get the VCPU pointer from the VCPU scratch register */ |
| UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); |
| UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); |
| |
| /* Save guest k0 into VCPU structure */ |
| UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); |
| |
| /* Branch to the common handler */ |
| uasm_il_b(&p, &r, label_exit_common); |
| uasm_i_nop(&p); |
| |
| uasm_l_exit_common(&l, handler); |
| uasm_resolve_relocs(relocs, labels); |
| |
| return p; |
| } |
| |
| /** |
| * kvm_mips_build_exit() - Assemble common guest exit handler. |
| * @addr: Address to start writing code. |
| * |
| * Assemble the generic guest exit handling code. This is called by the |
| * exception vectors (generated by kvm_mips_build_exception()), and calls |
| * kvm_mips_handle_exit(), then either resumes the guest or returns to the host |
| * depending on the return value. |
| * |
| * Returns: Next address after end of written function. |
| */ |
| void *kvm_mips_build_exit(void *addr) |
| { |
| u32 *p = addr; |
| unsigned int i; |
| struct uasm_label labels[3]; |
| struct uasm_reloc relocs[3]; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| /* |
| * Generic Guest exception handler. We end up here when the guest |
| * does something that causes a trap to kernel mode. |
| * |
| * Both k0/k1 registers will have already been saved (k0 into the vcpu |
| * structure, and k1 into the scratch_tmp register). |
| * |
| * The k1 register will already contain the kvm_vcpu_arch pointer. |
| */ |
| |
| /* Start saving Guest context to VCPU */ |
| for (i = 0; i < 32; ++i) { |
| /* Guest k0/k1 saved later */ |
| if (i == K0 || i == K1) |
| continue; |
| UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); |
| } |
| |
| #ifndef CONFIG_CPU_MIPSR6 |
| /* We need to save hi/lo and restore them on the way out */ |
| uasm_i_mfhi(&p, T0); |
| UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1); |
| |
| uasm_i_mflo(&p, T0); |
| UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1); |
| #endif |
| |
| /* Finally save guest k1 to VCPU */ |
| uasm_i_ehb(&p); |
| UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]); |
| UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); |
| |
| /* Now that context has been saved, we can use other registers */ |
| |
| /* Restore vcpu */ |
| UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); |
| |
| /* |
| * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process |
| * the exception |
| */ |
| UASM_i_MFC0(&p, K0, C0_EPC); |
| UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1); |
| |
| UASM_i_MFC0(&p, K0, C0_BADVADDR); |
| UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr), |
| K1); |
| |
| uasm_i_mfc0(&p, K0, C0_CAUSE); |
| uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1); |
| |
| if (cpu_has_badinstr) { |
| uasm_i_mfc0(&p, K0, C0_BADINSTR); |
| uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, |
| host_cp0_badinstr), K1); |
| } |
| |
| if (cpu_has_badinstrp) { |
| uasm_i_mfc0(&p, K0, C0_BADINSTRP); |
| uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, |
| host_cp0_badinstrp), K1); |
| } |
| |
| /* Now restore the host state just enough to run the handlers */ |
| |
| /* Switch EBASE to the one used by Linux */ |
| /* load up the host EBASE */ |
| uasm_i_mfc0(&p, V0, C0_STATUS); |
| |
| uasm_i_lui(&p, AT, ST0_BEV >> 16); |
| uasm_i_or(&p, K0, V0, AT); |
| |
| uasm_i_mtc0(&p, K0, C0_STATUS); |
| uasm_i_ehb(&p); |
| |
| UASM_i_LA_mostly(&p, K0, (long)&ebase); |
| UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0); |
| build_set_exc_base(&p, K0); |
| |
| if (raw_cpu_has_fpu) { |
| /* |
| * If FPU is enabled, save FCR31 and clear it so that later |
| * ctc1's don't trigger FPE for pending exceptions. |
| */ |
| uasm_i_lui(&p, AT, ST0_CU1 >> 16); |
| uasm_i_and(&p, V1, V0, AT); |
| uasm_il_beqz(&p, &r, V1, label_fpu_1); |
| uasm_i_nop(&p); |
| uasm_i_cfc1(&p, T0, 31); |
| uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31), |
| K1); |
| uasm_i_ctc1(&p, ZERO, 31); |
| uasm_l_fpu_1(&l, p); |
| } |
| |
| if (cpu_has_msa) { |
| /* |
| * If MSA is enabled, save MSACSR and clear it so that later |
| * instructions don't trigger MSAFPE for pending exceptions. |
| */ |
| uasm_i_mfc0(&p, T0, C0_CONFIG5); |
| uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */ |
| uasm_il_beqz(&p, &r, T0, label_msa_1); |
| uasm_i_nop(&p); |
| uasm_i_cfcmsa(&p, T0, MSA_CSR); |
| uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr), |
| K1); |
| uasm_i_ctcmsa(&p, MSA_CSR, ZERO); |
| uasm_l_msa_1(&l, p); |
| } |
| |
| /* Restore host ASID */ |
| if (!cpu_has_guestid) { |
| UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), |
| K1); |
| UASM_i_MTC0(&p, K0, C0_ENTRYHI); |
| } |
| |
| /* |
| * Set up normal Linux process pgd. |
| * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): |
| * - call tlbmiss_handler_setup_pgd(mm->pgd) |
| * - write mm->pgd into CP0_PWBase |
| */ |
| UASM_i_LW(&p, A0, |
| offsetof(struct kvm_vcpu_arch, host_pgd), K1); |
| UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); |
| uasm_i_jalr(&p, RA, T9); |
| /* delay slot */ |
| if (cpu_has_htw) |
| UASM_i_MTC0(&p, A0, C0_PWBASE); |
| else |
| uasm_i_nop(&p); |
| |
| /* Clear GM bit so we don't enter guest mode when EXL is cleared */ |
| uasm_i_mfc0(&p, K0, C0_GUESTCTL0); |
| uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1); |
| uasm_i_mtc0(&p, K0, C0_GUESTCTL0); |
| |
| /* Save GuestCtl0 so we can access GExcCode after CPU migration */ |
| uasm_i_sw(&p, K0, |
| offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1); |
| |
| if (cpu_has_guestid) { |
| /* |
| * Clear root mode GuestID, so that root TLB operations use the |
| * root GuestID in the root TLB. |
| */ |
| uasm_i_mfc0(&p, T0, C0_GUESTCTL1); |
| /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */ |
| uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT, |
| MIPS_GCTL1_RID_WIDTH); |
| uasm_i_mtc0(&p, T0, C0_GUESTCTL1); |
| } |
| |
| /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */ |
| uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE)); |
| uasm_i_and(&p, V0, V0, AT); |
| uasm_i_lui(&p, AT, ST0_CU0 >> 16); |
| uasm_i_or(&p, V0, V0, AT); |
| #ifdef CONFIG_64BIT |
| uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX); |
| #endif |
| uasm_i_mtc0(&p, V0, C0_STATUS); |
| uasm_i_ehb(&p); |
| |
| /* Load up host GP */ |
| UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); |
| |
| /* Need a stack before we can jump to "C" */ |
| UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); |
| |
| /* Saved host state */ |
| UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs)); |
| |
| /* |
| * XXXKYMA do we need to load the host ASID, maybe not because the |
| * kernel entries are marked GLOBAL, need to verify |
| */ |
| |
| /* Restore host scratch registers, as we'll have clobbered them */ |
| kvm_mips_build_restore_scratch(&p, K0, SP); |
| |
| /* Restore RDHWR access */ |
| UASM_i_LA_mostly(&p, K0, (long)&hwrena); |
| uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); |
| uasm_i_mtc0(&p, K0, C0_HWRENA); |
| |
| /* Jump to handler */ |
| /* |
| * XXXKYMA: not sure if this is safe, how large is the stack?? |
| * Now jump to the kvm_mips_handle_exit() to see if we can deal |
| * with this in the kernel |
| */ |
| uasm_i_move(&p, A0, S0); |
| UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit); |
| uasm_i_jalr(&p, RA, T9); |
| UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ); |
| |
| uasm_resolve_relocs(relocs, labels); |
| |
| p = kvm_mips_build_ret_from_exit(p); |
| |
| return p; |
| } |
| |
| /** |
| * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler. |
| * @addr: Address to start writing code. |
| * |
| * Assemble the code to handle the return from kvm_mips_handle_exit(), either |
| * resuming the guest or returning to the host depending on the return value. |
| * |
| * Returns: Next address after end of written function. |
| */ |
| static void *kvm_mips_build_ret_from_exit(void *addr) |
| { |
| u32 *p = addr; |
| struct uasm_label labels[2]; |
| struct uasm_reloc relocs[2]; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| /* Return from handler Make sure interrupts are disabled */ |
| uasm_i_di(&p, ZERO); |
| uasm_i_ehb(&p); |
| |
| /* |
| * XXXKYMA: k0/k1 could have been blown away if we processed |
| * an exception while we were handling the exception from the |
| * guest, reload k1 |
| */ |
| |
| uasm_i_move(&p, K1, S0); |
| UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); |
| |
| /* |
| * Check return value, should tell us if we are returning to the |
| * host (handle I/O etc)or resuming the guest |
| */ |
| uasm_i_andi(&p, T0, V0, RESUME_HOST); |
| uasm_il_bnez(&p, &r, T0, label_return_to_host); |
| uasm_i_nop(&p); |
| |
| p = kvm_mips_build_ret_to_guest(p); |
| |
| uasm_l_return_to_host(&l, p); |
| p = kvm_mips_build_ret_to_host(p); |
| |
| uasm_resolve_relocs(relocs, labels); |
| |
| return p; |
| } |
| |
| /** |
| * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest. |
| * @addr: Address to start writing code. |
| * |
| * Assemble the code to handle return from the guest exit handler |
| * (kvm_mips_handle_exit()) back to the guest. |
| * |
| * Returns: Next address after end of written function. |
| */ |
| static void *kvm_mips_build_ret_to_guest(void *addr) |
| { |
| u32 *p = addr; |
| |
| /* Put the saved pointer to vcpu (s0) back into the scratch register */ |
| UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); |
| |
| /* Load up the Guest EBASE to minimize the window where BEV is set */ |
| UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); |
| |
| /* Switch EBASE back to the one used by KVM */ |
| uasm_i_mfc0(&p, V1, C0_STATUS); |
| uasm_i_lui(&p, AT, ST0_BEV >> 16); |
| uasm_i_or(&p, K0, V1, AT); |
| uasm_i_mtc0(&p, K0, C0_STATUS); |
| uasm_i_ehb(&p); |
| build_set_exc_base(&p, T0); |
| |
| /* Setup status register for running guest in UM */ |
| uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE); |
| UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX)); |
| uasm_i_and(&p, V1, V1, AT); |
| uasm_i_mtc0(&p, V1, C0_STATUS); |
| uasm_i_ehb(&p); |
| |
| p = kvm_mips_build_enter_guest(p); |
| |
| return p; |
| } |
| |
| /** |
| * kvm_mips_build_ret_to_host() - Assemble code to return to the host. |
| * @addr: Address to start writing code. |
| * |
| * Assemble the code to handle return from the guest exit handler |
| * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run |
| * function generated by kvm_mips_build_vcpu_run(). |
| * |
| * Returns: Next address after end of written function. |
| */ |
| static void *kvm_mips_build_ret_to_host(void *addr) |
| { |
| u32 *p = addr; |
| unsigned int i; |
| |
| /* EBASE is already pointing to Linux */ |
| UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1); |
| UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs)); |
| |
| /* |
| * r2/v0 is the return code, shift it down by 2 (arithmetic) |
| * to recover the err code |
| */ |
| uasm_i_sra(&p, K0, V0, 2); |
| uasm_i_move(&p, V0, K0); |
| |
| /* Load context saved on the host stack */ |
| for (i = 16; i < 31; ++i) { |
| if (i == 24) |
| i = 28; |
| UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1); |
| } |
| |
| /* Restore RDHWR access */ |
| UASM_i_LA_mostly(&p, K0, (long)&hwrena); |
| uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); |
| uasm_i_mtc0(&p, K0, C0_HWRENA); |
| |
| /* Restore RA, which is the address we will return to */ |
| UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1); |
| uasm_i_jr(&p, RA); |
| uasm_i_nop(&p); |
| |
| return p; |
| } |
| |