| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Dynamic DMA mapping support. |
| * |
| * This implementation is a fallback for platforms that do not support |
| * I/O TLBs (aka DMA address translation hardware). |
| * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> |
| * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> |
| * Copyright (C) 2000, 2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. |
| * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid |
| * unnecessary i-cache flushing. |
| * 04/07/.. ak Better overflow handling. Assorted fixes. |
| * 05/09/10 linville Add support for syncing ranges, support syncing for |
| * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. |
| * 08/12/11 beckyb Add highmem support |
| */ |
| |
| #define pr_fmt(fmt) "software IO TLB: " fmt |
| |
| #include <linux/cache.h> |
| #include <linux/dma-direct.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/mm.h> |
| #include <linux/export.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/swiotlb.h> |
| #include <linux/pfn.h> |
| #include <linux/types.h> |
| #include <linux/ctype.h> |
| #include <linux/highmem.h> |
| #include <linux/gfp.h> |
| #include <linux/scatterlist.h> |
| #include <linux/mem_encrypt.h> |
| #include <linux/set_memory.h> |
| #ifdef CONFIG_DEBUG_FS |
| #include <linux/debugfs.h> |
| #endif |
| #ifdef CONFIG_DMA_RESTRICTED_POOL |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/slab.h> |
| #endif |
| |
| #include <asm/io.h> |
| #include <asm/dma.h> |
| |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/iommu-helper.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/swiotlb.h> |
| |
| #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
| |
| /* |
| * Minimum IO TLB size to bother booting with. Systems with mainly |
| * 64bit capable cards will only lightly use the swiotlb. If we can't |
| * allocate a contiguous 1MB, we're probably in trouble anyway. |
| */ |
| #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) |
| |
| #define INVALID_PHYS_ADDR (~(phys_addr_t)0) |
| |
| enum swiotlb_force swiotlb_force; |
| |
| struct io_tlb_mem io_tlb_default_mem; |
| |
| /* |
| * Max segment that we can provide which (if pages are contingous) will |
| * not be bounced (unless SWIOTLB_FORCE is set). |
| */ |
| static unsigned int max_segment; |
| |
| static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; |
| |
| static int __init |
| setup_io_tlb_npages(char *str) |
| { |
| if (isdigit(*str)) { |
| /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
| default_nslabs = |
| ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); |
| } |
| if (*str == ',') |
| ++str; |
| if (!strcmp(str, "force")) |
| swiotlb_force = SWIOTLB_FORCE; |
| else if (!strcmp(str, "noforce")) |
| swiotlb_force = SWIOTLB_NO_FORCE; |
| |
| return 0; |
| } |
| early_param("swiotlb", setup_io_tlb_npages); |
| |
| unsigned int swiotlb_max_segment(void) |
| { |
| return io_tlb_default_mem.nslabs ? max_segment : 0; |
| } |
| EXPORT_SYMBOL_GPL(swiotlb_max_segment); |
| |
| void swiotlb_set_max_segment(unsigned int val) |
| { |
| if (swiotlb_force == SWIOTLB_FORCE) |
| max_segment = 1; |
| else |
| max_segment = rounddown(val, PAGE_SIZE); |
| } |
| |
| unsigned long swiotlb_size_or_default(void) |
| { |
| return default_nslabs << IO_TLB_SHIFT; |
| } |
| |
| void __init swiotlb_adjust_size(unsigned long size) |
| { |
| /* |
| * If swiotlb parameter has not been specified, give a chance to |
| * architectures such as those supporting memory encryption to |
| * adjust/expand SWIOTLB size for their use. |
| */ |
| if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) |
| return; |
| size = ALIGN(size, IO_TLB_SIZE); |
| default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); |
| pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); |
| } |
| |
| void swiotlb_print_info(void) |
| { |
| struct io_tlb_mem *mem = &io_tlb_default_mem; |
| |
| if (!mem->nslabs) { |
| pr_warn("No low mem\n"); |
| return; |
| } |
| |
| pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, |
| (mem->nslabs << IO_TLB_SHIFT) >> 20); |
| } |
| |
| static inline unsigned long io_tlb_offset(unsigned long val) |
| { |
| return val & (IO_TLB_SEGSIZE - 1); |
| } |
| |
| static inline unsigned long nr_slots(u64 val) |
| { |
| return DIV_ROUND_UP(val, IO_TLB_SIZE); |
| } |
| |
| /* |
| * Early SWIOTLB allocation may be too early to allow an architecture to |
| * perform the desired operations. This function allows the architecture to |
| * call SWIOTLB when the operations are possible. It needs to be called |
| * before the SWIOTLB memory is used. |
| */ |
| void __init swiotlb_update_mem_attributes(void) |
| { |
| struct io_tlb_mem *mem = &io_tlb_default_mem; |
| void *vaddr; |
| unsigned long bytes; |
| |
| if (!mem->nslabs || mem->late_alloc) |
| return; |
| vaddr = phys_to_virt(mem->start); |
| bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); |
| set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); |
| memset(vaddr, 0, bytes); |
| } |
| |
| static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, |
| unsigned long nslabs, bool late_alloc) |
| { |
| void *vaddr = phys_to_virt(start); |
| unsigned long bytes = nslabs << IO_TLB_SHIFT, i; |
| |
| mem->nslabs = nslabs; |
| mem->start = start; |
| mem->end = mem->start + bytes; |
| mem->index = 0; |
| mem->late_alloc = late_alloc; |
| |
| if (swiotlb_force == SWIOTLB_FORCE) |
| mem->force_bounce = true; |
| |
| spin_lock_init(&mem->lock); |
| for (i = 0; i < mem->nslabs; i++) { |
| mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); |
| mem->slots[i].orig_addr = INVALID_PHYS_ADDR; |
| mem->slots[i].alloc_size = 0; |
| } |
| memset(vaddr, 0, bytes); |
| } |
| |
| int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) |
| { |
| struct io_tlb_mem *mem = &io_tlb_default_mem; |
| size_t alloc_size; |
| |
| if (swiotlb_force == SWIOTLB_NO_FORCE) |
| return 0; |
| |
| /* protect against double initialization */ |
| if (WARN_ON_ONCE(mem->nslabs)) |
| return -ENOMEM; |
| |
| alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); |
| mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); |
| if (!mem->slots) |
| panic("%s: Failed to allocate %zu bytes align=0x%lx\n", |
| __func__, alloc_size, PAGE_SIZE); |
| |
| swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false); |
| |
| if (verbose) |
| swiotlb_print_info(); |
| swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT); |
| return 0; |
| } |
| |
| /* |
| * Statically reserve bounce buffer space and initialize bounce buffer data |
| * structures for the software IO TLB used to implement the DMA API. |
| */ |
| void __init |
| swiotlb_init(int verbose) |
| { |
| size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT); |
| void *tlb; |
| |
| if (swiotlb_force == SWIOTLB_NO_FORCE) |
| return; |
| |
| /* Get IO TLB memory from the low pages */ |
| tlb = memblock_alloc_low(bytes, PAGE_SIZE); |
| if (!tlb) |
| goto fail; |
| if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose)) |
| goto fail_free_mem; |
| return; |
| |
| fail_free_mem: |
| memblock_free_early(__pa(tlb), bytes); |
| fail: |
| pr_warn("Cannot allocate buffer"); |
| } |
| |
| /* |
| * Systems with larger DMA zones (those that don't support ISA) can |
| * initialize the swiotlb later using the slab allocator if needed. |
| * This should be just like above, but with some error catching. |
| */ |
| int |
| swiotlb_late_init_with_default_size(size_t default_size) |
| { |
| unsigned long nslabs = |
| ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); |
| unsigned long bytes; |
| unsigned char *vstart = NULL; |
| unsigned int order; |
| int rc = 0; |
| |
| if (swiotlb_force == SWIOTLB_NO_FORCE) |
| return 0; |
| |
| /* |
| * Get IO TLB memory from the low pages |
| */ |
| order = get_order(nslabs << IO_TLB_SHIFT); |
| nslabs = SLABS_PER_PAGE << order; |
| bytes = nslabs << IO_TLB_SHIFT; |
| |
| while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { |
| vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, |
| order); |
| if (vstart) |
| break; |
| order--; |
| } |
| |
| if (!vstart) |
| return -ENOMEM; |
| |
| if (order != get_order(bytes)) { |
| pr_warn("only able to allocate %ld MB\n", |
| (PAGE_SIZE << order) >> 20); |
| nslabs = SLABS_PER_PAGE << order; |
| } |
| rc = swiotlb_late_init_with_tbl(vstart, nslabs); |
| if (rc) |
| free_pages((unsigned long)vstart, order); |
| |
| return rc; |
| } |
| |
| int |
| swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) |
| { |
| struct io_tlb_mem *mem = &io_tlb_default_mem; |
| unsigned long bytes = nslabs << IO_TLB_SHIFT; |
| |
| if (swiotlb_force == SWIOTLB_NO_FORCE) |
| return 0; |
| |
| /* protect against double initialization */ |
| if (WARN_ON_ONCE(mem->nslabs)) |
| return -ENOMEM; |
| |
| mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(array_size(sizeof(*mem->slots), nslabs))); |
| if (!mem->slots) |
| return -ENOMEM; |
| |
| set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); |
| swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true); |
| |
| swiotlb_print_info(); |
| swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT); |
| return 0; |
| } |
| |
| void __init swiotlb_exit(void) |
| { |
| struct io_tlb_mem *mem = &io_tlb_default_mem; |
| unsigned long tbl_vaddr; |
| size_t tbl_size, slots_size; |
| |
| if (!mem->nslabs) |
| return; |
| |
| pr_info("tearing down default memory pool\n"); |
| tbl_vaddr = (unsigned long)phys_to_virt(mem->start); |
| tbl_size = PAGE_ALIGN(mem->end - mem->start); |
| slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); |
| |
| set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); |
| if (mem->late_alloc) { |
| free_pages(tbl_vaddr, get_order(tbl_size)); |
| free_pages((unsigned long)mem->slots, get_order(slots_size)); |
| } else { |
| memblock_free_late(mem->start, tbl_size); |
| memblock_free_late(__pa(mem->slots), slots_size); |
| } |
| |
| memset(mem, 0, sizeof(*mem)); |
| } |
| |
| /* |
| * Return the offset into a iotlb slot required to keep the device happy. |
| */ |
| static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) |
| { |
| return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); |
| } |
| |
| /* |
| * Bounce: copy the swiotlb buffer from or back to the original dma location |
| */ |
| static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; |
| phys_addr_t orig_addr = mem->slots[index].orig_addr; |
| size_t alloc_size = mem->slots[index].alloc_size; |
| unsigned long pfn = PFN_DOWN(orig_addr); |
| unsigned char *vaddr = phys_to_virt(tlb_addr); |
| unsigned int tlb_offset, orig_addr_offset; |
| |
| if (orig_addr == INVALID_PHYS_ADDR) |
| return; |
| |
| tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); |
| orig_addr_offset = swiotlb_align_offset(dev, orig_addr); |
| if (tlb_offset < orig_addr_offset) { |
| dev_WARN_ONCE(dev, 1, |
| "Access before mapping start detected. orig offset %u, requested offset %u.\n", |
| orig_addr_offset, tlb_offset); |
| return; |
| } |
| |
| tlb_offset -= orig_addr_offset; |
| if (tlb_offset > alloc_size) { |
| dev_WARN_ONCE(dev, 1, |
| "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", |
| alloc_size, size, tlb_offset); |
| return; |
| } |
| |
| orig_addr += tlb_offset; |
| alloc_size -= tlb_offset; |
| |
| if (size > alloc_size) { |
| dev_WARN_ONCE(dev, 1, |
| "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", |
| alloc_size, size); |
| size = alloc_size; |
| } |
| |
| if (PageHighMem(pfn_to_page(pfn))) { |
| /* The buffer does not have a mapping. Map it in and copy */ |
| unsigned int offset = orig_addr & ~PAGE_MASK; |
| char *buffer; |
| unsigned int sz = 0; |
| unsigned long flags; |
| |
| while (size) { |
| sz = min_t(size_t, PAGE_SIZE - offset, size); |
| |
| local_irq_save(flags); |
| buffer = kmap_atomic(pfn_to_page(pfn)); |
| if (dir == DMA_TO_DEVICE) |
| memcpy(vaddr, buffer + offset, sz); |
| else |
| memcpy(buffer + offset, vaddr, sz); |
| kunmap_atomic(buffer); |
| local_irq_restore(flags); |
| |
| size -= sz; |
| pfn++; |
| vaddr += sz; |
| offset = 0; |
| } |
| } else if (dir == DMA_TO_DEVICE) { |
| memcpy(vaddr, phys_to_virt(orig_addr), size); |
| } else { |
| memcpy(phys_to_virt(orig_addr), vaddr, size); |
| } |
| } |
| |
| #define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT)) |
| |
| /* |
| * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. |
| */ |
| static inline unsigned long get_max_slots(unsigned long boundary_mask) |
| { |
| if (boundary_mask == ~0UL) |
| return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); |
| return nr_slots(boundary_mask + 1); |
| } |
| |
| static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index) |
| { |
| if (index >= mem->nslabs) |
| return 0; |
| return index; |
| } |
| |
| /* |
| * Find a suitable number of IO TLB entries size that will fit this request and |
| * allocate a buffer from that IO TLB pool. |
| */ |
| static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, |
| size_t alloc_size) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| unsigned long boundary_mask = dma_get_seg_boundary(dev); |
| dma_addr_t tbl_dma_addr = |
| phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; |
| unsigned long max_slots = get_max_slots(boundary_mask); |
| unsigned int iotlb_align_mask = |
| dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); |
| unsigned int nslots = nr_slots(alloc_size), stride; |
| unsigned int index, wrap, count = 0, i; |
| unsigned int offset = swiotlb_align_offset(dev, orig_addr); |
| unsigned long flags; |
| |
| BUG_ON(!nslots); |
| |
| /* |
| * For mappings with an alignment requirement don't bother looping to |
| * unaligned slots once we found an aligned one. For allocations of |
| * PAGE_SIZE or larger only look for page aligned allocations. |
| */ |
| stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; |
| if (alloc_size >= PAGE_SIZE) |
| stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); |
| |
| spin_lock_irqsave(&mem->lock, flags); |
| if (unlikely(nslots > mem->nslabs - mem->used)) |
| goto not_found; |
| |
| index = wrap = wrap_index(mem, ALIGN(mem->index, stride)); |
| do { |
| if (orig_addr && |
| (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) != |
| (orig_addr & iotlb_align_mask)) { |
| index = wrap_index(mem, index + 1); |
| continue; |
| } |
| |
| /* |
| * If we find a slot that indicates we have 'nslots' number of |
| * contiguous buffers, we allocate the buffers from that slot |
| * and mark the entries as '0' indicating unavailable. |
| */ |
| if (!iommu_is_span_boundary(index, nslots, |
| nr_slots(tbl_dma_addr), |
| max_slots)) { |
| if (mem->slots[index].list >= nslots) |
| goto found; |
| } |
| index = wrap_index(mem, index + stride); |
| } while (index != wrap); |
| |
| not_found: |
| spin_unlock_irqrestore(&mem->lock, flags); |
| return -1; |
| |
| found: |
| for (i = index; i < index + nslots; i++) { |
| mem->slots[i].list = 0; |
| mem->slots[i].alloc_size = |
| alloc_size - (offset + ((i - index) << IO_TLB_SHIFT)); |
| } |
| for (i = index - 1; |
| io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && |
| mem->slots[i].list; i--) |
| mem->slots[i].list = ++count; |
| |
| /* |
| * Update the indices to avoid searching in the next round. |
| */ |
| if (index + nslots < mem->nslabs) |
| mem->index = index + nslots; |
| else |
| mem->index = 0; |
| mem->used += nslots; |
| |
| spin_unlock_irqrestore(&mem->lock, flags); |
| return index; |
| } |
| |
| phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, |
| size_t mapping_size, size_t alloc_size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| unsigned int offset = swiotlb_align_offset(dev, orig_addr); |
| unsigned int i; |
| int index; |
| phys_addr_t tlb_addr; |
| |
| if (!mem) |
| panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); |
| |
| if (mem_encrypt_active()) |
| pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); |
| |
| if (mapping_size > alloc_size) { |
| dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", |
| mapping_size, alloc_size); |
| return (phys_addr_t)DMA_MAPPING_ERROR; |
| } |
| |
| index = swiotlb_find_slots(dev, orig_addr, alloc_size + offset); |
| if (index == -1) { |
| if (!(attrs & DMA_ATTR_NO_WARN)) |
| dev_warn_ratelimited(dev, |
| "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", |
| alloc_size, mem->nslabs, mem->used); |
| return (phys_addr_t)DMA_MAPPING_ERROR; |
| } |
| |
| /* |
| * Save away the mapping from the original address to the DMA address. |
| * This is needed when we sync the memory. Then we sync the buffer if |
| * needed. |
| */ |
| for (i = 0; i < nr_slots(alloc_size + offset); i++) |
| mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); |
| tlb_addr = slot_addr(mem->start, index) + offset; |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) |
| swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); |
| return tlb_addr; |
| } |
| |
| static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| unsigned long flags; |
| unsigned int offset = swiotlb_align_offset(dev, tlb_addr); |
| int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; |
| int nslots = nr_slots(mem->slots[index].alloc_size + offset); |
| int count, i; |
| |
| /* |
| * Return the buffer to the free list by setting the corresponding |
| * entries to indicate the number of contiguous entries available. |
| * While returning the entries to the free list, we merge the entries |
| * with slots below and above the pool being returned. |
| */ |
| spin_lock_irqsave(&mem->lock, flags); |
| if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) |
| count = mem->slots[index + nslots].list; |
| else |
| count = 0; |
| |
| /* |
| * Step 1: return the slots to the free list, merging the slots with |
| * superceeding slots |
| */ |
| for (i = index + nslots - 1; i >= index; i--) { |
| mem->slots[i].list = ++count; |
| mem->slots[i].orig_addr = INVALID_PHYS_ADDR; |
| mem->slots[i].alloc_size = 0; |
| } |
| |
| /* |
| * Step 2: merge the returned slots with the preceding slots, if |
| * available (non zero) |
| */ |
| for (i = index - 1; |
| io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; |
| i--) |
| mem->slots[i].list = ++count; |
| mem->used -= nslots; |
| spin_unlock_irqrestore(&mem->lock, flags); |
| } |
| |
| /* |
| * tlb_addr is the physical address of the bounce buffer to unmap. |
| */ |
| void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, |
| size_t mapping_size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| /* |
| * First, sync the memory before unmapping the entry |
| */ |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) |
| swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); |
| |
| swiotlb_release_slots(dev, tlb_addr); |
| } |
| |
| void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) |
| swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); |
| else |
| BUG_ON(dir != DMA_FROM_DEVICE); |
| } |
| |
| void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); |
| else |
| BUG_ON(dir != DMA_TO_DEVICE); |
| } |
| |
| /* |
| * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing |
| * to the device copy the data into it as well. |
| */ |
| dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| phys_addr_t swiotlb_addr; |
| dma_addr_t dma_addr; |
| |
| trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size, |
| swiotlb_force); |
| |
| swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, dir, |
| attrs); |
| if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) |
| return DMA_MAPPING_ERROR; |
| |
| /* Ensure that the address returned is DMA'ble */ |
| dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); |
| if (unlikely(!dma_capable(dev, dma_addr, size, true))) { |
| swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, |
| attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| dev_WARN_ONCE(dev, 1, |
| "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", |
| &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| arch_sync_dma_for_device(swiotlb_addr, size, dir); |
| return dma_addr; |
| } |
| |
| size_t swiotlb_max_mapping_size(struct device *dev) |
| { |
| return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE; |
| } |
| |
| bool is_swiotlb_active(struct device *dev) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| |
| return mem && mem->nslabs; |
| } |
| EXPORT_SYMBOL_GPL(is_swiotlb_active); |
| |
| #ifdef CONFIG_DEBUG_FS |
| static struct dentry *debugfs_dir; |
| |
| static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem) |
| { |
| debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); |
| debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used); |
| } |
| |
| static int __init swiotlb_create_default_debugfs(void) |
| { |
| struct io_tlb_mem *mem = &io_tlb_default_mem; |
| |
| debugfs_dir = debugfs_create_dir("swiotlb", NULL); |
| if (mem->nslabs) { |
| mem->debugfs = debugfs_dir; |
| swiotlb_create_debugfs_files(mem); |
| } |
| return 0; |
| } |
| |
| late_initcall(swiotlb_create_default_debugfs); |
| |
| #endif |
| |
| #ifdef CONFIG_DMA_RESTRICTED_POOL |
| |
| #ifdef CONFIG_DEBUG_FS |
| static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem) |
| { |
| struct io_tlb_mem *mem = rmem->priv; |
| |
| mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir); |
| swiotlb_create_debugfs_files(mem); |
| } |
| #else |
| static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem) |
| { |
| } |
| #endif |
| |
| struct page *swiotlb_alloc(struct device *dev, size_t size) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| phys_addr_t tlb_addr; |
| int index; |
| |
| if (!mem) |
| return NULL; |
| |
| index = swiotlb_find_slots(dev, 0, size); |
| if (index == -1) |
| return NULL; |
| |
| tlb_addr = slot_addr(mem->start, index); |
| |
| return pfn_to_page(PFN_DOWN(tlb_addr)); |
| } |
| |
| bool swiotlb_free(struct device *dev, struct page *page, size_t size) |
| { |
| phys_addr_t tlb_addr = page_to_phys(page); |
| |
| if (!is_swiotlb_buffer(dev, tlb_addr)) |
| return false; |
| |
| swiotlb_release_slots(dev, tlb_addr); |
| |
| return true; |
| } |
| |
| static int rmem_swiotlb_device_init(struct reserved_mem *rmem, |
| struct device *dev) |
| { |
| struct io_tlb_mem *mem = rmem->priv; |
| unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; |
| |
| /* |
| * Since multiple devices can share the same pool, the private data, |
| * io_tlb_mem struct, will be initialized by the first device attached |
| * to it. |
| */ |
| if (!mem) { |
| mem = kzalloc(sizeof(*mem), GFP_KERNEL); |
| if (!mem) |
| return -ENOMEM; |
| |
| mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs), |
| GFP_KERNEL); |
| if (!mem->slots) { |
| kfree(mem); |
| return -ENOMEM; |
| } |
| |
| set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), |
| rmem->size >> PAGE_SHIFT); |
| swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false); |
| mem->force_bounce = true; |
| mem->for_alloc = true; |
| |
| rmem->priv = mem; |
| |
| rmem_swiotlb_debugfs_init(rmem); |
| } |
| |
| dev->dma_io_tlb_mem = mem; |
| |
| return 0; |
| } |
| |
| static void rmem_swiotlb_device_release(struct reserved_mem *rmem, |
| struct device *dev) |
| { |
| dev->dma_io_tlb_mem = &io_tlb_default_mem; |
| } |
| |
| static const struct reserved_mem_ops rmem_swiotlb_ops = { |
| .device_init = rmem_swiotlb_device_init, |
| .device_release = rmem_swiotlb_device_release, |
| }; |
| |
| static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) |
| { |
| unsigned long node = rmem->fdt_node; |
| |
| if (of_get_flat_dt_prop(node, "reusable", NULL) || |
| of_get_flat_dt_prop(node, "linux,cma-default", NULL) || |
| of_get_flat_dt_prop(node, "linux,dma-default", NULL) || |
| of_get_flat_dt_prop(node, "no-map", NULL)) |
| return -EINVAL; |
| |
| if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { |
| pr_err("Restricted DMA pool must be accessible within the linear mapping."); |
| return -EINVAL; |
| } |
| |
| rmem->ops = &rmem_swiotlb_ops; |
| pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", |
| &rmem->base, (unsigned long)rmem->size / SZ_1M); |
| return 0; |
| } |
| |
| RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); |
| #endif /* CONFIG_DMA_RESTRICTED_POOL */ |