| /* |
| * Freescale Hypervisor Management Driver |
| |
| * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. |
| * Author: Timur Tabi <timur@freescale.com> |
| * |
| * This file is licensed under the terms of the GNU General Public License |
| * version 2. This program is licensed "as is" without any warranty of any |
| * kind, whether express or implied. |
| * |
| * The Freescale hypervisor management driver provides several services to |
| * drivers and applications related to the Freescale hypervisor: |
| * |
| * 1. An ioctl interface for querying and managing partitions. |
| * |
| * 2. A file interface to reading incoming doorbells. |
| * |
| * 3. An interrupt handler for shutting down the partition upon receiving the |
| * shutdown doorbell from a manager partition. |
| * |
| * 4. A kernel interface for receiving callbacks when a managed partition |
| * shuts down. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/err.h> |
| #include <linux/fs.h> |
| #include <linux/miscdevice.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/slab.h> |
| #include <linux/poll.h> |
| #include <linux/of.h> |
| #include <linux/of_irq.h> |
| #include <linux/reboot.h> |
| #include <linux/uaccess.h> |
| #include <linux/notifier.h> |
| #include <linux/interrupt.h> |
| |
| #include <linux/io.h> |
| #include <asm/fsl_hcalls.h> |
| |
| #include <linux/fsl_hypervisor.h> |
| |
| static BLOCKING_NOTIFIER_HEAD(failover_subscribers); |
| |
| /* |
| * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART |
| * |
| * Restart a running partition |
| */ |
| static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) |
| { |
| struct fsl_hv_ioctl_restart param; |
| |
| /* Get the parameters from the user */ |
| if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_restart))) |
| return -EFAULT; |
| |
| param.ret = fh_partition_restart(param.partition); |
| |
| if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS |
| * |
| * Query the status of a partition |
| */ |
| static long ioctl_status(struct fsl_hv_ioctl_status __user *p) |
| { |
| struct fsl_hv_ioctl_status param; |
| u32 status; |
| |
| /* Get the parameters from the user */ |
| if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_status))) |
| return -EFAULT; |
| |
| param.ret = fh_partition_get_status(param.partition, &status); |
| if (!param.ret) |
| param.status = status; |
| |
| if (copy_to_user(p, ¶m, sizeof(struct fsl_hv_ioctl_status))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * Ioctl interface for FSL_HV_IOCTL_PARTITION_START |
| * |
| * Start a stopped partition. |
| */ |
| static long ioctl_start(struct fsl_hv_ioctl_start __user *p) |
| { |
| struct fsl_hv_ioctl_start param; |
| |
| /* Get the parameters from the user */ |
| if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_start))) |
| return -EFAULT; |
| |
| param.ret = fh_partition_start(param.partition, param.entry_point, |
| param.load); |
| |
| if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP |
| * |
| * Stop a running partition |
| */ |
| static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) |
| { |
| struct fsl_hv_ioctl_stop param; |
| |
| /* Get the parameters from the user */ |
| if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_stop))) |
| return -EFAULT; |
| |
| param.ret = fh_partition_stop(param.partition); |
| |
| if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * Ioctl interface for FSL_HV_IOCTL_MEMCPY |
| * |
| * The FH_MEMCPY hypercall takes an array of address/address/size structures |
| * to represent the data being copied. As a convenience to the user, this |
| * ioctl takes a user-create buffer and a pointer to a guest physically |
| * contiguous buffer in the remote partition, and creates the |
| * address/address/size array for the hypercall. |
| */ |
| static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) |
| { |
| struct fsl_hv_ioctl_memcpy param; |
| |
| struct page **pages = NULL; |
| void *sg_list_unaligned = NULL; |
| struct fh_sg_list *sg_list = NULL; |
| |
| unsigned int num_pages; |
| unsigned long lb_offset; /* Offset within a page of the local buffer */ |
| |
| unsigned int i; |
| long ret = 0; |
| int num_pinned; /* return value from get_user_pages() */ |
| phys_addr_t remote_paddr; /* The next address in the remote buffer */ |
| uint32_t count; /* The number of bytes left to copy */ |
| |
| /* Get the parameters from the user */ |
| if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_memcpy))) |
| return -EFAULT; |
| |
| /* |
| * One partition must be local, the other must be remote. In other |
| * words, if source and target are both -1, or are both not -1, then |
| * return an error. |
| */ |
| if ((param.source == -1) == (param.target == -1)) |
| return -EINVAL; |
| |
| /* |
| * The array of pages returned by get_user_pages() covers only |
| * page-aligned memory. Since the user buffer is probably not |
| * page-aligned, we need to handle the discrepancy. |
| * |
| * We calculate the offset within a page of the S/G list, and make |
| * adjustments accordingly. This will result in a page list that looks |
| * like this: |
| * |
| * ---- <-- first page starts before the buffer |
| * | | |
| * |////|-> ---- |
| * |////| | | |
| * ---- | | |
| * | | |
| * ---- | | |
| * |////| | | |
| * |////| | | |
| * |////| | | |
| * ---- | | |
| * | | |
| * ---- | | |
| * |////| | | |
| * |////| | | |
| * |////| | | |
| * ---- | | |
| * | | |
| * ---- | | |
| * |////| | | |
| * |////|-> ---- |
| * | | <-- last page ends after the buffer |
| * ---- |
| * |
| * The distance between the start of the first page and the start of the |
| * buffer is lb_offset. The hashed (///) areas are the parts of the |
| * page list that contain the actual buffer. |
| * |
| * The advantage of this approach is that the number of pages is |
| * equal to the number of entries in the S/G list that we give to the |
| * hypervisor. |
| */ |
| lb_offset = param.local_vaddr & (PAGE_SIZE - 1); |
| num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| |
| /* Allocate the buffers we need */ |
| |
| /* |
| * 'pages' is an array of struct page pointers that's initialized by |
| * get_user_pages(). |
| */ |
| pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); |
| if (!pages) { |
| pr_debug("fsl-hv: could not allocate page list\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * sg_list is the list of fh_sg_list objects that we pass to the |
| * hypervisor. |
| */ |
| sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + |
| sizeof(struct fh_sg_list) - 1, GFP_KERNEL); |
| if (!sg_list_unaligned) { |
| pr_debug("fsl-hv: could not allocate S/G list\n"); |
| ret = -ENOMEM; |
| goto exit; |
| } |
| sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); |
| |
| /* Get the physical addresses of the source buffer */ |
| num_pinned = get_user_pages_fast(param.local_vaddr - lb_offset, |
| num_pages, param.source != -1 ? FOLL_WRITE : 0, pages); |
| |
| if (num_pinned != num_pages) { |
| /* get_user_pages() failed */ |
| pr_debug("fsl-hv: could not lock source buffer\n"); |
| ret = (num_pinned < 0) ? num_pinned : -EFAULT; |
| goto exit; |
| } |
| |
| /* |
| * Build the fh_sg_list[] array. The first page is special |
| * because it's misaligned. |
| */ |
| if (param.source == -1) { |
| sg_list[0].source = page_to_phys(pages[0]) + lb_offset; |
| sg_list[0].target = param.remote_paddr; |
| } else { |
| sg_list[0].source = param.remote_paddr; |
| sg_list[0].target = page_to_phys(pages[0]) + lb_offset; |
| } |
| sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); |
| |
| remote_paddr = param.remote_paddr + sg_list[0].size; |
| count = param.count - sg_list[0].size; |
| |
| for (i = 1; i < num_pages; i++) { |
| if (param.source == -1) { |
| /* local to remote */ |
| sg_list[i].source = page_to_phys(pages[i]); |
| sg_list[i].target = remote_paddr; |
| } else { |
| /* remote to local */ |
| sg_list[i].source = remote_paddr; |
| sg_list[i].target = page_to_phys(pages[i]); |
| } |
| sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); |
| |
| remote_paddr += sg_list[i].size; |
| count -= sg_list[i].size; |
| } |
| |
| param.ret = fh_partition_memcpy(param.source, param.target, |
| virt_to_phys(sg_list), num_pages); |
| |
| exit: |
| if (pages) { |
| for (i = 0; i < num_pages; i++) |
| if (pages[i]) |
| put_page(pages[i]); |
| } |
| |
| kfree(sg_list_unaligned); |
| kfree(pages); |
| |
| if (!ret) |
| if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) |
| return -EFAULT; |
| |
| return ret; |
| } |
| |
| /* |
| * Ioctl interface for FSL_HV_IOCTL_DOORBELL |
| * |
| * Ring a doorbell |
| */ |
| static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) |
| { |
| struct fsl_hv_ioctl_doorbell param; |
| |
| /* Get the parameters from the user. */ |
| if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_doorbell))) |
| return -EFAULT; |
| |
| param.ret = ev_doorbell_send(param.doorbell); |
| |
| if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) |
| { |
| struct fsl_hv_ioctl_prop param; |
| char __user *upath, *upropname; |
| void __user *upropval; |
| char *path = NULL, *propname = NULL; |
| void *propval = NULL; |
| int ret = 0; |
| |
| /* Get the parameters from the user. */ |
| if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_prop))) |
| return -EFAULT; |
| |
| upath = (char __user *)(uintptr_t)param.path; |
| upropname = (char __user *)(uintptr_t)param.propname; |
| upropval = (void __user *)(uintptr_t)param.propval; |
| |
| path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); |
| if (IS_ERR(path)) { |
| ret = PTR_ERR(path); |
| goto out; |
| } |
| |
| propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); |
| if (IS_ERR(propname)) { |
| ret = PTR_ERR(propname); |
| goto out; |
| } |
| |
| if (param.proplen > FH_DTPROP_MAX_PROPLEN) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| propval = kmalloc(param.proplen, GFP_KERNEL); |
| if (!propval) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (set) { |
| if (copy_from_user(propval, upropval, param.proplen)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| param.ret = fh_partition_set_dtprop(param.handle, |
| virt_to_phys(path), |
| virt_to_phys(propname), |
| virt_to_phys(propval), |
| param.proplen); |
| } else { |
| param.ret = fh_partition_get_dtprop(param.handle, |
| virt_to_phys(path), |
| virt_to_phys(propname), |
| virt_to_phys(propval), |
| ¶m.proplen); |
| |
| if (param.ret == 0) { |
| if (copy_to_user(upropval, propval, param.proplen) || |
| put_user(param.proplen, &p->proplen)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| } |
| } |
| |
| if (put_user(param.ret, &p->ret)) |
| ret = -EFAULT; |
| |
| out: |
| kfree(path); |
| kfree(propval); |
| kfree(propname); |
| |
| return ret; |
| } |
| |
| /* |
| * Ioctl main entry point |
| */ |
| static long fsl_hv_ioctl(struct file *file, unsigned int cmd, |
| unsigned long argaddr) |
| { |
| void __user *arg = (void __user *)argaddr; |
| long ret; |
| |
| switch (cmd) { |
| case FSL_HV_IOCTL_PARTITION_RESTART: |
| ret = ioctl_restart(arg); |
| break; |
| case FSL_HV_IOCTL_PARTITION_GET_STATUS: |
| ret = ioctl_status(arg); |
| break; |
| case FSL_HV_IOCTL_PARTITION_START: |
| ret = ioctl_start(arg); |
| break; |
| case FSL_HV_IOCTL_PARTITION_STOP: |
| ret = ioctl_stop(arg); |
| break; |
| case FSL_HV_IOCTL_MEMCPY: |
| ret = ioctl_memcpy(arg); |
| break; |
| case FSL_HV_IOCTL_DOORBELL: |
| ret = ioctl_doorbell(arg); |
| break; |
| case FSL_HV_IOCTL_GETPROP: |
| ret = ioctl_dtprop(arg, 0); |
| break; |
| case FSL_HV_IOCTL_SETPROP: |
| ret = ioctl_dtprop(arg, 1); |
| break; |
| default: |
| pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", |
| _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), |
| _IOC_SIZE(cmd)); |
| return -ENOTTY; |
| } |
| |
| return ret; |
| } |
| |
| /* Linked list of processes that have us open */ |
| static struct list_head db_list; |
| |
| /* spinlock for db_list */ |
| static DEFINE_SPINLOCK(db_list_lock); |
| |
| /* The size of the doorbell event queue. This must be a power of two. */ |
| #define QSIZE 16 |
| |
| /* Returns the next head/tail pointer, wrapping around the queue if necessary */ |
| #define nextp(x) (((x) + 1) & (QSIZE - 1)) |
| |
| /* Per-open data structure */ |
| struct doorbell_queue { |
| struct list_head list; |
| spinlock_t lock; |
| wait_queue_head_t wait; |
| unsigned int head; |
| unsigned int tail; |
| uint32_t q[QSIZE]; |
| }; |
| |
| /* Linked list of ISRs that we registered */ |
| struct list_head isr_list; |
| |
| /* Per-ISR data structure */ |
| struct doorbell_isr { |
| struct list_head list; |
| unsigned int irq; |
| uint32_t doorbell; /* The doorbell handle */ |
| uint32_t partition; /* The partition handle, if used */ |
| }; |
| |
| /* |
| * Add a doorbell to all of the doorbell queues |
| */ |
| static void fsl_hv_queue_doorbell(uint32_t doorbell) |
| { |
| struct doorbell_queue *dbq; |
| unsigned long flags; |
| |
| /* Prevent another core from modifying db_list */ |
| spin_lock_irqsave(&db_list_lock, flags); |
| |
| list_for_each_entry(dbq, &db_list, list) { |
| if (dbq->head != nextp(dbq->tail)) { |
| dbq->q[dbq->tail] = doorbell; |
| /* |
| * This memory barrier eliminates the need to grab |
| * the spinlock for dbq. |
| */ |
| smp_wmb(); |
| dbq->tail = nextp(dbq->tail); |
| wake_up_interruptible(&dbq->wait); |
| } |
| } |
| |
| spin_unlock_irqrestore(&db_list_lock, flags); |
| } |
| |
| /* |
| * Interrupt handler for all doorbells |
| * |
| * We use the same interrupt handler for all doorbells. Whenever a doorbell |
| * is rung, and we receive an interrupt, we just put the handle for that |
| * doorbell (passed to us as *data) into all of the queues. |
| */ |
| static irqreturn_t fsl_hv_isr(int irq, void *data) |
| { |
| fsl_hv_queue_doorbell((uintptr_t) data); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * State change thread function |
| * |
| * The state change notification arrives in an interrupt, but we can't call |
| * blocking_notifier_call_chain() in an interrupt handler. We could call |
| * atomic_notifier_call_chain(), but that would require the clients' call-back |
| * function to run in interrupt context. Since we don't want to impose that |
| * restriction on the clients, we use a threaded IRQ to process the |
| * notification in kernel context. |
| */ |
| static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) |
| { |
| struct doorbell_isr *dbisr = data; |
| |
| blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, |
| NULL); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Interrupt handler for state-change doorbells |
| */ |
| static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) |
| { |
| unsigned int status; |
| struct doorbell_isr *dbisr = data; |
| int ret; |
| |
| /* It's still a doorbell, so add it to all the queues. */ |
| fsl_hv_queue_doorbell(dbisr->doorbell); |
| |
| /* Determine the new state, and if it's stopped, notify the clients. */ |
| ret = fh_partition_get_status(dbisr->partition, &status); |
| if (!ret && (status == FH_PARTITION_STOPPED)) |
| return IRQ_WAKE_THREAD; |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Returns a bitmask indicating whether a read will block |
| */ |
| static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p) |
| { |
| struct doorbell_queue *dbq = filp->private_data; |
| unsigned long flags; |
| __poll_t mask; |
| |
| spin_lock_irqsave(&dbq->lock, flags); |
| |
| poll_wait(filp, &dbq->wait, p); |
| mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM); |
| |
| spin_unlock_irqrestore(&dbq->lock, flags); |
| |
| return mask; |
| } |
| |
| /* |
| * Return the handles for any incoming doorbells |
| * |
| * If there are doorbell handles in the queue for this open instance, then |
| * return them to the caller as an array of 32-bit integers. Otherwise, |
| * block until there is at least one handle to return. |
| */ |
| static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, |
| loff_t *off) |
| { |
| struct doorbell_queue *dbq = filp->private_data; |
| uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ |
| unsigned long flags; |
| ssize_t count = 0; |
| |
| /* Make sure we stop when the user buffer is full. */ |
| while (len >= sizeof(uint32_t)) { |
| uint32_t dbell; /* Local copy of doorbell queue data */ |
| |
| spin_lock_irqsave(&dbq->lock, flags); |
| |
| /* |
| * If the queue is empty, then either we're done or we need |
| * to block. If the application specified O_NONBLOCK, then |
| * we return the appropriate error code. |
| */ |
| if (dbq->head == dbq->tail) { |
| spin_unlock_irqrestore(&dbq->lock, flags); |
| if (count) |
| break; |
| if (filp->f_flags & O_NONBLOCK) |
| return -EAGAIN; |
| if (wait_event_interruptible(dbq->wait, |
| dbq->head != dbq->tail)) |
| return -ERESTARTSYS; |
| continue; |
| } |
| |
| /* |
| * Even though we have an smp_wmb() in the ISR, the core |
| * might speculatively execute the "dbell = ..." below while |
| * it's evaluating the if-statement above. In that case, the |
| * value put into dbell could be stale if the core accepts the |
| * speculation. To prevent that, we need a read memory barrier |
| * here as well. |
| */ |
| smp_rmb(); |
| |
| /* Copy the data to a temporary local buffer, because |
| * we can't call copy_to_user() from inside a spinlock |
| */ |
| dbell = dbq->q[dbq->head]; |
| dbq->head = nextp(dbq->head); |
| |
| spin_unlock_irqrestore(&dbq->lock, flags); |
| |
| if (put_user(dbell, p)) |
| return -EFAULT; |
| p++; |
| count += sizeof(uint32_t); |
| len -= sizeof(uint32_t); |
| } |
| |
| return count; |
| } |
| |
| /* |
| * Open the driver and prepare for reading doorbells. |
| * |
| * Every time an application opens the driver, we create a doorbell queue |
| * for that file handle. This queue is used for any incoming doorbells. |
| */ |
| static int fsl_hv_open(struct inode *inode, struct file *filp) |
| { |
| struct doorbell_queue *dbq; |
| unsigned long flags; |
| int ret = 0; |
| |
| dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); |
| if (!dbq) { |
| pr_err("fsl-hv: out of memory\n"); |
| return -ENOMEM; |
| } |
| |
| spin_lock_init(&dbq->lock); |
| init_waitqueue_head(&dbq->wait); |
| |
| spin_lock_irqsave(&db_list_lock, flags); |
| list_add(&dbq->list, &db_list); |
| spin_unlock_irqrestore(&db_list_lock, flags); |
| |
| filp->private_data = dbq; |
| |
| return ret; |
| } |
| |
| /* |
| * Close the driver |
| */ |
| static int fsl_hv_close(struct inode *inode, struct file *filp) |
| { |
| struct doorbell_queue *dbq = filp->private_data; |
| unsigned long flags; |
| |
| int ret = 0; |
| |
| spin_lock_irqsave(&db_list_lock, flags); |
| list_del(&dbq->list); |
| spin_unlock_irqrestore(&db_list_lock, flags); |
| |
| kfree(dbq); |
| |
| return ret; |
| } |
| |
| static const struct file_operations fsl_hv_fops = { |
| .owner = THIS_MODULE, |
| .open = fsl_hv_open, |
| .release = fsl_hv_close, |
| .poll = fsl_hv_poll, |
| .read = fsl_hv_read, |
| .unlocked_ioctl = fsl_hv_ioctl, |
| .compat_ioctl = fsl_hv_ioctl, |
| }; |
| |
| static struct miscdevice fsl_hv_misc_dev = { |
| MISC_DYNAMIC_MINOR, |
| "fsl-hv", |
| &fsl_hv_fops |
| }; |
| |
| static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) |
| { |
| orderly_poweroff(false); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Returns the handle of the parent of the given node |
| * |
| * The handle is the value of the 'hv-handle' property |
| */ |
| static int get_parent_handle(struct device_node *np) |
| { |
| struct device_node *parent; |
| const uint32_t *prop; |
| uint32_t handle; |
| int len; |
| |
| parent = of_get_parent(np); |
| if (!parent) |
| /* It's not really possible for this to fail */ |
| return -ENODEV; |
| |
| /* |
| * The proper name for the handle property is "hv-handle", but some |
| * older versions of the hypervisor used "reg". |
| */ |
| prop = of_get_property(parent, "hv-handle", &len); |
| if (!prop) |
| prop = of_get_property(parent, "reg", &len); |
| |
| if (!prop || (len != sizeof(uint32_t))) { |
| /* This can happen only if the node is malformed */ |
| of_node_put(parent); |
| return -ENODEV; |
| } |
| |
| handle = be32_to_cpup(prop); |
| of_node_put(parent); |
| |
| return handle; |
| } |
| |
| /* |
| * Register a callback for failover events |
| * |
| * This function is called by device drivers to register their callback |
| * functions for fail-over events. |
| */ |
| int fsl_hv_failover_register(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_register(&failover_subscribers, nb); |
| } |
| EXPORT_SYMBOL(fsl_hv_failover_register); |
| |
| /* |
| * Unregister a callback for failover events |
| */ |
| int fsl_hv_failover_unregister(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_unregister(&failover_subscribers, nb); |
| } |
| EXPORT_SYMBOL(fsl_hv_failover_unregister); |
| |
| /* |
| * Return TRUE if we're running under FSL hypervisor |
| * |
| * This function checks to see if we're running under the Freescale |
| * hypervisor, and returns zero if we're not, or non-zero if we are. |
| * |
| * First, it checks if MSR[GS]==1, which means we're running under some |
| * hypervisor. Then it checks if there is a hypervisor node in the device |
| * tree. Currently, that means there needs to be a node in the root called |
| * "hypervisor" and which has a property named "fsl,hv-version". |
| */ |
| static int has_fsl_hypervisor(void) |
| { |
| struct device_node *node; |
| int ret; |
| |
| node = of_find_node_by_path("/hypervisor"); |
| if (!node) |
| return 0; |
| |
| ret = of_find_property(node, "fsl,hv-version", NULL) != NULL; |
| |
| of_node_put(node); |
| |
| return ret; |
| } |
| |
| /* |
| * Freescale hypervisor management driver init |
| * |
| * This function is called when this module is loaded. |
| * |
| * Register ourselves as a miscellaneous driver. This will register the |
| * fops structure and create the right sysfs entries for udev. |
| */ |
| static int __init fsl_hypervisor_init(void) |
| { |
| struct device_node *np; |
| struct doorbell_isr *dbisr, *n; |
| int ret; |
| |
| pr_info("Freescale hypervisor management driver\n"); |
| |
| if (!has_fsl_hypervisor()) { |
| pr_info("fsl-hv: no hypervisor found\n"); |
| return -ENODEV; |
| } |
| |
| ret = misc_register(&fsl_hv_misc_dev); |
| if (ret) { |
| pr_err("fsl-hv: cannot register device\n"); |
| return ret; |
| } |
| |
| INIT_LIST_HEAD(&db_list); |
| INIT_LIST_HEAD(&isr_list); |
| |
| for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { |
| unsigned int irq; |
| const uint32_t *handle; |
| |
| handle = of_get_property(np, "interrupts", NULL); |
| irq = irq_of_parse_and_map(np, 0); |
| if (!handle || (irq == NO_IRQ)) { |
| pr_err("fsl-hv: no 'interrupts' property in %pOF node\n", |
| np); |
| continue; |
| } |
| |
| dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); |
| if (!dbisr) |
| goto out_of_memory; |
| |
| dbisr->irq = irq; |
| dbisr->doorbell = be32_to_cpup(handle); |
| |
| if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { |
| /* The shutdown doorbell gets its own ISR */ |
| ret = request_irq(irq, fsl_hv_shutdown_isr, 0, |
| np->name, NULL); |
| } else if (of_device_is_compatible(np, |
| "fsl,hv-state-change-doorbell")) { |
| /* |
| * The state change doorbell triggers a notification if |
| * the state of the managed partition changes to |
| * "stopped". We need a separate interrupt handler for |
| * that, and we also need to know the handle of the |
| * target partition, not just the handle of the |
| * doorbell. |
| */ |
| dbisr->partition = ret = get_parent_handle(np); |
| if (ret < 0) { |
| pr_err("fsl-hv: node %pOF has missing or " |
| "malformed parent\n", np); |
| kfree(dbisr); |
| continue; |
| } |
| ret = request_threaded_irq(irq, fsl_hv_state_change_isr, |
| fsl_hv_state_change_thread, |
| 0, np->name, dbisr); |
| } else |
| ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); |
| |
| if (ret < 0) { |
| pr_err("fsl-hv: could not request irq %u for node %pOF\n", |
| irq, np); |
| kfree(dbisr); |
| continue; |
| } |
| |
| list_add(&dbisr->list, &isr_list); |
| |
| pr_info("fsl-hv: registered handler for doorbell %u\n", |
| dbisr->doorbell); |
| } |
| |
| return 0; |
| |
| out_of_memory: |
| list_for_each_entry_safe(dbisr, n, &isr_list, list) { |
| free_irq(dbisr->irq, dbisr); |
| list_del(&dbisr->list); |
| kfree(dbisr); |
| } |
| |
| misc_deregister(&fsl_hv_misc_dev); |
| |
| return -ENOMEM; |
| } |
| |
| /* |
| * Freescale hypervisor management driver termination |
| * |
| * This function is called when this driver is unloaded. |
| */ |
| static void __exit fsl_hypervisor_exit(void) |
| { |
| struct doorbell_isr *dbisr, *n; |
| |
| list_for_each_entry_safe(dbisr, n, &isr_list, list) { |
| free_irq(dbisr->irq, dbisr); |
| list_del(&dbisr->list); |
| kfree(dbisr); |
| } |
| |
| misc_deregister(&fsl_hv_misc_dev); |
| } |
| |
| module_init(fsl_hypervisor_init); |
| module_exit(fsl_hypervisor_exit); |
| |
| MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); |
| MODULE_DESCRIPTION("Freescale hypervisor management driver"); |
| MODULE_LICENSE("GPL v2"); |