| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2005-2009, 2010 Cavium Networks |
| */ |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/msi.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/octeon/octeon.h> |
| #include <asm/octeon/cvmx-npi-defs.h> |
| #include <asm/octeon/cvmx-pci-defs.h> |
| #include <asm/octeon/cvmx-npei-defs.h> |
| #include <asm/octeon/cvmx-pexp-defs.h> |
| #include <asm/octeon/pci-octeon.h> |
| |
| /* |
| * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is |
| * in use. |
| */ |
| static u64 msi_free_irq_bitmask[4]; |
| |
| /* |
| * Each bit in msi_multiple_irq_bitmask tells that the device using |
| * this bit in msi_free_irq_bitmask is also using the next bit. This |
| * is used so we can disable all of the MSI interrupts when a device |
| * uses multiple. |
| */ |
| static u64 msi_multiple_irq_bitmask[4]; |
| |
| /* |
| * This lock controls updates to msi_free_irq_bitmask and |
| * msi_multiple_irq_bitmask. |
| */ |
| static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock); |
| |
| /* |
| * Number of MSI IRQs used. This variable is set up in |
| * the module init time. |
| */ |
| static int msi_irq_size; |
| |
| /** |
| * Called when a driver request MSI interrupts instead of the |
| * legacy INT A-D. This routine will allocate multiple interrupts |
| * for MSI devices that support them. A device can override this by |
| * programming the MSI control bits [6:4] before calling |
| * pci_enable_msi(). |
| * |
| * @dev: Device requesting MSI interrupts |
| * @desc: MSI descriptor |
| * |
| * Returns 0 on success. |
| */ |
| int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) |
| { |
| struct msi_msg msg; |
| u16 control; |
| int configured_private_bits; |
| int request_private_bits; |
| int irq = 0; |
| int irq_step; |
| u64 search_mask; |
| int index; |
| |
| /* |
| * Read the MSI config to figure out how many IRQs this device |
| * wants. Most devices only want 1, which will give |
| * configured_private_bits and request_private_bits equal 0. |
| */ |
| pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS, |
| &control); |
| |
| /* |
| * If the number of private bits has been configured then use |
| * that value instead of the requested number. This gives the |
| * driver the chance to override the number of interrupts |
| * before calling pci_enable_msi(). |
| */ |
| configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4; |
| if (configured_private_bits == 0) { |
| /* Nothing is configured, so use the hardware requested size */ |
| request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1; |
| } else { |
| /* |
| * Use the number of configured bits, assuming the |
| * driver wanted to override the hardware request |
| * value. |
| */ |
| request_private_bits = configured_private_bits; |
| } |
| |
| /* |
| * The PCI 2.3 spec mandates that there are at most 32 |
| * interrupts. If this device asks for more, only give it one. |
| */ |
| if (request_private_bits > 5) |
| request_private_bits = 0; |
| |
| try_only_one: |
| /* |
| * The IRQs have to be aligned on a power of two based on the |
| * number being requested. |
| */ |
| irq_step = 1 << request_private_bits; |
| |
| /* Mask with one bit for each IRQ */ |
| search_mask = (1 << irq_step) - 1; |
| |
| /* |
| * We're going to search msi_free_irq_bitmask_lock for zero |
| * bits. This represents an MSI interrupt number that isn't in |
| * use. |
| */ |
| spin_lock(&msi_free_irq_bitmask_lock); |
| for (index = 0; index < msi_irq_size/64; index++) { |
| for (irq = 0; irq < 64; irq += irq_step) { |
| if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) { |
| msi_free_irq_bitmask[index] |= search_mask << irq; |
| msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq; |
| goto msi_irq_allocated; |
| } |
| } |
| } |
| msi_irq_allocated: |
| spin_unlock(&msi_free_irq_bitmask_lock); |
| |
| /* Make sure the search for available interrupts didn't fail */ |
| if (irq >= 64) { |
| if (request_private_bits) { |
| pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one", |
| 1 << request_private_bits); |
| request_private_bits = 0; |
| goto try_only_one; |
| } else |
| panic("arch_setup_msi_irq: Unable to find a free MSI interrupt"); |
| } |
| |
| /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */ |
| irq += index*64; |
| irq += OCTEON_IRQ_MSI_BIT0; |
| |
| switch (octeon_dma_bar_type) { |
| case OCTEON_DMA_BAR_TYPE_SMALL: |
| /* When not using big bar, Bar 0 is based at 128MB */ |
| msg.address_lo = |
| ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff; |
| msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32; |
| case OCTEON_DMA_BAR_TYPE_BIG: |
| /* When using big bar, Bar 0 is based at 0 */ |
| msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff; |
| msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32; |
| break; |
| case OCTEON_DMA_BAR_TYPE_PCIE: |
| /* When using PCIe, Bar 0 is based at 0 */ |
| /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */ |
| msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff; |
| msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32; |
| break; |
| default: |
| panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type"); |
| } |
| msg.data = irq - OCTEON_IRQ_MSI_BIT0; |
| |
| /* Update the number of IRQs the device has available to it */ |
| control &= ~PCI_MSI_FLAGS_QSIZE; |
| control |= request_private_bits << 4; |
| pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS, |
| control); |
| |
| irq_set_msi_desc(irq, desc); |
| write_msi_msg(irq, &msg); |
| return 0; |
| } |
| |
| int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) |
| { |
| struct msi_desc *entry; |
| int ret; |
| |
| /* |
| * MSI-X is not supported. |
| */ |
| if (type == PCI_CAP_ID_MSIX) |
| return -EINVAL; |
| |
| /* |
| * If an architecture wants to support multiple MSI, it needs to |
| * override arch_setup_msi_irqs() |
| */ |
| if (type == PCI_CAP_ID_MSI && nvec > 1) |
| return 1; |
| |
| list_for_each_entry(entry, &dev->msi_list, list) { |
| ret = arch_setup_msi_irq(dev, entry); |
| if (ret < 0) |
| return ret; |
| if (ret > 0) |
| return -ENOSPC; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Called when a device no longer needs its MSI interrupts. All |
| * MSI interrupts for the device are freed. |
| * |
| * @irq: The devices first irq number. There may be multple in sequence. |
| */ |
| void arch_teardown_msi_irq(unsigned int irq) |
| { |
| int number_irqs; |
| u64 bitmask; |
| int index = 0; |
| int irq0; |
| |
| if ((irq < OCTEON_IRQ_MSI_BIT0) |
| || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0)) |
| panic("arch_teardown_msi_irq: Attempted to teardown illegal " |
| "MSI interrupt (%d)", irq); |
| |
| irq -= OCTEON_IRQ_MSI_BIT0; |
| index = irq / 64; |
| irq0 = irq % 64; |
| |
| /* |
| * Count the number of IRQs we need to free by looking at the |
| * msi_multiple_irq_bitmask. Each bit set means that the next |
| * IRQ is also owned by this device. |
| */ |
| number_irqs = 0; |
| while ((irq0 + number_irqs < 64) && |
| (msi_multiple_irq_bitmask[index] |
| & (1ull << (irq0 + number_irqs)))) |
| number_irqs++; |
| number_irqs++; |
| /* Mask with one bit for each IRQ */ |
| bitmask = (1 << number_irqs) - 1; |
| /* Shift the mask to the correct bit location */ |
| bitmask <<= irq0; |
| if ((msi_free_irq_bitmask[index] & bitmask) != bitmask) |
| panic("arch_teardown_msi_irq: Attempted to teardown MSI " |
| "interrupt (%d) not in use", irq); |
| |
| /* Checks are done, update the in use bitmask */ |
| spin_lock(&msi_free_irq_bitmask_lock); |
| msi_free_irq_bitmask[index] &= ~bitmask; |
| msi_multiple_irq_bitmask[index] &= ~bitmask; |
| spin_unlock(&msi_free_irq_bitmask_lock); |
| } |
| |
| static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock); |
| |
| static u64 msi_rcv_reg[4]; |
| static u64 mis_ena_reg[4]; |
| |
| static void octeon_irq_msi_enable_pcie(struct irq_data *data) |
| { |
| u64 en; |
| unsigned long flags; |
| int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; |
| int irq_index = msi_number >> 6; |
| int irq_bit = msi_number & 0x3f; |
| |
| raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); |
| en = cvmx_read_csr(mis_ena_reg[irq_index]); |
| en |= 1ull << irq_bit; |
| cvmx_write_csr(mis_ena_reg[irq_index], en); |
| cvmx_read_csr(mis_ena_reg[irq_index]); |
| raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); |
| } |
| |
| static void octeon_irq_msi_disable_pcie(struct irq_data *data) |
| { |
| u64 en; |
| unsigned long flags; |
| int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; |
| int irq_index = msi_number >> 6; |
| int irq_bit = msi_number & 0x3f; |
| |
| raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); |
| en = cvmx_read_csr(mis_ena_reg[irq_index]); |
| en &= ~(1ull << irq_bit); |
| cvmx_write_csr(mis_ena_reg[irq_index], en); |
| cvmx_read_csr(mis_ena_reg[irq_index]); |
| raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); |
| } |
| |
| static struct irq_chip octeon_irq_chip_msi_pcie = { |
| .name = "MSI", |
| .irq_enable = octeon_irq_msi_enable_pcie, |
| .irq_disable = octeon_irq_msi_disable_pcie, |
| }; |
| |
| static void octeon_irq_msi_enable_pci(struct irq_data *data) |
| { |
| /* |
| * Octeon PCI doesn't have the ability to mask/unmask MSI |
| * interrupts individually. Instead of masking/unmasking them |
| * in groups of 16, we simple assume MSI devices are well |
| * behaved. MSI interrupts are always enable and the ACK is |
| * assumed to be enough |
| */ |
| } |
| |
| static void octeon_irq_msi_disable_pci(struct irq_data *data) |
| { |
| /* See comment in enable */ |
| } |
| |
| static struct irq_chip octeon_irq_chip_msi_pci = { |
| .name = "MSI", |
| .irq_enable = octeon_irq_msi_enable_pci, |
| .irq_disable = octeon_irq_msi_disable_pci, |
| }; |
| |
| /* |
| * Called by the interrupt handling code when an MSI interrupt |
| * occurs. |
| */ |
| static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits) |
| { |
| int irq; |
| int bit; |
| |
| bit = fls64(msi_bits); |
| if (bit) { |
| bit--; |
| /* Acknowledge it first. */ |
| cvmx_write_csr(msi_rcv_reg[index], 1ull << bit); |
| |
| irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index; |
| do_IRQ(irq); |
| return IRQ_HANDLED; |
| } |
| return IRQ_NONE; |
| } |
| |
| #define OCTEON_MSI_INT_HANDLER_X(x) \ |
| static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \ |
| { \ |
| u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \ |
| return __octeon_msi_do_interrupt((x), msi_bits); \ |
| } |
| |
| /* |
| * Create octeon_msi_interrupt{0-3} function body |
| */ |
| OCTEON_MSI_INT_HANDLER_X(0); |
| OCTEON_MSI_INT_HANDLER_X(1); |
| OCTEON_MSI_INT_HANDLER_X(2); |
| OCTEON_MSI_INT_HANDLER_X(3); |
| |
| /* |
| * Initializes the MSI interrupt handling code |
| */ |
| int __init octeon_msi_initialize(void) |
| { |
| int irq; |
| struct irq_chip *msi; |
| |
| if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) { |
| msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0; |
| msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1; |
| msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2; |
| msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3; |
| mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0; |
| mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1; |
| mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2; |
| mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3; |
| msi = &octeon_irq_chip_msi_pcie; |
| } else { |
| msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV; |
| #define INVALID_GENERATE_ADE 0x8700000000000000ULL; |
| msi_rcv_reg[1] = INVALID_GENERATE_ADE; |
| msi_rcv_reg[2] = INVALID_GENERATE_ADE; |
| msi_rcv_reg[3] = INVALID_GENERATE_ADE; |
| mis_ena_reg[0] = INVALID_GENERATE_ADE; |
| mis_ena_reg[1] = INVALID_GENERATE_ADE; |
| mis_ena_reg[2] = INVALID_GENERATE_ADE; |
| mis_ena_reg[3] = INVALID_GENERATE_ADE; |
| msi = &octeon_irq_chip_msi_pci; |
| } |
| |
| for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++) |
| irq_set_chip_and_handler(irq, msi, handle_simple_irq); |
| |
| if (octeon_has_feature(OCTEON_FEATURE_PCIE)) { |
| if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, |
| 0, "MSI[0:63]", octeon_msi_interrupt0)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); |
| |
| if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1, |
| 0, "MSI[64:127]", octeon_msi_interrupt1)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); |
| |
| if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2, |
| 0, "MSI[127:191]", octeon_msi_interrupt2)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); |
| |
| if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3, |
| 0, "MSI[192:255]", octeon_msi_interrupt3)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); |
| |
| msi_irq_size = 256; |
| } else if (octeon_is_pci_host()) { |
| if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, |
| 0, "MSI[0:15]", octeon_msi_interrupt0)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); |
| |
| if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0, |
| 0, "MSI[16:31]", octeon_msi_interrupt0)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); |
| |
| if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0, |
| 0, "MSI[32:47]", octeon_msi_interrupt0)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); |
| |
| if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0, |
| 0, "MSI[48:63]", octeon_msi_interrupt0)) |
| panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); |
| msi_irq_size = 64; |
| } |
| return 0; |
| } |
| subsys_initcall(octeon_msi_initialize); |