blob: 714b4ba7ab86e637dbc695879e372ea32be06c68 [file] [log] [blame]
/*
* Common boot and setup code for both 32-bit and 64-bit.
* Extracted from arch/powerpc/kernel/setup_64.c.
*
* Copyright (C) 2001 PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/export.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/screen_info.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <linux/debugfs.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/of_platform.h>
#include <linux/hugetlb.h>
#include <asm/io.h>
#include <asm/paca.h>
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/vdso_datapage.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/firmware.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/xmon.h>
#include <asm/cputhreads.h>
#include <mm/mmu_decl.h>
#include <asm/fadump.h>
#include <asm/udbg.h>
#include <asm/hugetlb.h>
#include <asm/livepatch.h>
#include <asm/mmu_context.h>
#include "setup.h"
#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/* The main machine-dep calls structure
*/
struct machdep_calls ppc_md;
EXPORT_SYMBOL(ppc_md);
struct machdep_calls *machine_id;
EXPORT_SYMBOL(machine_id);
int boot_cpuid = -1;
EXPORT_SYMBOL_GPL(boot_cpuid);
unsigned long klimit = (unsigned long) _end;
/*
* This still seems to be needed... -- paulus
*/
struct screen_info screen_info = {
.orig_x = 0,
.orig_y = 25,
.orig_video_cols = 80,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
#if defined(CONFIG_FB_VGA16_MODULE)
EXPORT_SYMBOL(screen_info);
#endif
/* Variables required to store legacy IO irq routing */
int of_i8042_kbd_irq;
EXPORT_SYMBOL_GPL(of_i8042_kbd_irq);
int of_i8042_aux_irq;
EXPORT_SYMBOL_GPL(of_i8042_aux_irq);
#ifdef __DO_IRQ_CANON
/* XXX should go elsewhere eventually */
int ppc_do_canonicalize_irqs;
EXPORT_SYMBOL(ppc_do_canonicalize_irqs);
#endif
/* also used by kexec */
void machine_shutdown(void)
{
#ifdef CONFIG_FA_DUMP
/*
* if fadump is active, cleanup the fadump registration before we
* shutdown.
*/
fadump_cleanup();
#endif
if (ppc_md.machine_shutdown)
ppc_md.machine_shutdown();
}
void machine_restart(char *cmd)
{
machine_shutdown();
if (ppc_md.restart)
ppc_md.restart(cmd);
smp_send_stop();
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
void machine_power_off(void)
{
machine_shutdown();
if (pm_power_off)
pm_power_off();
smp_send_stop();
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
/* Used by the G5 thermal driver */
EXPORT_SYMBOL_GPL(machine_power_off);
void (*pm_power_off)(void);
EXPORT_SYMBOL_GPL(pm_power_off);
void machine_halt(void)
{
machine_shutdown();
if (ppc_md.halt)
ppc_md.halt();
smp_send_stop();
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
#ifdef CONFIG_TAU
extern u32 cpu_temp(unsigned long cpu);
extern u32 cpu_temp_both(unsigned long cpu);
#endif /* CONFIG_TAU */
#ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned int, cpu_pvr);
#endif
static void show_cpuinfo_summary(struct seq_file *m)
{
struct device_node *root;
const char *model = NULL;
#if defined(CONFIG_SMP) && defined(CONFIG_PPC32)
unsigned long bogosum = 0;
int i;
for_each_online_cpu(i)
bogosum += loops_per_jiffy;
seq_printf(m, "total bogomips\t: %lu.%02lu\n",
bogosum/(500000/HZ), bogosum/(5000/HZ) % 100);
#endif /* CONFIG_SMP && CONFIG_PPC32 */
seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
if (ppc_md.name)
seq_printf(m, "platform\t: %s\n", ppc_md.name);
root = of_find_node_by_path("/");
if (root)
model = of_get_property(root, "model", NULL);
if (model)
seq_printf(m, "model\t\t: %s\n", model);
of_node_put(root);
if (ppc_md.show_cpuinfo != NULL)
ppc_md.show_cpuinfo(m);
#ifdef CONFIG_PPC32
/* Display the amount of memory */
seq_printf(m, "Memory\t\t: %d MB\n",
(unsigned int)(total_memory / (1024 * 1024)));
#endif
}
static int show_cpuinfo(struct seq_file *m, void *v)
{
unsigned long cpu_id = (unsigned long)v - 1;
unsigned int pvr;
unsigned long proc_freq;
unsigned short maj;
unsigned short min;
/* We only show online cpus: disable preempt (overzealous, I
* knew) to prevent cpu going down. */
preempt_disable();
if (!cpu_online(cpu_id)) {
preempt_enable();
return 0;
}
#ifdef CONFIG_SMP
pvr = per_cpu(cpu_pvr, cpu_id);
#else
pvr = mfspr(SPRN_PVR);
#endif
maj = (pvr >> 8) & 0xFF;
min = pvr & 0xFF;
seq_printf(m, "processor\t: %lu\n", cpu_id);
seq_printf(m, "cpu\t\t: ");
if (cur_cpu_spec->pvr_mask)
seq_printf(m, "%s", cur_cpu_spec->cpu_name);
else
seq_printf(m, "unknown (%08x)", pvr);
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
seq_printf(m, ", altivec supported");
#endif /* CONFIG_ALTIVEC */
seq_printf(m, "\n");
#ifdef CONFIG_TAU
if (cur_cpu_spec->cpu_features & CPU_FTR_TAU) {
#ifdef CONFIG_TAU_AVERAGE
/* more straightforward, but potentially misleading */
seq_printf(m, "temperature \t: %u C (uncalibrated)\n",
cpu_temp(cpu_id));
#else
/* show the actual temp sensor range */
u32 temp;
temp = cpu_temp_both(cpu_id);
seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n",
temp & 0xff, temp >> 16);
#endif
}
#endif /* CONFIG_TAU */
/*
* Platforms that have variable clock rates, should implement
* the method ppc_md.get_proc_freq() that reports the clock
* rate of a given cpu. The rest can use ppc_proc_freq to
* report the clock rate that is same across all cpus.
*/
if (ppc_md.get_proc_freq)
proc_freq = ppc_md.get_proc_freq(cpu_id);
else
proc_freq = ppc_proc_freq;
if (proc_freq)
seq_printf(m, "clock\t\t: %lu.%06luMHz\n",
proc_freq / 1000000, proc_freq % 1000000);
if (ppc_md.show_percpuinfo != NULL)
ppc_md.show_percpuinfo(m, cpu_id);
/* If we are a Freescale core do a simple check so
* we dont have to keep adding cases in the future */
if (PVR_VER(pvr) & 0x8000) {
switch (PVR_VER(pvr)) {
case 0x8000: /* 7441/7450/7451, Voyager */
case 0x8001: /* 7445/7455, Apollo 6 */
case 0x8002: /* 7447/7457, Apollo 7 */
case 0x8003: /* 7447A, Apollo 7 PM */
case 0x8004: /* 7448, Apollo 8 */
case 0x800c: /* 7410, Nitro */
maj = ((pvr >> 8) & 0xF);
min = PVR_MIN(pvr);
break;
default: /* e500/book-e */
maj = PVR_MAJ(pvr);
min = PVR_MIN(pvr);
break;
}
} else {
switch (PVR_VER(pvr)) {
case 0x0020: /* 403 family */
maj = PVR_MAJ(pvr) + 1;
min = PVR_MIN(pvr);
break;
case 0x1008: /* 740P/750P ?? */
maj = ((pvr >> 8) & 0xFF) - 1;
min = pvr & 0xFF;
break;
default:
maj = (pvr >> 8) & 0xFF;
min = pvr & 0xFF;
break;
}
}
seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n",
maj, min, PVR_VER(pvr), PVR_REV(pvr));
#ifdef CONFIG_PPC32
seq_printf(m, "bogomips\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#endif
#ifdef CONFIG_SMP
seq_printf(m, "\n");
#endif
preempt_enable();
/* If this is the last cpu, print the summary */
if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids)
show_cpuinfo_summary(m);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
if (*pos == 0) /* just in case, cpu 0 is not the first */
*pos = cpumask_first(cpu_online_mask);
else
*pos = cpumask_next(*pos - 1, cpu_online_mask);
if ((*pos) < nr_cpu_ids)
return (void *)(unsigned long)(*pos + 1);
return NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
(*pos)++;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start =c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
void __init check_for_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
DBG(" -> check_for_initrd() initrd_start=0x%lx initrd_end=0x%lx\n",
initrd_start, initrd_end);
/* If we were passed an initrd, set the ROOT_DEV properly if the values
* look sensible. If not, clear initrd reference.
*/
if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) &&
initrd_end > initrd_start)
ROOT_DEV = Root_RAM0;
else
initrd_start = initrd_end = 0;
if (initrd_start)
pr_info("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
DBG(" <- check_for_initrd()\n");
#endif /* CONFIG_BLK_DEV_INITRD */
}
#ifdef CONFIG_SMP
int threads_per_core, threads_per_subcore, threads_shift;
cpumask_t threads_core_mask;
EXPORT_SYMBOL_GPL(threads_per_core);
EXPORT_SYMBOL_GPL(threads_per_subcore);
EXPORT_SYMBOL_GPL(threads_shift);
EXPORT_SYMBOL_GPL(threads_core_mask);
static void __init cpu_init_thread_core_maps(int tpc)
{
int i;
threads_per_core = tpc;
threads_per_subcore = tpc;
cpumask_clear(&threads_core_mask);
/* This implementation only supports power of 2 number of threads
* for simplicity and performance
*/
threads_shift = ilog2(tpc);
BUG_ON(tpc != (1 << threads_shift));
for (i = 0; i < tpc; i++)
cpumask_set_cpu(i, &threads_core_mask);
printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n",
tpc, tpc > 1 ? "s" : "");
printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift);
}
/**
* setup_cpu_maps - initialize the following cpu maps:
* cpu_possible_mask
* cpu_present_mask
*
* Having the possible map set up early allows us to restrict allocations
* of things like irqstacks to nr_cpu_ids rather than NR_CPUS.
*
* We do not initialize the online map here; cpus set their own bits in
* cpu_online_mask as they come up.
*
* This function is valid only for Open Firmware systems. finish_device_tree
* must be called before using this.
*
* While we're here, we may as well set the "physical" cpu ids in the paca.
*
* NOTE: This must match the parsing done in early_init_dt_scan_cpus.
*/
void __init smp_setup_cpu_maps(void)
{
struct device_node *dn = NULL;
int cpu = 0;
int nthreads = 1;
DBG("smp_setup_cpu_maps()\n");
while ((dn = of_find_node_by_type(dn, "cpu")) && cpu < nr_cpu_ids) {
const __be32 *intserv;
__be32 cpu_be;
int j, len;
DBG(" * %s...\n", dn->full_name);
intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s",
&len);
if (intserv) {
DBG(" ibm,ppc-interrupt-server#s -> %d threads\n",
nthreads);
} else {
DBG(" no ibm,ppc-interrupt-server#s -> 1 thread\n");
intserv = of_get_property(dn, "reg", &len);
if (!intserv) {
cpu_be = cpu_to_be32(cpu);
intserv = &cpu_be; /* assume logical == phys */
len = 4;
}
}
nthreads = len / sizeof(int);
for (j = 0; j < nthreads && cpu < nr_cpu_ids; j++) {
bool avail;
DBG(" thread %d -> cpu %d (hard id %d)\n",
j, cpu, be32_to_cpu(intserv[j]));
avail = of_device_is_available(dn);
if (!avail)
avail = !of_property_match_string(dn,
"enable-method", "spin-table");
set_cpu_present(cpu, avail);
set_hard_smp_processor_id(cpu, be32_to_cpu(intserv[j]));
set_cpu_possible(cpu, true);
cpu++;
}
}
/* If no SMT supported, nthreads is forced to 1 */
if (!cpu_has_feature(CPU_FTR_SMT)) {
DBG(" SMT disabled ! nthreads forced to 1\n");
nthreads = 1;
}
#ifdef CONFIG_PPC64
/*
* On pSeries LPAR, we need to know how many cpus
* could possibly be added to this partition.
*/
if (firmware_has_feature(FW_FEATURE_LPAR) &&
(dn = of_find_node_by_path("/rtas"))) {
int num_addr_cell, num_size_cell, maxcpus;
const __be32 *ireg;
num_addr_cell = of_n_addr_cells(dn);
num_size_cell = of_n_size_cells(dn);
ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL);
if (!ireg)
goto out;
maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell);
/* Double maxcpus for processors which have SMT capability */
if (cpu_has_feature(CPU_FTR_SMT))
maxcpus *= nthreads;
if (maxcpus > nr_cpu_ids) {
printk(KERN_WARNING
"Partition configured for %d cpus, "
"operating system maximum is %d.\n",
maxcpus, nr_cpu_ids);
maxcpus = nr_cpu_ids;
} else
printk(KERN_INFO "Partition configured for %d cpus.\n",
maxcpus);
for (cpu = 0; cpu < maxcpus; cpu++)
set_cpu_possible(cpu, true);
out:
of_node_put(dn);
}
vdso_data->processorCount = num_present_cpus();
#endif /* CONFIG_PPC64 */
/* Initialize CPU <=> thread mapping/
*
* WARNING: We assume that the number of threads is the same for
* every CPU in the system. If that is not the case, then some code
* here will have to be reworked
*/
cpu_init_thread_core_maps(nthreads);
/* Now that possible cpus are set, set nr_cpu_ids for later use */
setup_nr_cpu_ids();
free_unused_pacas();
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_PCSPKR_PLATFORM
static __init int add_pcspkr(void)
{
struct device_node *np;
struct platform_device *pd;
int ret;
np = of_find_compatible_node(NULL, NULL, "pnpPNP,100");
of_node_put(np);
if (!np)
return -ENODEV;
pd = platform_device_alloc("pcspkr", -1);
if (!pd)
return -ENOMEM;
ret = platform_device_add(pd);
if (ret)
platform_device_put(pd);
return ret;
}
device_initcall(add_pcspkr);
#endif /* CONFIG_PCSPKR_PLATFORM */
void probe_machine(void)
{
extern struct machdep_calls __machine_desc_start;
extern struct machdep_calls __machine_desc_end;
unsigned int i;
/*
* Iterate all ppc_md structures until we find the proper
* one for the current machine type
*/
DBG("Probing machine type ...\n");
/*
* Check ppc_md is empty, if not we have a bug, ie, we setup an
* entry before probe_machine() which will be overwritten
*/
for (i = 0; i < (sizeof(ppc_md) / sizeof(void *)); i++) {
if (((void **)&ppc_md)[i]) {
printk(KERN_ERR "Entry %d in ppc_md non empty before"
" machine probe !\n", i);
}
}
for (machine_id = &__machine_desc_start;
machine_id < &__machine_desc_end;
machine_id++) {
DBG(" %s ...", machine_id->name);
memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls));
if (ppc_md.probe()) {
DBG(" match !\n");
break;
}
DBG("\n");
}
/* What can we do if we didn't find ? */
if (machine_id >= &__machine_desc_end) {
DBG("No suitable machine found !\n");
for (;;);
}
printk(KERN_INFO "Using %s machine description\n", ppc_md.name);
}
/* Match a class of boards, not a specific device configuration. */
int check_legacy_ioport(unsigned long base_port)
{
struct device_node *parent, *np = NULL;
int ret = -ENODEV;
switch(base_port) {
case I8042_DATA_REG:
if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303")))
np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03");
if (np) {
parent = of_get_parent(np);
of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0);
if (!of_i8042_kbd_irq)
of_i8042_kbd_irq = 1;
of_i8042_aux_irq = irq_of_parse_and_map(parent, 1);
if (!of_i8042_aux_irq)
of_i8042_aux_irq = 12;
of_node_put(np);
np = parent;
break;
}
np = of_find_node_by_type(NULL, "8042");
/* Pegasos has no device_type on its 8042 node, look for the
* name instead */
if (!np)
np = of_find_node_by_name(NULL, "8042");
if (np) {
of_i8042_kbd_irq = 1;
of_i8042_aux_irq = 12;
}
break;
case FDC_BASE: /* FDC1 */
np = of_find_node_by_type(NULL, "fdc");
break;
default:
/* ipmi is supposed to fail here */
break;
}
if (!np)
return ret;
parent = of_get_parent(np);
if (parent) {
if (strcmp(parent->type, "isa") == 0)
ret = 0;
of_node_put(parent);
}
of_node_put(np);
return ret;
}
EXPORT_SYMBOL(check_legacy_ioport);
static int ppc_panic_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
/*
* If firmware-assisted dump has been registered then trigger
* firmware-assisted dump and let firmware handle everything else.
*/
crash_fadump(NULL, ptr);
ppc_md.panic(ptr); /* May not return */
return NOTIFY_DONE;
}
static struct notifier_block ppc_panic_block = {
.notifier_call = ppc_panic_event,
.priority = INT_MIN /* may not return; must be done last */
};
void __init setup_panic(void)
{
if (!ppc_md.panic)
return;
atomic_notifier_chain_register(&panic_notifier_list, &ppc_panic_block);
}
#ifdef CONFIG_CHECK_CACHE_COHERENCY
/*
* For platforms that have configurable cache-coherency. This function
* checks that the cache coherency setting of the kernel matches the setting
* left by the firmware, as indicated in the device tree. Since a mismatch
* will eventually result in DMA failures, we print * and error and call
* BUG() in that case.
*/
#ifdef CONFIG_NOT_COHERENT_CACHE
#define KERNEL_COHERENCY 0
#else
#define KERNEL_COHERENCY 1
#endif
static int __init check_cache_coherency(void)
{
struct device_node *np;
const void *prop;
int devtree_coherency;
np = of_find_node_by_path("/");
prop = of_get_property(np, "coherency-off", NULL);
of_node_put(np);
devtree_coherency = prop ? 0 : 1;
if (devtree_coherency != KERNEL_COHERENCY) {
printk(KERN_ERR
"kernel coherency:%s != device tree_coherency:%s\n",
KERNEL_COHERENCY ? "on" : "off",
devtree_coherency ? "on" : "off");
BUG();
}
return 0;
}
late_initcall(check_cache_coherency);
#endif /* CONFIG_CHECK_CACHE_COHERENCY */
#ifdef CONFIG_DEBUG_FS
struct dentry *powerpc_debugfs_root;
EXPORT_SYMBOL(powerpc_debugfs_root);
static int powerpc_debugfs_init(void)
{
powerpc_debugfs_root = debugfs_create_dir("powerpc", NULL);
return powerpc_debugfs_root == NULL;
}
arch_initcall(powerpc_debugfs_init);
#endif
void ppc_printk_progress(char *s, unsigned short hex)
{
pr_info("%s\n", s);
}
void arch_setup_pdev_archdata(struct platform_device *pdev)
{
pdev->archdata.dma_mask = DMA_BIT_MASK(32);
pdev->dev.dma_mask = &pdev->archdata.dma_mask;
set_dma_ops(&pdev->dev, &dma_direct_ops);
}
static __init void print_system_info(void)
{
pr_info("-----------------------------------------------------\n");
#ifdef CONFIG_PPC_STD_MMU_64
pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
#endif
#ifdef CONFIG_PPC_STD_MMU_32
pr_info("Hash_size = 0x%lx\n", Hash_size);
#endif
pr_info("phys_mem_size = 0x%llx\n",
(unsigned long long)memblock_phys_mem_size());
pr_info("dcache_bsize = 0x%x\n", dcache_bsize);
pr_info("icache_bsize = 0x%x\n", icache_bsize);
if (ucache_bsize != 0)
pr_info("ucache_bsize = 0x%x\n", ucache_bsize);
pr_info("cpu_features = 0x%016lx\n", cur_cpu_spec->cpu_features);
pr_info(" possible = 0x%016lx\n",
(unsigned long)CPU_FTRS_POSSIBLE);
pr_info(" always = 0x%016lx\n",
(unsigned long)CPU_FTRS_ALWAYS);
pr_info("cpu_user_features = 0x%08x 0x%08x\n",
cur_cpu_spec->cpu_user_features,
cur_cpu_spec->cpu_user_features2);
pr_info("mmu_features = 0x%08x\n", cur_cpu_spec->mmu_features);
#ifdef CONFIG_PPC64
pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
#endif
#ifdef CONFIG_PPC_STD_MMU_64
if (htab_address)
pr_info("htab_address = 0x%p\n", htab_address);
if (htab_hash_mask)
pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask);
#endif
#ifdef CONFIG_PPC_STD_MMU_32
if (Hash)
pr_info("Hash = 0x%p\n", Hash);
if (Hash_mask)
pr_info("Hash_mask = 0x%lx\n", Hash_mask);
#endif
if (PHYSICAL_START > 0)
pr_info("physical_start = 0x%llx\n",
(unsigned long long)PHYSICAL_START);
pr_info("-----------------------------------------------------\n");
}
/*
* Called into from start_kernel this initializes memblock, which is used
* to manage page allocation until mem_init is called.
*/
void __init setup_arch(char **cmdline_p)
{
*cmdline_p = boot_command_line;
/* Set a half-reasonable default so udelay does something sensible */
loops_per_jiffy = 500000000 / HZ;
/* Unflatten the device-tree passed by prom_init or kexec */
unflatten_device_tree();
/*
* Initialize cache line/block info from device-tree (on ppc64) or
* just cputable (on ppc32).
*/
initialize_cache_info();
/* Initialize RTAS if available. */
rtas_initialize();
/* Check if we have an initrd provided via the device-tree. */
check_for_initrd();
/* Probe the machine type, establish ppc_md. */
probe_machine();
/* Setup panic notifier if requested by the platform. */
setup_panic();
/*
* Configure ppc_md.power_save (ppc32 only, 64-bit machines do
* it from their respective probe() function.
*/
setup_power_save();
/* Discover standard serial ports. */
find_legacy_serial_ports();
/* Register early console with the printk subsystem. */
register_early_udbg_console();
/* Setup the various CPU maps based on the device-tree. */
smp_setup_cpu_maps();
/* Initialize xmon. */
xmon_setup();
/* Check the SMT related command line arguments (ppc64). */
check_smt_enabled();
/* On BookE, setup per-core TLB data structures. */
setup_tlb_core_data();
/*
* Release secondary cpus out of their spinloops at 0x60 now that
* we can map physical -> logical CPU ids.
*
* Freescale Book3e parts spin in a loop provided by firmware,
* so smp_release_cpus() does nothing for them.
*/
#ifdef CONFIG_SMP
smp_release_cpus();
#endif
/* Print various info about the machine that has been gathered so far. */
print_system_info();
/* Reserve large chunks of memory for use by CMA for KVM. */
kvm_cma_reserve();
/*
* Reserve any gigantic pages requested on the command line.
* memblock needs to have been initialized by the time this is
* called since this will reserve memory.
*/
reserve_hugetlb_gpages();
klp_init_thread_info(&init_thread_info);
init_mm.start_code = (unsigned long)_stext;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = klimit;
#ifdef CONFIG_PPC_64K_PAGES
init_mm.context.pte_frag = NULL;
#endif
#ifdef CONFIG_SPAPR_TCE_IOMMU
mm_iommu_init(&init_mm.context);
#endif
irqstack_early_init();
exc_lvl_early_init();
emergency_stack_init();
initmem_init();
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
if (ppc_md.setup_arch)
ppc_md.setup_arch();
paging_init();
/* Initialize the MMU context management stuff. */
mmu_context_init();
#ifdef CONFIG_PPC64
/* Interrupt code needs to be 64K-aligned. */
if ((unsigned long)_stext & 0xffff)
panic("Kernelbase not 64K-aligned (0x%lx)!\n",
(unsigned long)_stext);
#endif
}