| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * VAS user space API for its accelerators (Only NX-GZIP is supported now) |
| * Copyright (C) 2019 Haren Myneni, IBM Corp |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/device.h> |
| #include <linux/cdev.h> |
| #include <linux/fs.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| #include <linux/kthread.h> |
| #include <linux/sched/signal.h> |
| #include <linux/mmu_context.h> |
| #include <linux/io.h> |
| #include <asm/vas.h> |
| #include <uapi/asm/vas-api.h> |
| |
| /* |
| * The driver creates the device node that can be used as follows: |
| * For NX-GZIP |
| * |
| * fd = open("/dev/crypto/nx-gzip", O_RDWR); |
| * rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr); |
| * paste_addr = mmap(NULL, PAGE_SIZE, prot, MAP_SHARED, fd, 0ULL). |
| * vas_copy(&crb, 0, 1); |
| * vas_paste(paste_addr, 0, 1); |
| * close(fd) or exit process to close window. |
| * |
| * where "vas_copy" and "vas_paste" are defined in copy-paste.h. |
| * copy/paste returns to the user space directly. So refer NX hardware |
| * documententation for exact copy/paste usage and completion / error |
| * conditions. |
| */ |
| |
| /* |
| * Wrapper object for the nx-gzip device - there is just one instance of |
| * this node for the whole system. |
| */ |
| static struct coproc_dev { |
| struct cdev cdev; |
| struct device *device; |
| char *name; |
| dev_t devt; |
| struct class *class; |
| enum vas_cop_type cop_type; |
| const struct vas_user_win_ops *vops; |
| } coproc_device; |
| |
| struct coproc_instance { |
| struct coproc_dev *coproc; |
| struct vas_window *txwin; |
| }; |
| |
| static char *coproc_devnode(struct device *dev, umode_t *mode) |
| { |
| return kasprintf(GFP_KERNEL, "crypto/%s", dev_name(dev)); |
| } |
| |
| /* |
| * Take reference to pid and mm |
| */ |
| int get_vas_user_win_ref(struct vas_user_win_ref *task_ref) |
| { |
| /* |
| * Window opened by a child thread may not be closed when |
| * it exits. So take reference to its pid and release it |
| * when the window is free by parent thread. |
| * Acquire a reference to the task's pid to make sure |
| * pid will not be re-used - needed only for multithread |
| * applications. |
| */ |
| task_ref->pid = get_task_pid(current, PIDTYPE_PID); |
| /* |
| * Acquire a reference to the task's mm. |
| */ |
| task_ref->mm = get_task_mm(current); |
| if (!task_ref->mm) { |
| put_pid(task_ref->pid); |
| pr_err("VAS: pid(%d): mm_struct is not found\n", |
| current->pid); |
| return -EPERM; |
| } |
| |
| mmgrab(task_ref->mm); |
| mmput(task_ref->mm); |
| /* |
| * Process closes window during exit. In the case of |
| * multithread application, the child thread can open |
| * window and can exit without closing it. So takes tgid |
| * reference until window closed to make sure tgid is not |
| * reused. |
| */ |
| task_ref->tgid = find_get_pid(task_tgid_vnr(current)); |
| |
| return 0; |
| } |
| |
| /* |
| * Successful return must release the task reference with |
| * put_task_struct |
| */ |
| static bool ref_get_pid_and_task(struct vas_user_win_ref *task_ref, |
| struct task_struct **tskp, struct pid **pidp) |
| { |
| struct task_struct *tsk; |
| struct pid *pid; |
| |
| pid = task_ref->pid; |
| tsk = get_pid_task(pid, PIDTYPE_PID); |
| if (!tsk) { |
| pid = task_ref->tgid; |
| tsk = get_pid_task(pid, PIDTYPE_PID); |
| /* |
| * Parent thread (tgid) will be closing window when it |
| * exits. So should not get here. |
| */ |
| if (WARN_ON_ONCE(!tsk)) |
| return false; |
| } |
| |
| /* Return if the task is exiting. */ |
| if (tsk->flags & PF_EXITING) { |
| put_task_struct(tsk); |
| return false; |
| } |
| |
| *tskp = tsk; |
| *pidp = pid; |
| |
| return true; |
| } |
| |
| /* |
| * Update the CSB to indicate a translation error. |
| * |
| * User space will be polling on CSB after the request is issued. |
| * If NX can handle the request without any issues, it updates CSB. |
| * Whereas if NX encounters page fault, the kernel will handle the |
| * fault and update CSB with translation error. |
| * |
| * If we are unable to update the CSB means copy_to_user failed due to |
| * invalid csb_addr, send a signal to the process. |
| */ |
| void vas_update_csb(struct coprocessor_request_block *crb, |
| struct vas_user_win_ref *task_ref) |
| { |
| struct coprocessor_status_block csb; |
| struct kernel_siginfo info; |
| struct task_struct *tsk; |
| void __user *csb_addr; |
| struct pid *pid; |
| int rc; |
| |
| /* |
| * NX user space windows can not be opened for task->mm=NULL |
| * and faults will not be generated for kernel requests. |
| */ |
| if (WARN_ON_ONCE(!task_ref->mm)) |
| return; |
| |
| csb_addr = (void __user *)be64_to_cpu(crb->csb_addr); |
| |
| memset(&csb, 0, sizeof(csb)); |
| csb.cc = CSB_CC_FAULT_ADDRESS; |
| csb.ce = CSB_CE_TERMINATION; |
| csb.cs = 0; |
| csb.count = 0; |
| |
| /* |
| * NX operates and returns in BE format as defined CRB struct. |
| * So saves fault_storage_addr in BE as NX pastes in FIFO and |
| * expects user space to convert to CPU format. |
| */ |
| csb.address = crb->stamp.nx.fault_storage_addr; |
| csb.flags = 0; |
| |
| /* |
| * Process closes send window after all pending NX requests are |
| * completed. In multi-thread applications, a child thread can |
| * open a window and can exit without closing it. May be some |
| * requests are pending or this window can be used by other |
| * threads later. We should handle faults if NX encounters |
| * pages faults on these requests. Update CSB with translation |
| * error and fault address. If csb_addr passed by user space is |
| * invalid, send SEGV signal to pid saved in window. If the |
| * child thread is not running, send the signal to tgid. |
| * Parent thread (tgid) will close this window upon its exit. |
| * |
| * pid and mm references are taken when window is opened by |
| * process (pid). So tgid is used only when child thread opens |
| * a window and exits without closing it. |
| */ |
| |
| if (!ref_get_pid_and_task(task_ref, &tsk, &pid)) |
| return; |
| |
| kthread_use_mm(task_ref->mm); |
| rc = copy_to_user(csb_addr, &csb, sizeof(csb)); |
| /* |
| * User space polls on csb.flags (first byte). So add barrier |
| * then copy first byte with csb flags update. |
| */ |
| if (!rc) { |
| csb.flags = CSB_V; |
| /* Make sure update to csb.flags is visible now */ |
| smp_mb(); |
| rc = copy_to_user(csb_addr, &csb, sizeof(u8)); |
| } |
| kthread_unuse_mm(task_ref->mm); |
| put_task_struct(tsk); |
| |
| /* Success */ |
| if (!rc) |
| return; |
| |
| |
| pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n", |
| csb_addr, pid_vnr(pid)); |
| |
| clear_siginfo(&info); |
| info.si_signo = SIGSEGV; |
| info.si_errno = EFAULT; |
| info.si_code = SEGV_MAPERR; |
| info.si_addr = csb_addr; |
| /* |
| * process will be polling on csb.flags after request is sent to |
| * NX. So generally CSB update should not fail except when an |
| * application passes invalid csb_addr. So an error message will |
| * be displayed and leave it to user space whether to ignore or |
| * handle this signal. |
| */ |
| rcu_read_lock(); |
| rc = kill_pid_info(SIGSEGV, &info, pid); |
| rcu_read_unlock(); |
| |
| pr_devel("%s(): pid %d kill_proc_info() rc %d\n", __func__, |
| pid_vnr(pid), rc); |
| } |
| |
| void vas_dump_crb(struct coprocessor_request_block *crb) |
| { |
| struct data_descriptor_entry *dde; |
| struct nx_fault_stamp *nx; |
| |
| dde = &crb->source; |
| pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n", |
| be64_to_cpu(dde->address), be32_to_cpu(dde->length), |
| dde->count, dde->index, dde->flags); |
| |
| dde = &crb->target; |
| pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n", |
| be64_to_cpu(dde->address), be32_to_cpu(dde->length), |
| dde->count, dde->index, dde->flags); |
| |
| nx = &crb->stamp.nx; |
| pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n", |
| be32_to_cpu(nx->pswid), |
| be64_to_cpu(crb->stamp.nx.fault_storage_addr), |
| nx->flags, nx->fault_status); |
| } |
| |
| static int coproc_open(struct inode *inode, struct file *fp) |
| { |
| struct coproc_instance *cp_inst; |
| |
| cp_inst = kzalloc(sizeof(*cp_inst), GFP_KERNEL); |
| if (!cp_inst) |
| return -ENOMEM; |
| |
| cp_inst->coproc = container_of(inode->i_cdev, struct coproc_dev, |
| cdev); |
| fp->private_data = cp_inst; |
| |
| return 0; |
| } |
| |
| static int coproc_ioc_tx_win_open(struct file *fp, unsigned long arg) |
| { |
| void __user *uptr = (void __user *)arg; |
| struct vas_tx_win_open_attr uattr; |
| struct coproc_instance *cp_inst; |
| struct vas_window *txwin; |
| int rc; |
| |
| cp_inst = fp->private_data; |
| |
| /* |
| * One window for file descriptor |
| */ |
| if (cp_inst->txwin) |
| return -EEXIST; |
| |
| rc = copy_from_user(&uattr, uptr, sizeof(uattr)); |
| if (rc) { |
| pr_err("%s(): copy_from_user() returns %d\n", __func__, rc); |
| return -EFAULT; |
| } |
| |
| if (uattr.version != 1) { |
| pr_err("Invalid window open API version\n"); |
| return -EINVAL; |
| } |
| |
| if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->open_win) { |
| pr_err("VAS API is not registered\n"); |
| return -EACCES; |
| } |
| |
| txwin = cp_inst->coproc->vops->open_win(uattr.vas_id, uattr.flags, |
| cp_inst->coproc->cop_type); |
| if (IS_ERR(txwin)) { |
| pr_err("%s() VAS window open failed, %ld\n", __func__, |
| PTR_ERR(txwin)); |
| return PTR_ERR(txwin); |
| } |
| |
| cp_inst->txwin = txwin; |
| |
| return 0; |
| } |
| |
| static int coproc_release(struct inode *inode, struct file *fp) |
| { |
| struct coproc_instance *cp_inst = fp->private_data; |
| int rc; |
| |
| if (cp_inst->txwin) { |
| if (cp_inst->coproc->vops && |
| cp_inst->coproc->vops->close_win) { |
| rc = cp_inst->coproc->vops->close_win(cp_inst->txwin); |
| if (rc) |
| return rc; |
| } |
| cp_inst->txwin = NULL; |
| } |
| |
| kfree(cp_inst); |
| fp->private_data = NULL; |
| |
| /* |
| * We don't know here if user has other receive windows |
| * open, so we can't really call clear_thread_tidr(). |
| * So, once the process calls set_thread_tidr(), the |
| * TIDR value sticks around until process exits, resulting |
| * in an extra copy in restore_sprs(). |
| */ |
| |
| return 0; |
| } |
| |
| static int coproc_mmap(struct file *fp, struct vm_area_struct *vma) |
| { |
| struct coproc_instance *cp_inst = fp->private_data; |
| struct vas_window *txwin; |
| unsigned long pfn; |
| u64 paste_addr; |
| pgprot_t prot; |
| int rc; |
| |
| txwin = cp_inst->txwin; |
| |
| if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) { |
| pr_debug("%s(): size 0x%zx, PAGE_SIZE 0x%zx\n", __func__, |
| (vma->vm_end - vma->vm_start), PAGE_SIZE); |
| return -EINVAL; |
| } |
| |
| /* Ensure instance has an open send window */ |
| if (!txwin) { |
| pr_err("%s(): No send window open?\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->paste_addr) { |
| pr_err("%s(): VAS API is not registered\n", __func__); |
| return -EACCES; |
| } |
| |
| paste_addr = cp_inst->coproc->vops->paste_addr(txwin); |
| if (!paste_addr) { |
| pr_err("%s(): Window paste address failed\n", __func__); |
| return -EINVAL; |
| } |
| |
| pfn = paste_addr >> PAGE_SHIFT; |
| |
| /* flags, page_prot from cxl_mmap(), except we want cachable */ |
| vma->vm_flags |= VM_IO | VM_PFNMAP; |
| vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); |
| |
| prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_DIRTY); |
| |
| rc = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, prot); |
| |
| pr_devel("%s(): paste addr %llx at %lx, rc %d\n", __func__, |
| paste_addr, vma->vm_start, rc); |
| |
| return rc; |
| } |
| |
| static long coproc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case VAS_TX_WIN_OPEN: |
| return coproc_ioc_tx_win_open(fp, arg); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static struct file_operations coproc_fops = { |
| .open = coproc_open, |
| .release = coproc_release, |
| .mmap = coproc_mmap, |
| .unlocked_ioctl = coproc_ioctl, |
| }; |
| |
| /* |
| * Supporting only nx-gzip coprocessor type now, but this API code |
| * extended to other coprocessor types later. |
| */ |
| int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type, |
| const char *name, |
| const struct vas_user_win_ops *vops) |
| { |
| int rc = -EINVAL; |
| dev_t devno; |
| |
| rc = alloc_chrdev_region(&coproc_device.devt, 1, 1, name); |
| if (rc) { |
| pr_err("Unable to allocate coproc major number: %i\n", rc); |
| return rc; |
| } |
| |
| pr_devel("%s device allocated, dev [%i,%i]\n", name, |
| MAJOR(coproc_device.devt), MINOR(coproc_device.devt)); |
| |
| coproc_device.class = class_create(mod, name); |
| if (IS_ERR(coproc_device.class)) { |
| rc = PTR_ERR(coproc_device.class); |
| pr_err("Unable to create %s class %d\n", name, rc); |
| goto err_class; |
| } |
| coproc_device.class->devnode = coproc_devnode; |
| coproc_device.cop_type = cop_type; |
| coproc_device.vops = vops; |
| |
| coproc_fops.owner = mod; |
| cdev_init(&coproc_device.cdev, &coproc_fops); |
| |
| devno = MKDEV(MAJOR(coproc_device.devt), 0); |
| rc = cdev_add(&coproc_device.cdev, devno, 1); |
| if (rc) { |
| pr_err("cdev_add() failed %d\n", rc); |
| goto err_cdev; |
| } |
| |
| coproc_device.device = device_create(coproc_device.class, NULL, |
| devno, NULL, name, MINOR(devno)); |
| if (IS_ERR(coproc_device.device)) { |
| rc = PTR_ERR(coproc_device.device); |
| pr_err("Unable to create coproc-%d %d\n", MINOR(devno), rc); |
| goto err; |
| } |
| |
| pr_devel("%s: Added dev [%d,%d]\n", __func__, MAJOR(devno), |
| MINOR(devno)); |
| |
| return 0; |
| |
| err: |
| cdev_del(&coproc_device.cdev); |
| err_cdev: |
| class_destroy(coproc_device.class); |
| err_class: |
| unregister_chrdev_region(coproc_device.devt, 1); |
| return rc; |
| } |
| |
| void vas_unregister_coproc_api(void) |
| { |
| dev_t devno; |
| |
| cdev_del(&coproc_device.cdev); |
| devno = MKDEV(MAJOR(coproc_device.devt), 0); |
| device_destroy(coproc_device.class, devno); |
| |
| class_destroy(coproc_device.class); |
| unregister_chrdev_region(coproc_device.devt, 1); |
| } |