blob: 9666d28037e1806ce6022840d383ef7e4b429f68 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2011-2018, The Linux Foundation. All rights reserved.
// Copyright (c) 2018, Linaro Limited
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/dma-resv.h>
#include <linux/idr.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of.h>
#include <linux/sort.h>
#include <linux/of_platform.h>
#include <linux/rpmsg.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/firmware/qcom/qcom_scm.h>
#include <uapi/misc/fastrpc.h>
#include <linux/of_reserved_mem.h>
#define ADSP_DOMAIN_ID (0)
#define MDSP_DOMAIN_ID (1)
#define SDSP_DOMAIN_ID (2)
#define CDSP_DOMAIN_ID (3)
#define FASTRPC_DEV_MAX 4 /* adsp, mdsp, slpi, cdsp*/
#define FASTRPC_MAX_SESSIONS 14
#define FASTRPC_MAX_VMIDS 16
#define FASTRPC_ALIGN 128
#define FASTRPC_MAX_FDLIST 16
#define FASTRPC_MAX_CRCLIST 64
#define FASTRPC_PHYS(p) ((p) & 0xffffffff)
#define FASTRPC_CTX_MAX (256)
#define FASTRPC_INIT_HANDLE 1
#define FASTRPC_DSP_UTILITIES_HANDLE 2
#define FASTRPC_CTXID_MASK (0xFF0)
#define INIT_FILELEN_MAX (2 * 1024 * 1024)
#define INIT_FILE_NAMELEN_MAX (128)
#define FASTRPC_DEVICE_NAME "fastrpc"
/* Add memory to static PD pool, protection thru XPU */
#define ADSP_MMAP_HEAP_ADDR 4
/* MAP static DMA buffer on DSP User PD */
#define ADSP_MMAP_DMA_BUFFER 6
/* Add memory to static PD pool protection thru hypervisor */
#define ADSP_MMAP_REMOTE_HEAP_ADDR 8
/* Add memory to userPD pool, for user heap */
#define ADSP_MMAP_ADD_PAGES 0x1000
/* Add memory to userPD pool, for LLC heap */
#define ADSP_MMAP_ADD_PAGES_LLC 0x3000,
#define DSP_UNSUPPORTED_API (0x80000414)
/* MAX NUMBER of DSP ATTRIBUTES SUPPORTED */
#define FASTRPC_MAX_DSP_ATTRIBUTES (256)
#define FASTRPC_MAX_DSP_ATTRIBUTES_LEN (sizeof(u32) * FASTRPC_MAX_DSP_ATTRIBUTES)
/* Retrives number of input buffers from the scalars parameter */
#define REMOTE_SCALARS_INBUFS(sc) (((sc) >> 16) & 0x0ff)
/* Retrives number of output buffers from the scalars parameter */
#define REMOTE_SCALARS_OUTBUFS(sc) (((sc) >> 8) & 0x0ff)
/* Retrives number of input handles from the scalars parameter */
#define REMOTE_SCALARS_INHANDLES(sc) (((sc) >> 4) & 0x0f)
/* Retrives number of output handles from the scalars parameter */
#define REMOTE_SCALARS_OUTHANDLES(sc) ((sc) & 0x0f)
#define REMOTE_SCALARS_LENGTH(sc) (REMOTE_SCALARS_INBUFS(sc) + \
REMOTE_SCALARS_OUTBUFS(sc) + \
REMOTE_SCALARS_INHANDLES(sc)+ \
REMOTE_SCALARS_OUTHANDLES(sc))
#define FASTRPC_BUILD_SCALARS(attr, method, in, out, oin, oout) \
(((attr & 0x07) << 29) | \
((method & 0x1f) << 24) | \
((in & 0xff) << 16) | \
((out & 0xff) << 8) | \
((oin & 0x0f) << 4) | \
(oout & 0x0f))
#define FASTRPC_SCALARS(method, in, out) \
FASTRPC_BUILD_SCALARS(0, method, in, out, 0, 0)
#define FASTRPC_CREATE_PROCESS_NARGS 6
#define FASTRPC_CREATE_STATIC_PROCESS_NARGS 3
/* Remote Method id table */
#define FASTRPC_RMID_INIT_ATTACH 0
#define FASTRPC_RMID_INIT_RELEASE 1
#define FASTRPC_RMID_INIT_MMAP 4
#define FASTRPC_RMID_INIT_MUNMAP 5
#define FASTRPC_RMID_INIT_CREATE 6
#define FASTRPC_RMID_INIT_CREATE_ATTR 7
#define FASTRPC_RMID_INIT_CREATE_STATIC 8
#define FASTRPC_RMID_INIT_MEM_MAP 10
#define FASTRPC_RMID_INIT_MEM_UNMAP 11
/* Protection Domain(PD) ids */
#define ROOT_PD (0)
#define USER_PD (1)
#define SENSORS_PD (2)
#define miscdev_to_fdevice(d) container_of(d, struct fastrpc_device, miscdev)
static const char *domains[FASTRPC_DEV_MAX] = { "adsp", "mdsp",
"sdsp", "cdsp"};
struct fastrpc_phy_page {
u64 addr; /* physical address */
u64 size; /* size of contiguous region */
};
struct fastrpc_invoke_buf {
u32 num; /* number of contiguous regions */
u32 pgidx; /* index to start of contiguous region */
};
struct fastrpc_remote_dmahandle {
s32 fd; /* dma handle fd */
u32 offset; /* dma handle offset */
u32 len; /* dma handle length */
};
struct fastrpc_remote_buf {
u64 pv; /* buffer pointer */
u64 len; /* length of buffer */
};
union fastrpc_remote_arg {
struct fastrpc_remote_buf buf;
struct fastrpc_remote_dmahandle dma;
};
struct fastrpc_mmap_rsp_msg {
u64 vaddr;
};
struct fastrpc_mmap_req_msg {
s32 pgid;
u32 flags;
u64 vaddr;
s32 num;
};
struct fastrpc_mem_map_req_msg {
s32 pgid;
s32 fd;
s32 offset;
u32 flags;
u64 vaddrin;
s32 num;
s32 data_len;
};
struct fastrpc_munmap_req_msg {
s32 pgid;
u64 vaddr;
u64 size;
};
struct fastrpc_mem_unmap_req_msg {
s32 pgid;
s32 fd;
u64 vaddrin;
u64 len;
};
struct fastrpc_msg {
int pid; /* process group id */
int tid; /* thread id */
u64 ctx; /* invoke caller context */
u32 handle; /* handle to invoke */
u32 sc; /* scalars structure describing the data */
u64 addr; /* physical address */
u64 size; /* size of contiguous region */
};
struct fastrpc_invoke_rsp {
u64 ctx; /* invoke caller context */
int retval; /* invoke return value */
};
struct fastrpc_buf_overlap {
u64 start;
u64 end;
int raix;
u64 mstart;
u64 mend;
u64 offset;
};
struct fastrpc_buf {
struct fastrpc_user *fl;
struct dma_buf *dmabuf;
struct device *dev;
void *virt;
u64 phys;
u64 size;
/* Lock for dma buf attachments */
struct mutex lock;
struct list_head attachments;
/* mmap support */
struct list_head node; /* list of user requested mmaps */
uintptr_t raddr;
};
struct fastrpc_dma_buf_attachment {
struct device *dev;
struct sg_table sgt;
struct list_head node;
};
struct fastrpc_map {
struct list_head node;
struct fastrpc_user *fl;
int fd;
struct dma_buf *buf;
struct sg_table *table;
struct dma_buf_attachment *attach;
u64 phys;
u64 size;
void *va;
u64 len;
u64 raddr;
u32 attr;
struct kref refcount;
};
struct fastrpc_invoke_ctx {
int nscalars;
int nbufs;
int retval;
int pid;
int tgid;
u32 sc;
u32 *crc;
u64 ctxid;
u64 msg_sz;
struct kref refcount;
struct list_head node; /* list of ctxs */
struct completion work;
struct work_struct put_work;
struct fastrpc_msg msg;
struct fastrpc_user *fl;
union fastrpc_remote_arg *rpra;
struct fastrpc_map **maps;
struct fastrpc_buf *buf;
struct fastrpc_invoke_args *args;
struct fastrpc_buf_overlap *olaps;
struct fastrpc_channel_ctx *cctx;
};
struct fastrpc_session_ctx {
struct device *dev;
int sid;
bool used;
bool valid;
};
struct fastrpc_channel_ctx {
int domain_id;
int sesscount;
int vmcount;
u64 perms;
struct qcom_scm_vmperm vmperms[FASTRPC_MAX_VMIDS];
struct rpmsg_device *rpdev;
struct fastrpc_session_ctx session[FASTRPC_MAX_SESSIONS];
spinlock_t lock;
struct idr ctx_idr;
struct list_head users;
struct kref refcount;
/* Flag if dsp attributes are cached */
bool valid_attributes;
u32 dsp_attributes[FASTRPC_MAX_DSP_ATTRIBUTES];
struct fastrpc_device *secure_fdevice;
struct fastrpc_device *fdevice;
struct fastrpc_buf *remote_heap;
struct list_head invoke_interrupted_mmaps;
bool secure;
bool unsigned_support;
u64 dma_mask;
};
struct fastrpc_device {
struct fastrpc_channel_ctx *cctx;
struct miscdevice miscdev;
bool secure;
};
struct fastrpc_user {
struct list_head user;
struct list_head maps;
struct list_head pending;
struct list_head mmaps;
struct fastrpc_channel_ctx *cctx;
struct fastrpc_session_ctx *sctx;
struct fastrpc_buf *init_mem;
int tgid;
int pd;
bool is_secure_dev;
/* Lock for lists */
spinlock_t lock;
/* lock for allocations */
struct mutex mutex;
};
static void fastrpc_free_map(struct kref *ref)
{
struct fastrpc_map *map;
map = container_of(ref, struct fastrpc_map, refcount);
if (map->table) {
if (map->attr & FASTRPC_ATTR_SECUREMAP) {
struct qcom_scm_vmperm perm;
int vmid = map->fl->cctx->vmperms[0].vmid;
u64 src_perms = BIT(QCOM_SCM_VMID_HLOS) | BIT(vmid);
int err = 0;
perm.vmid = QCOM_SCM_VMID_HLOS;
perm.perm = QCOM_SCM_PERM_RWX;
err = qcom_scm_assign_mem(map->phys, map->size,
&src_perms, &perm, 1);
if (err) {
dev_err(map->fl->sctx->dev, "Failed to assign memory phys 0x%llx size 0x%llx err %d",
map->phys, map->size, err);
return;
}
}
dma_buf_unmap_attachment_unlocked(map->attach, map->table,
DMA_BIDIRECTIONAL);
dma_buf_detach(map->buf, map->attach);
dma_buf_put(map->buf);
}
if (map->fl) {
spin_lock(&map->fl->lock);
list_del(&map->node);
spin_unlock(&map->fl->lock);
map->fl = NULL;
}
kfree(map);
}
static void fastrpc_map_put(struct fastrpc_map *map)
{
if (map)
kref_put(&map->refcount, fastrpc_free_map);
}
static int fastrpc_map_get(struct fastrpc_map *map)
{
if (!map)
return -ENOENT;
return kref_get_unless_zero(&map->refcount) ? 0 : -ENOENT;
}
static int fastrpc_map_lookup(struct fastrpc_user *fl, int fd,
struct fastrpc_map **ppmap, bool take_ref)
{
struct fastrpc_session_ctx *sess = fl->sctx;
struct fastrpc_map *map = NULL;
int ret = -ENOENT;
spin_lock(&fl->lock);
list_for_each_entry(map, &fl->maps, node) {
if (map->fd != fd)
continue;
if (take_ref) {
ret = fastrpc_map_get(map);
if (ret) {
dev_dbg(sess->dev, "%s: Failed to get map fd=%d ret=%d\n",
__func__, fd, ret);
break;
}
}
*ppmap = map;
ret = 0;
break;
}
spin_unlock(&fl->lock);
return ret;
}
static void fastrpc_buf_free(struct fastrpc_buf *buf)
{
dma_free_coherent(buf->dev, buf->size, buf->virt,
FASTRPC_PHYS(buf->phys));
kfree(buf);
}
static int __fastrpc_buf_alloc(struct fastrpc_user *fl, struct device *dev,
u64 size, struct fastrpc_buf **obuf)
{
struct fastrpc_buf *buf;
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
INIT_LIST_HEAD(&buf->attachments);
INIT_LIST_HEAD(&buf->node);
mutex_init(&buf->lock);
buf->fl = fl;
buf->virt = NULL;
buf->phys = 0;
buf->size = size;
buf->dev = dev;
buf->raddr = 0;
buf->virt = dma_alloc_coherent(dev, buf->size, (dma_addr_t *)&buf->phys,
GFP_KERNEL);
if (!buf->virt) {
mutex_destroy(&buf->lock);
kfree(buf);
return -ENOMEM;
}
*obuf = buf;
return 0;
}
static int fastrpc_buf_alloc(struct fastrpc_user *fl, struct device *dev,
u64 size, struct fastrpc_buf **obuf)
{
int ret;
struct fastrpc_buf *buf;
ret = __fastrpc_buf_alloc(fl, dev, size, obuf);
if (ret)
return ret;
buf = *obuf;
if (fl->sctx && fl->sctx->sid)
buf->phys += ((u64)fl->sctx->sid << 32);
return 0;
}
static int fastrpc_remote_heap_alloc(struct fastrpc_user *fl, struct device *dev,
u64 size, struct fastrpc_buf **obuf)
{
struct device *rdev = &fl->cctx->rpdev->dev;
return __fastrpc_buf_alloc(fl, rdev, size, obuf);
}
static void fastrpc_channel_ctx_free(struct kref *ref)
{
struct fastrpc_channel_ctx *cctx;
cctx = container_of(ref, struct fastrpc_channel_ctx, refcount);
kfree(cctx);
}
static void fastrpc_channel_ctx_get(struct fastrpc_channel_ctx *cctx)
{
kref_get(&cctx->refcount);
}
static void fastrpc_channel_ctx_put(struct fastrpc_channel_ctx *cctx)
{
kref_put(&cctx->refcount, fastrpc_channel_ctx_free);
}
static void fastrpc_context_free(struct kref *ref)
{
struct fastrpc_invoke_ctx *ctx;
struct fastrpc_channel_ctx *cctx;
unsigned long flags;
int i;
ctx = container_of(ref, struct fastrpc_invoke_ctx, refcount);
cctx = ctx->cctx;
for (i = 0; i < ctx->nbufs; i++)
fastrpc_map_put(ctx->maps[i]);
if (ctx->buf)
fastrpc_buf_free(ctx->buf);
spin_lock_irqsave(&cctx->lock, flags);
idr_remove(&cctx->ctx_idr, ctx->ctxid >> 4);
spin_unlock_irqrestore(&cctx->lock, flags);
kfree(ctx->maps);
kfree(ctx->olaps);
kfree(ctx);
fastrpc_channel_ctx_put(cctx);
}
static void fastrpc_context_get(struct fastrpc_invoke_ctx *ctx)
{
kref_get(&ctx->refcount);
}
static void fastrpc_context_put(struct fastrpc_invoke_ctx *ctx)
{
kref_put(&ctx->refcount, fastrpc_context_free);
}
static void fastrpc_context_put_wq(struct work_struct *work)
{
struct fastrpc_invoke_ctx *ctx =
container_of(work, struct fastrpc_invoke_ctx, put_work);
fastrpc_context_put(ctx);
}
#define CMP(aa, bb) ((aa) == (bb) ? 0 : (aa) < (bb) ? -1 : 1)
static int olaps_cmp(const void *a, const void *b)
{
struct fastrpc_buf_overlap *pa = (struct fastrpc_buf_overlap *)a;
struct fastrpc_buf_overlap *pb = (struct fastrpc_buf_overlap *)b;
/* sort with lowest starting buffer first */
int st = CMP(pa->start, pb->start);
/* sort with highest ending buffer first */
int ed = CMP(pb->end, pa->end);
return st == 0 ? ed : st;
}
static void fastrpc_get_buff_overlaps(struct fastrpc_invoke_ctx *ctx)
{
u64 max_end = 0;
int i;
for (i = 0; i < ctx->nbufs; ++i) {
ctx->olaps[i].start = ctx->args[i].ptr;
ctx->olaps[i].end = ctx->olaps[i].start + ctx->args[i].length;
ctx->olaps[i].raix = i;
}
sort(ctx->olaps, ctx->nbufs, sizeof(*ctx->olaps), olaps_cmp, NULL);
for (i = 0; i < ctx->nbufs; ++i) {
/* Falling inside previous range */
if (ctx->olaps[i].start < max_end) {
ctx->olaps[i].mstart = max_end;
ctx->olaps[i].mend = ctx->olaps[i].end;
ctx->olaps[i].offset = max_end - ctx->olaps[i].start;
if (ctx->olaps[i].end > max_end) {
max_end = ctx->olaps[i].end;
} else {
ctx->olaps[i].mend = 0;
ctx->olaps[i].mstart = 0;
}
} else {
ctx->olaps[i].mend = ctx->olaps[i].end;
ctx->olaps[i].mstart = ctx->olaps[i].start;
ctx->olaps[i].offset = 0;
max_end = ctx->olaps[i].end;
}
}
}
static struct fastrpc_invoke_ctx *fastrpc_context_alloc(
struct fastrpc_user *user, u32 kernel, u32 sc,
struct fastrpc_invoke_args *args)
{
struct fastrpc_channel_ctx *cctx = user->cctx;
struct fastrpc_invoke_ctx *ctx = NULL;
unsigned long flags;
int ret;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ctx->node);
ctx->fl = user;
ctx->nscalars = REMOTE_SCALARS_LENGTH(sc);
ctx->nbufs = REMOTE_SCALARS_INBUFS(sc) +
REMOTE_SCALARS_OUTBUFS(sc);
if (ctx->nscalars) {
ctx->maps = kcalloc(ctx->nscalars,
sizeof(*ctx->maps), GFP_KERNEL);
if (!ctx->maps) {
kfree(ctx);
return ERR_PTR(-ENOMEM);
}
ctx->olaps = kcalloc(ctx->nscalars,
sizeof(*ctx->olaps), GFP_KERNEL);
if (!ctx->olaps) {
kfree(ctx->maps);
kfree(ctx);
return ERR_PTR(-ENOMEM);
}
ctx->args = args;
fastrpc_get_buff_overlaps(ctx);
}
/* Released in fastrpc_context_put() */
fastrpc_channel_ctx_get(cctx);
ctx->sc = sc;
ctx->retval = -1;
ctx->pid = current->pid;
ctx->tgid = user->tgid;
ctx->cctx = cctx;
init_completion(&ctx->work);
INIT_WORK(&ctx->put_work, fastrpc_context_put_wq);
spin_lock(&user->lock);
list_add_tail(&ctx->node, &user->pending);
spin_unlock(&user->lock);
spin_lock_irqsave(&cctx->lock, flags);
ret = idr_alloc_cyclic(&cctx->ctx_idr, ctx, 1,
FASTRPC_CTX_MAX, GFP_ATOMIC);
if (ret < 0) {
spin_unlock_irqrestore(&cctx->lock, flags);
goto err_idr;
}
ctx->ctxid = ret << 4;
spin_unlock_irqrestore(&cctx->lock, flags);
kref_init(&ctx->refcount);
return ctx;
err_idr:
spin_lock(&user->lock);
list_del(&ctx->node);
spin_unlock(&user->lock);
fastrpc_channel_ctx_put(cctx);
kfree(ctx->maps);
kfree(ctx->olaps);
kfree(ctx);
return ERR_PTR(ret);
}
static struct sg_table *
fastrpc_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction dir)
{
struct fastrpc_dma_buf_attachment *a = attachment->priv;
struct sg_table *table;
int ret;
table = &a->sgt;
ret = dma_map_sgtable(attachment->dev, table, dir, 0);
if (ret)
table = ERR_PTR(ret);
return table;
}
static void fastrpc_unmap_dma_buf(struct dma_buf_attachment *attach,
struct sg_table *table,
enum dma_data_direction dir)
{
dma_unmap_sgtable(attach->dev, table, dir, 0);
}
static void fastrpc_release(struct dma_buf *dmabuf)
{
struct fastrpc_buf *buffer = dmabuf->priv;
fastrpc_buf_free(buffer);
}
static int fastrpc_dma_buf_attach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct fastrpc_dma_buf_attachment *a;
struct fastrpc_buf *buffer = dmabuf->priv;
int ret;
a = kzalloc(sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
ret = dma_get_sgtable(buffer->dev, &a->sgt, buffer->virt,
FASTRPC_PHYS(buffer->phys), buffer->size);
if (ret < 0) {
dev_err(buffer->dev, "failed to get scatterlist from DMA API\n");
kfree(a);
return -EINVAL;
}
a->dev = attachment->dev;
INIT_LIST_HEAD(&a->node);
attachment->priv = a;
mutex_lock(&buffer->lock);
list_add(&a->node, &buffer->attachments);
mutex_unlock(&buffer->lock);
return 0;
}
static void fastrpc_dma_buf_detatch(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct fastrpc_dma_buf_attachment *a = attachment->priv;
struct fastrpc_buf *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
list_del(&a->node);
mutex_unlock(&buffer->lock);
sg_free_table(&a->sgt);
kfree(a);
}
static int fastrpc_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
{
struct fastrpc_buf *buf = dmabuf->priv;
iosys_map_set_vaddr(map, buf->virt);
return 0;
}
static int fastrpc_mmap(struct dma_buf *dmabuf,
struct vm_area_struct *vma)
{
struct fastrpc_buf *buf = dmabuf->priv;
size_t size = vma->vm_end - vma->vm_start;
dma_resv_assert_held(dmabuf->resv);
return dma_mmap_coherent(buf->dev, vma, buf->virt,
FASTRPC_PHYS(buf->phys), size);
}
static const struct dma_buf_ops fastrpc_dma_buf_ops = {
.attach = fastrpc_dma_buf_attach,
.detach = fastrpc_dma_buf_detatch,
.map_dma_buf = fastrpc_map_dma_buf,
.unmap_dma_buf = fastrpc_unmap_dma_buf,
.mmap = fastrpc_mmap,
.vmap = fastrpc_vmap,
.release = fastrpc_release,
};
static int fastrpc_map_create(struct fastrpc_user *fl, int fd,
u64 len, u32 attr, struct fastrpc_map **ppmap)
{
struct fastrpc_session_ctx *sess = fl->sctx;
struct fastrpc_map *map = NULL;
int err = 0;
if (!fastrpc_map_lookup(fl, fd, ppmap, true))
return 0;
map = kzalloc(sizeof(*map), GFP_KERNEL);
if (!map)
return -ENOMEM;
INIT_LIST_HEAD(&map->node);
kref_init(&map->refcount);
map->fl = fl;
map->fd = fd;
map->buf = dma_buf_get(fd);
if (IS_ERR(map->buf)) {
err = PTR_ERR(map->buf);
goto get_err;
}
map->attach = dma_buf_attach(map->buf, sess->dev);
if (IS_ERR(map->attach)) {
dev_err(sess->dev, "Failed to attach dmabuf\n");
err = PTR_ERR(map->attach);
goto attach_err;
}
map->table = dma_buf_map_attachment_unlocked(map->attach, DMA_BIDIRECTIONAL);
if (IS_ERR(map->table)) {
err = PTR_ERR(map->table);
goto map_err;
}
if (attr & FASTRPC_ATTR_SECUREMAP) {
map->phys = sg_phys(map->table->sgl);
} else {
map->phys = sg_dma_address(map->table->sgl);
map->phys += ((u64)fl->sctx->sid << 32);
}
map->size = len;
map->va = sg_virt(map->table->sgl);
map->len = len;
if (attr & FASTRPC_ATTR_SECUREMAP) {
/*
* If subsystem VMIDs are defined in DTSI, then do
* hyp_assign from HLOS to those VM(s)
*/
u64 src_perms = BIT(QCOM_SCM_VMID_HLOS);
struct qcom_scm_vmperm dst_perms[2] = {0};
dst_perms[0].vmid = QCOM_SCM_VMID_HLOS;
dst_perms[0].perm = QCOM_SCM_PERM_RW;
dst_perms[1].vmid = fl->cctx->vmperms[0].vmid;
dst_perms[1].perm = QCOM_SCM_PERM_RWX;
map->attr = attr;
err = qcom_scm_assign_mem(map->phys, (u64)map->size, &src_perms, dst_perms, 2);
if (err) {
dev_err(sess->dev, "Failed to assign memory with phys 0x%llx size 0x%llx err %d",
map->phys, map->size, err);
goto map_err;
}
}
spin_lock(&fl->lock);
list_add_tail(&map->node, &fl->maps);
spin_unlock(&fl->lock);
*ppmap = map;
return 0;
map_err:
dma_buf_detach(map->buf, map->attach);
attach_err:
dma_buf_put(map->buf);
get_err:
fastrpc_map_put(map);
return err;
}
/*
* Fastrpc payload buffer with metadata looks like:
*
* >>>>>> START of METADATA <<<<<<<<<
* +---------------------------------+
* | Arguments |
* | type:(union fastrpc_remote_arg)|
* | (0 - N) |
* +---------------------------------+
* | Invoke Buffer list |
* | type:(struct fastrpc_invoke_buf)|
* | (0 - N) |
* +---------------------------------+
* | Page info list |
* | type:(struct fastrpc_phy_page) |
* | (0 - N) |
* +---------------------------------+
* | Optional info |
* |(can be specific to SoC/Firmware)|
* +---------------------------------+
* >>>>>>>> END of METADATA <<<<<<<<<
* +---------------------------------+
* | Inline ARGS |
* | (0-N) |
* +---------------------------------+
*/
static int fastrpc_get_meta_size(struct fastrpc_invoke_ctx *ctx)
{
int size = 0;
size = (sizeof(struct fastrpc_remote_buf) +
sizeof(struct fastrpc_invoke_buf) +
sizeof(struct fastrpc_phy_page)) * ctx->nscalars +
sizeof(u64) * FASTRPC_MAX_FDLIST +
sizeof(u32) * FASTRPC_MAX_CRCLIST;
return size;
}
static u64 fastrpc_get_payload_size(struct fastrpc_invoke_ctx *ctx, int metalen)
{
u64 size = 0;
int oix;
size = ALIGN(metalen, FASTRPC_ALIGN);
for (oix = 0; oix < ctx->nbufs; oix++) {
int i = ctx->olaps[oix].raix;
if (ctx->args[i].fd == 0 || ctx->args[i].fd == -1) {
if (ctx->olaps[oix].offset == 0)
size = ALIGN(size, FASTRPC_ALIGN);
size += (ctx->olaps[oix].mend - ctx->olaps[oix].mstart);
}
}
return size;
}
static int fastrpc_create_maps(struct fastrpc_invoke_ctx *ctx)
{
struct device *dev = ctx->fl->sctx->dev;
int i, err;
for (i = 0; i < ctx->nscalars; ++i) {
if (ctx->args[i].fd == 0 || ctx->args[i].fd == -1 ||
ctx->args[i].length == 0)
continue;
err = fastrpc_map_create(ctx->fl, ctx->args[i].fd,
ctx->args[i].length, ctx->args[i].attr, &ctx->maps[i]);
if (err) {
dev_err(dev, "Error Creating map %d\n", err);
return -EINVAL;
}
}
return 0;
}
static struct fastrpc_invoke_buf *fastrpc_invoke_buf_start(union fastrpc_remote_arg *pra, int len)
{
return (struct fastrpc_invoke_buf *)(&pra[len]);
}
static struct fastrpc_phy_page *fastrpc_phy_page_start(struct fastrpc_invoke_buf *buf, int len)
{
return (struct fastrpc_phy_page *)(&buf[len]);
}
static int fastrpc_get_args(u32 kernel, struct fastrpc_invoke_ctx *ctx)
{
struct device *dev = ctx->fl->sctx->dev;
union fastrpc_remote_arg *rpra;
struct fastrpc_invoke_buf *list;
struct fastrpc_phy_page *pages;
int inbufs, i, oix, err = 0;
u64 len, rlen, pkt_size;
u64 pg_start, pg_end;
uintptr_t args;
int metalen;
inbufs = REMOTE_SCALARS_INBUFS(ctx->sc);
metalen = fastrpc_get_meta_size(ctx);
pkt_size = fastrpc_get_payload_size(ctx, metalen);
err = fastrpc_create_maps(ctx);
if (err)
return err;
ctx->msg_sz = pkt_size;
err = fastrpc_buf_alloc(ctx->fl, dev, pkt_size, &ctx->buf);
if (err)
return err;
rpra = ctx->buf->virt;
list = fastrpc_invoke_buf_start(rpra, ctx->nscalars);
pages = fastrpc_phy_page_start(list, ctx->nscalars);
args = (uintptr_t)ctx->buf->virt + metalen;
rlen = pkt_size - metalen;
ctx->rpra = rpra;
for (oix = 0; oix < ctx->nbufs; ++oix) {
int mlen;
i = ctx->olaps[oix].raix;
len = ctx->args[i].length;
rpra[i].buf.pv = 0;
rpra[i].buf.len = len;
list[i].num = len ? 1 : 0;
list[i].pgidx = i;
if (!len)
continue;
if (ctx->maps[i]) {
struct vm_area_struct *vma = NULL;
rpra[i].buf.pv = (u64) ctx->args[i].ptr;
pages[i].addr = ctx->maps[i]->phys;
mmap_read_lock(current->mm);
vma = find_vma(current->mm, ctx->args[i].ptr);
if (vma)
pages[i].addr += ctx->args[i].ptr -
vma->vm_start;
mmap_read_unlock(current->mm);
pg_start = (ctx->args[i].ptr & PAGE_MASK) >> PAGE_SHIFT;
pg_end = ((ctx->args[i].ptr + len - 1) & PAGE_MASK) >>
PAGE_SHIFT;
pages[i].size = (pg_end - pg_start + 1) * PAGE_SIZE;
} else {
if (ctx->olaps[oix].offset == 0) {
rlen -= ALIGN(args, FASTRPC_ALIGN) - args;
args = ALIGN(args, FASTRPC_ALIGN);
}
mlen = ctx->olaps[oix].mend - ctx->olaps[oix].mstart;
if (rlen < mlen)
goto bail;
rpra[i].buf.pv = args - ctx->olaps[oix].offset;
pages[i].addr = ctx->buf->phys -
ctx->olaps[oix].offset +
(pkt_size - rlen);
pages[i].addr = pages[i].addr & PAGE_MASK;
pg_start = (args & PAGE_MASK) >> PAGE_SHIFT;
pg_end = ((args + len - 1) & PAGE_MASK) >> PAGE_SHIFT;
pages[i].size = (pg_end - pg_start + 1) * PAGE_SIZE;
args = args + mlen;
rlen -= mlen;
}
if (i < inbufs && !ctx->maps[i]) {
void *dst = (void *)(uintptr_t)rpra[i].buf.pv;
void *src = (void *)(uintptr_t)ctx->args[i].ptr;
if (!kernel) {
if (copy_from_user(dst, (void __user *)src,
len)) {
err = -EFAULT;
goto bail;
}
} else {
memcpy(dst, src, len);
}
}
}
for (i = ctx->nbufs; i < ctx->nscalars; ++i) {
list[i].num = ctx->args[i].length ? 1 : 0;
list[i].pgidx = i;
if (ctx->maps[i]) {
pages[i].addr = ctx->maps[i]->phys;
pages[i].size = ctx->maps[i]->size;
}
rpra[i].dma.fd = ctx->args[i].fd;
rpra[i].dma.len = ctx->args[i].length;
rpra[i].dma.offset = (u64) ctx->args[i].ptr;
}
bail:
if (err)
dev_err(dev, "Error: get invoke args failed:%d\n", err);
return err;
}
static int fastrpc_put_args(struct fastrpc_invoke_ctx *ctx,
u32 kernel)
{
union fastrpc_remote_arg *rpra = ctx->rpra;
struct fastrpc_user *fl = ctx->fl;
struct fastrpc_map *mmap = NULL;
struct fastrpc_invoke_buf *list;
struct fastrpc_phy_page *pages;
u64 *fdlist;
int i, inbufs, outbufs, handles;
inbufs = REMOTE_SCALARS_INBUFS(ctx->sc);
outbufs = REMOTE_SCALARS_OUTBUFS(ctx->sc);
handles = REMOTE_SCALARS_INHANDLES(ctx->sc) + REMOTE_SCALARS_OUTHANDLES(ctx->sc);
list = fastrpc_invoke_buf_start(rpra, ctx->nscalars);
pages = fastrpc_phy_page_start(list, ctx->nscalars);
fdlist = (uint64_t *)(pages + inbufs + outbufs + handles);
for (i = inbufs; i < ctx->nbufs; ++i) {
if (!ctx->maps[i]) {
void *src = (void *)(uintptr_t)rpra[i].buf.pv;
void *dst = (void *)(uintptr_t)ctx->args[i].ptr;
u64 len = rpra[i].buf.len;
if (!kernel) {
if (copy_to_user((void __user *)dst, src, len))
return -EFAULT;
} else {
memcpy(dst, src, len);
}
}
}
for (i = 0; i < FASTRPC_MAX_FDLIST; i++) {
if (!fdlist[i])
break;
if (!fastrpc_map_lookup(fl, (int)fdlist[i], &mmap, false))
fastrpc_map_put(mmap);
}
return 0;
}
static int fastrpc_invoke_send(struct fastrpc_session_ctx *sctx,
struct fastrpc_invoke_ctx *ctx,
u32 kernel, uint32_t handle)
{
struct fastrpc_channel_ctx *cctx;
struct fastrpc_user *fl = ctx->fl;
struct fastrpc_msg *msg = &ctx->msg;
int ret;
cctx = fl->cctx;
msg->pid = fl->tgid;
msg->tid = current->pid;
if (kernel)
msg->pid = 0;
msg->ctx = ctx->ctxid | fl->pd;
msg->handle = handle;
msg->sc = ctx->sc;
msg->addr = ctx->buf ? ctx->buf->phys : 0;
msg->size = roundup(ctx->msg_sz, PAGE_SIZE);
fastrpc_context_get(ctx);
ret = rpmsg_send(cctx->rpdev->ept, (void *)msg, sizeof(*msg));
if (ret)
fastrpc_context_put(ctx);
return ret;
}
static int fastrpc_internal_invoke(struct fastrpc_user *fl, u32 kernel,
u32 handle, u32 sc,
struct fastrpc_invoke_args *args)
{
struct fastrpc_invoke_ctx *ctx = NULL;
struct fastrpc_buf *buf, *b;
int err = 0;
if (!fl->sctx)
return -EINVAL;
if (!fl->cctx->rpdev)
return -EPIPE;
if (handle == FASTRPC_INIT_HANDLE && !kernel) {
dev_warn_ratelimited(fl->sctx->dev, "user app trying to send a kernel RPC message (%d)\n", handle);
return -EPERM;
}
ctx = fastrpc_context_alloc(fl, kernel, sc, args);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
if (ctx->nscalars) {
err = fastrpc_get_args(kernel, ctx);
if (err)
goto bail;
}
/* make sure that all CPU memory writes are seen by DSP */
dma_wmb();
/* Send invoke buffer to remote dsp */
err = fastrpc_invoke_send(fl->sctx, ctx, kernel, handle);
if (err)
goto bail;
if (kernel) {
if (!wait_for_completion_timeout(&ctx->work, 10 * HZ))
err = -ETIMEDOUT;
} else {
err = wait_for_completion_interruptible(&ctx->work);
}
if (err)
goto bail;
/* Check the response from remote dsp */
err = ctx->retval;
if (err)
goto bail;
if (ctx->nscalars) {
/* make sure that all memory writes by DSP are seen by CPU */
dma_rmb();
/* populate all the output buffers with results */
err = fastrpc_put_args(ctx, kernel);
if (err)
goto bail;
}
bail:
if (err != -ERESTARTSYS && err != -ETIMEDOUT) {
/* We are done with this compute context */
spin_lock(&fl->lock);
list_del(&ctx->node);
spin_unlock(&fl->lock);
fastrpc_context_put(ctx);
}
if (err == -ERESTARTSYS) {
list_for_each_entry_safe(buf, b, &fl->mmaps, node) {
list_del(&buf->node);
list_add_tail(&buf->node, &fl->cctx->invoke_interrupted_mmaps);
}
}
if (err)
dev_dbg(fl->sctx->dev, "Error: Invoke Failed %d\n", err);
return err;
}
static bool is_session_rejected(struct fastrpc_user *fl, bool unsigned_pd_request)
{
/* Check if the device node is non-secure and channel is secure*/
if (!fl->is_secure_dev && fl->cctx->secure) {
/*
* Allow untrusted applications to offload only to Unsigned PD when
* channel is configured as secure and block untrusted apps on channel
* that does not support unsigned PD offload
*/
if (!fl->cctx->unsigned_support || !unsigned_pd_request) {
dev_err(&fl->cctx->rpdev->dev, "Error: Untrusted application trying to offload to signed PD");
return true;
}
}
return false;
}
static int fastrpc_init_create_static_process(struct fastrpc_user *fl,
char __user *argp)
{
struct fastrpc_init_create_static init;
struct fastrpc_invoke_args *args;
struct fastrpc_phy_page pages[1];
char *name;
int err;
struct {
int pgid;
u32 namelen;
u32 pageslen;
} inbuf;
u32 sc;
args = kcalloc(FASTRPC_CREATE_STATIC_PROCESS_NARGS, sizeof(*args), GFP_KERNEL);
if (!args)
return -ENOMEM;
if (copy_from_user(&init, argp, sizeof(init))) {
err = -EFAULT;
goto err;
}
if (init.namelen > INIT_FILE_NAMELEN_MAX) {
err = -EINVAL;
goto err;
}
name = kzalloc(init.namelen, GFP_KERNEL);
if (!name) {
err = -ENOMEM;
goto err;
}
if (copy_from_user(name, (void __user *)(uintptr_t)init.name, init.namelen)) {
err = -EFAULT;
goto err_name;
}
if (!fl->cctx->remote_heap) {
err = fastrpc_remote_heap_alloc(fl, fl->sctx->dev, init.memlen,
&fl->cctx->remote_heap);
if (err)
goto err_name;
/* Map if we have any heap VMIDs associated with this ADSP Static Process. */
if (fl->cctx->vmcount) {
err = qcom_scm_assign_mem(fl->cctx->remote_heap->phys,
(u64)fl->cctx->remote_heap->size,
&fl->cctx->perms,
fl->cctx->vmperms, fl->cctx->vmcount);
if (err) {
dev_err(fl->sctx->dev, "Failed to assign memory with phys 0x%llx size 0x%llx err %d",
fl->cctx->remote_heap->phys, fl->cctx->remote_heap->size, err);
goto err_map;
}
}
}
inbuf.pgid = fl->tgid;
inbuf.namelen = init.namelen;
inbuf.pageslen = 0;
fl->pd = USER_PD;
args[0].ptr = (u64)(uintptr_t)&inbuf;
args[0].length = sizeof(inbuf);
args[0].fd = -1;
args[1].ptr = (u64)(uintptr_t)name;
args[1].length = inbuf.namelen;
args[1].fd = -1;
pages[0].addr = fl->cctx->remote_heap->phys;
pages[0].size = fl->cctx->remote_heap->size;
args[2].ptr = (u64)(uintptr_t) pages;
args[2].length = sizeof(*pages);
args[2].fd = -1;
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_CREATE_STATIC, 3, 0);
err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE,
sc, args);
if (err)
goto err_invoke;
kfree(args);
return 0;
err_invoke:
if (fl->cctx->vmcount) {
struct qcom_scm_vmperm perm;
perm.vmid = QCOM_SCM_VMID_HLOS;
perm.perm = QCOM_SCM_PERM_RWX;
err = qcom_scm_assign_mem(fl->cctx->remote_heap->phys,
(u64)fl->cctx->remote_heap->size,
&fl->cctx->perms, &perm, 1);
if (err)
dev_err(fl->sctx->dev, "Failed to assign memory phys 0x%llx size 0x%llx err %d",
fl->cctx->remote_heap->phys, fl->cctx->remote_heap->size, err);
}
err_map:
fastrpc_buf_free(fl->cctx->remote_heap);
err_name:
kfree(name);
err:
kfree(args);
return err;
}
static int fastrpc_init_create_process(struct fastrpc_user *fl,
char __user *argp)
{
struct fastrpc_init_create init;
struct fastrpc_invoke_args *args;
struct fastrpc_phy_page pages[1];
struct fastrpc_map *map = NULL;
struct fastrpc_buf *imem = NULL;
int memlen;
int err;
struct {
int pgid;
u32 namelen;
u32 filelen;
u32 pageslen;
u32 attrs;
u32 siglen;
} inbuf;
u32 sc;
bool unsigned_module = false;
args = kcalloc(FASTRPC_CREATE_PROCESS_NARGS, sizeof(*args), GFP_KERNEL);
if (!args)
return -ENOMEM;
if (copy_from_user(&init, argp, sizeof(init))) {
err = -EFAULT;
goto err;
}
if (init.attrs & FASTRPC_MODE_UNSIGNED_MODULE)
unsigned_module = true;
if (is_session_rejected(fl, unsigned_module)) {
err = -ECONNREFUSED;
goto err;
}
if (init.filelen > INIT_FILELEN_MAX) {
err = -EINVAL;
goto err;
}
inbuf.pgid = fl->tgid;
inbuf.namelen = strlen(current->comm) + 1;
inbuf.filelen = init.filelen;
inbuf.pageslen = 1;
inbuf.attrs = init.attrs;
inbuf.siglen = init.siglen;
fl->pd = USER_PD;
if (init.filelen && init.filefd) {
err = fastrpc_map_create(fl, init.filefd, init.filelen, 0, &map);
if (err)
goto err;
}
memlen = ALIGN(max(INIT_FILELEN_MAX, (int)init.filelen * 4),
1024 * 1024);
err = fastrpc_buf_alloc(fl, fl->sctx->dev, memlen,
&imem);
if (err)
goto err_alloc;
fl->init_mem = imem;
args[0].ptr = (u64)(uintptr_t)&inbuf;
args[0].length = sizeof(inbuf);
args[0].fd = -1;
args[1].ptr = (u64)(uintptr_t)current->comm;
args[1].length = inbuf.namelen;
args[1].fd = -1;
args[2].ptr = (u64) init.file;
args[2].length = inbuf.filelen;
args[2].fd = init.filefd;
pages[0].addr = imem->phys;
pages[0].size = imem->size;
args[3].ptr = (u64)(uintptr_t) pages;
args[3].length = 1 * sizeof(*pages);
args[3].fd = -1;
args[4].ptr = (u64)(uintptr_t)&inbuf.attrs;
args[4].length = sizeof(inbuf.attrs);
args[4].fd = -1;
args[5].ptr = (u64)(uintptr_t) &inbuf.siglen;
args[5].length = sizeof(inbuf.siglen);
args[5].fd = -1;
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_CREATE, 4, 0);
if (init.attrs)
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_CREATE_ATTR, 4, 0);
err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE,
sc, args);
if (err)
goto err_invoke;
kfree(args);
return 0;
err_invoke:
fl->init_mem = NULL;
fastrpc_buf_free(imem);
err_alloc:
fastrpc_map_put(map);
err:
kfree(args);
return err;
}
static struct fastrpc_session_ctx *fastrpc_session_alloc(
struct fastrpc_channel_ctx *cctx)
{
struct fastrpc_session_ctx *session = NULL;
unsigned long flags;
int i;
spin_lock_irqsave(&cctx->lock, flags);
for (i = 0; i < cctx->sesscount; i++) {
if (!cctx->session[i].used && cctx->session[i].valid) {
cctx->session[i].used = true;
session = &cctx->session[i];
break;
}
}
spin_unlock_irqrestore(&cctx->lock, flags);
return session;
}
static void fastrpc_session_free(struct fastrpc_channel_ctx *cctx,
struct fastrpc_session_ctx *session)
{
unsigned long flags;
spin_lock_irqsave(&cctx->lock, flags);
session->used = false;
spin_unlock_irqrestore(&cctx->lock, flags);
}
static int fastrpc_release_current_dsp_process(struct fastrpc_user *fl)
{
struct fastrpc_invoke_args args[1];
int tgid = 0;
u32 sc;
tgid = fl->tgid;
args[0].ptr = (u64)(uintptr_t) &tgid;
args[0].length = sizeof(tgid);
args[0].fd = -1;
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_RELEASE, 1, 0);
return fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE,
sc, &args[0]);
}
static int fastrpc_device_release(struct inode *inode, struct file *file)
{
struct fastrpc_user *fl = (struct fastrpc_user *)file->private_data;
struct fastrpc_channel_ctx *cctx = fl->cctx;
struct fastrpc_invoke_ctx *ctx, *n;
struct fastrpc_map *map, *m;
struct fastrpc_buf *buf, *b;
unsigned long flags;
fastrpc_release_current_dsp_process(fl);
spin_lock_irqsave(&cctx->lock, flags);
list_del(&fl->user);
spin_unlock_irqrestore(&cctx->lock, flags);
if (fl->init_mem)
fastrpc_buf_free(fl->init_mem);
list_for_each_entry_safe(ctx, n, &fl->pending, node) {
list_del(&ctx->node);
fastrpc_context_put(ctx);
}
list_for_each_entry_safe(map, m, &fl->maps, node)
fastrpc_map_put(map);
list_for_each_entry_safe(buf, b, &fl->mmaps, node) {
list_del(&buf->node);
fastrpc_buf_free(buf);
}
fastrpc_session_free(cctx, fl->sctx);
fastrpc_channel_ctx_put(cctx);
mutex_destroy(&fl->mutex);
kfree(fl);
file->private_data = NULL;
return 0;
}
static int fastrpc_device_open(struct inode *inode, struct file *filp)
{
struct fastrpc_channel_ctx *cctx;
struct fastrpc_device *fdevice;
struct fastrpc_user *fl = NULL;
unsigned long flags;
fdevice = miscdev_to_fdevice(filp->private_data);
cctx = fdevice->cctx;
fl = kzalloc(sizeof(*fl), GFP_KERNEL);
if (!fl)
return -ENOMEM;
/* Released in fastrpc_device_release() */
fastrpc_channel_ctx_get(cctx);
filp->private_data = fl;
spin_lock_init(&fl->lock);
mutex_init(&fl->mutex);
INIT_LIST_HEAD(&fl->pending);
INIT_LIST_HEAD(&fl->maps);
INIT_LIST_HEAD(&fl->mmaps);
INIT_LIST_HEAD(&fl->user);
fl->tgid = current->tgid;
fl->cctx = cctx;
fl->is_secure_dev = fdevice->secure;
fl->sctx = fastrpc_session_alloc(cctx);
if (!fl->sctx) {
dev_err(&cctx->rpdev->dev, "No session available\n");
mutex_destroy(&fl->mutex);
kfree(fl);
return -EBUSY;
}
spin_lock_irqsave(&cctx->lock, flags);
list_add_tail(&fl->user, &cctx->users);
spin_unlock_irqrestore(&cctx->lock, flags);
return 0;
}
static int fastrpc_dmabuf_alloc(struct fastrpc_user *fl, char __user *argp)
{
struct fastrpc_alloc_dma_buf bp;
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
struct fastrpc_buf *buf = NULL;
int err;
if (copy_from_user(&bp, argp, sizeof(bp)))
return -EFAULT;
err = fastrpc_buf_alloc(fl, fl->sctx->dev, bp.size, &buf);
if (err)
return err;
exp_info.ops = &fastrpc_dma_buf_ops;
exp_info.size = bp.size;
exp_info.flags = O_RDWR;
exp_info.priv = buf;
buf->dmabuf = dma_buf_export(&exp_info);
if (IS_ERR(buf->dmabuf)) {
err = PTR_ERR(buf->dmabuf);
fastrpc_buf_free(buf);
return err;
}
bp.fd = dma_buf_fd(buf->dmabuf, O_ACCMODE);
if (bp.fd < 0) {
dma_buf_put(buf->dmabuf);
return -EINVAL;
}
if (copy_to_user(argp, &bp, sizeof(bp))) {
/*
* The usercopy failed, but we can't do much about it, as
* dma_buf_fd() already called fd_install() and made the
* file descriptor accessible for the current process. It
* might already be closed and dmabuf no longer valid when
* we reach this point. Therefore "leak" the fd and rely on
* the process exit path to do any required cleanup.
*/
return -EFAULT;
}
return 0;
}
static int fastrpc_init_attach(struct fastrpc_user *fl, int pd)
{
struct fastrpc_invoke_args args[1];
int tgid = fl->tgid;
u32 sc;
args[0].ptr = (u64)(uintptr_t) &tgid;
args[0].length = sizeof(tgid);
args[0].fd = -1;
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_ATTACH, 1, 0);
fl->pd = pd;
return fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE,
sc, &args[0]);
}
static int fastrpc_invoke(struct fastrpc_user *fl, char __user *argp)
{
struct fastrpc_invoke_args *args = NULL;
struct fastrpc_invoke inv;
u32 nscalars;
int err;
if (copy_from_user(&inv, argp, sizeof(inv)))
return -EFAULT;
/* nscalars is truncated here to max supported value */
nscalars = REMOTE_SCALARS_LENGTH(inv.sc);
if (nscalars) {
args = kcalloc(nscalars, sizeof(*args), GFP_KERNEL);
if (!args)
return -ENOMEM;
if (copy_from_user(args, (void __user *)(uintptr_t)inv.args,
nscalars * sizeof(*args))) {
kfree(args);
return -EFAULT;
}
}
err = fastrpc_internal_invoke(fl, false, inv.handle, inv.sc, args);
kfree(args);
return err;
}
static int fastrpc_get_info_from_dsp(struct fastrpc_user *fl, uint32_t *dsp_attr_buf,
uint32_t dsp_attr_buf_len)
{
struct fastrpc_invoke_args args[2] = { 0 };
/* Capability filled in userspace */
dsp_attr_buf[0] = 0;
args[0].ptr = (u64)(uintptr_t)&dsp_attr_buf_len;
args[0].length = sizeof(dsp_attr_buf_len);
args[0].fd = -1;
args[1].ptr = (u64)(uintptr_t)&dsp_attr_buf[1];
args[1].length = dsp_attr_buf_len;
args[1].fd = -1;
fl->pd = USER_PD;
return fastrpc_internal_invoke(fl, true, FASTRPC_DSP_UTILITIES_HANDLE,
FASTRPC_SCALARS(0, 1, 1), args);
}
static int fastrpc_get_info_from_kernel(struct fastrpc_ioctl_capability *cap,
struct fastrpc_user *fl)
{
struct fastrpc_channel_ctx *cctx = fl->cctx;
uint32_t attribute_id = cap->attribute_id;
uint32_t *dsp_attributes;
unsigned long flags;
uint32_t domain = cap->domain;
int err;
spin_lock_irqsave(&cctx->lock, flags);
/* check if we already have queried dsp for attributes */
if (cctx->valid_attributes) {
spin_unlock_irqrestore(&cctx->lock, flags);
goto done;
}
spin_unlock_irqrestore(&cctx->lock, flags);
dsp_attributes = kzalloc(FASTRPC_MAX_DSP_ATTRIBUTES_LEN, GFP_KERNEL);
if (!dsp_attributes)
return -ENOMEM;
err = fastrpc_get_info_from_dsp(fl, dsp_attributes, FASTRPC_MAX_DSP_ATTRIBUTES_LEN);
if (err == DSP_UNSUPPORTED_API) {
dev_info(&cctx->rpdev->dev,
"Warning: DSP capabilities not supported on domain: %d\n", domain);
kfree(dsp_attributes);
return -EOPNOTSUPP;
} else if (err) {
dev_err(&cctx->rpdev->dev, "Error: dsp information is incorrect err: %d\n", err);
kfree(dsp_attributes);
return err;
}
spin_lock_irqsave(&cctx->lock, flags);
memcpy(cctx->dsp_attributes, dsp_attributes, FASTRPC_MAX_DSP_ATTRIBUTES_LEN);
cctx->valid_attributes = true;
spin_unlock_irqrestore(&cctx->lock, flags);
kfree(dsp_attributes);
done:
cap->capability = cctx->dsp_attributes[attribute_id];
return 0;
}
static int fastrpc_get_dsp_info(struct fastrpc_user *fl, char __user *argp)
{
struct fastrpc_ioctl_capability cap = {0};
int err = 0;
if (copy_from_user(&cap, argp, sizeof(cap)))
return -EFAULT;
cap.capability = 0;
if (cap.domain >= FASTRPC_DEV_MAX) {
dev_err(&fl->cctx->rpdev->dev, "Error: Invalid domain id:%d, err:%d\n",
cap.domain, err);
return -ECHRNG;
}
/* Fastrpc Capablities does not support modem domain */
if (cap.domain == MDSP_DOMAIN_ID) {
dev_err(&fl->cctx->rpdev->dev, "Error: modem not supported %d\n", err);
return -ECHRNG;
}
if (cap.attribute_id >= FASTRPC_MAX_DSP_ATTRIBUTES) {
dev_err(&fl->cctx->rpdev->dev, "Error: invalid attribute: %d, err: %d\n",
cap.attribute_id, err);
return -EOVERFLOW;
}
err = fastrpc_get_info_from_kernel(&cap, fl);
if (err)
return err;
if (copy_to_user(argp, &cap.capability, sizeof(cap.capability)))
return -EFAULT;
return 0;
}
static int fastrpc_req_munmap_impl(struct fastrpc_user *fl, struct fastrpc_buf *buf)
{
struct fastrpc_invoke_args args[1] = { [0] = { 0 } };
struct fastrpc_munmap_req_msg req_msg;
struct device *dev = fl->sctx->dev;
int err;
u32 sc;
req_msg.pgid = fl->tgid;
req_msg.size = buf->size;
req_msg.vaddr = buf->raddr;
args[0].ptr = (u64) (uintptr_t) &req_msg;
args[0].length = sizeof(req_msg);
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MUNMAP, 1, 0);
err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc,
&args[0]);
if (!err) {
dev_dbg(dev, "unmmap\tpt 0x%09lx OK\n", buf->raddr);
spin_lock(&fl->lock);
list_del(&buf->node);
spin_unlock(&fl->lock);
fastrpc_buf_free(buf);
} else {
dev_err(dev, "unmmap\tpt 0x%09lx ERROR\n", buf->raddr);
}
return err;
}
static int fastrpc_req_munmap(struct fastrpc_user *fl, char __user *argp)
{
struct fastrpc_buf *buf = NULL, *iter, *b;
struct fastrpc_req_munmap req;
struct device *dev = fl->sctx->dev;
if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
spin_lock(&fl->lock);
list_for_each_entry_safe(iter, b, &fl->mmaps, node) {
if ((iter->raddr == req.vaddrout) && (iter->size == req.size)) {
buf = iter;
break;
}
}
spin_unlock(&fl->lock);
if (!buf) {
dev_err(dev, "mmap\t\tpt 0x%09llx [len 0x%08llx] not in list\n",
req.vaddrout, req.size);
return -EINVAL;
}
return fastrpc_req_munmap_impl(fl, buf);
}
static int fastrpc_req_mmap(struct fastrpc_user *fl, char __user *argp)
{
struct fastrpc_invoke_args args[3] = { [0 ... 2] = { 0 } };
struct fastrpc_buf *buf = NULL;
struct fastrpc_mmap_req_msg req_msg;
struct fastrpc_mmap_rsp_msg rsp_msg;
struct fastrpc_phy_page pages;
struct fastrpc_req_mmap req;
struct device *dev = fl->sctx->dev;
int err;
u32 sc;
if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
if (req.flags != ADSP_MMAP_ADD_PAGES && req.flags != ADSP_MMAP_REMOTE_HEAP_ADDR) {
dev_err(dev, "flag not supported 0x%x\n", req.flags);
return -EINVAL;
}
if (req.vaddrin) {
dev_err(dev, "adding user allocated pages is not supported\n");
return -EINVAL;
}
err = fastrpc_buf_alloc(fl, fl->sctx->dev, req.size, &buf);
if (err) {
dev_err(dev, "failed to allocate buffer\n");
return err;
}
req_msg.pgid = fl->tgid;
req_msg.flags = req.flags;
req_msg.vaddr = req.vaddrin;
req_msg.num = sizeof(pages);
args[0].ptr = (u64) (uintptr_t) &req_msg;
args[0].length = sizeof(req_msg);
pages.addr = buf->phys;
pages.size = buf->size;
args[1].ptr = (u64) (uintptr_t) &pages;
args[1].length = sizeof(pages);
args[2].ptr = (u64) (uintptr_t) &rsp_msg;
args[2].length = sizeof(rsp_msg);
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MMAP, 2, 1);
err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc,
&args[0]);
if (err) {
dev_err(dev, "mmap error (len 0x%08llx)\n", buf->size);
goto err_invoke;
}
/* update the buffer to be able to deallocate the memory on the DSP */
buf->raddr = (uintptr_t) rsp_msg.vaddr;
/* let the client know the address to use */
req.vaddrout = rsp_msg.vaddr;
/* Add memory to static PD pool, protection thru hypervisor */
if (req.flags == ADSP_MMAP_REMOTE_HEAP_ADDR && fl->cctx->vmcount) {
struct qcom_scm_vmperm perm;
perm.vmid = QCOM_SCM_VMID_HLOS;
perm.perm = QCOM_SCM_PERM_RWX;
err = qcom_scm_assign_mem(buf->phys, buf->size,
&fl->cctx->perms, &perm, 1);
if (err) {
dev_err(fl->sctx->dev, "Failed to assign memory phys 0x%llx size 0x%llx err %d",
buf->phys, buf->size, err);
goto err_assign;
}
}
spin_lock(&fl->lock);
list_add_tail(&buf->node, &fl->mmaps);
spin_unlock(&fl->lock);
if (copy_to_user((void __user *)argp, &req, sizeof(req))) {
err = -EFAULT;
goto err_assign;
}
dev_dbg(dev, "mmap\t\tpt 0x%09lx OK [len 0x%08llx]\n",
buf->raddr, buf->size);
return 0;
err_assign:
fastrpc_req_munmap_impl(fl, buf);
err_invoke:
fastrpc_buf_free(buf);
return err;
}
static int fastrpc_req_mem_unmap_impl(struct fastrpc_user *fl, struct fastrpc_mem_unmap *req)
{
struct fastrpc_invoke_args args[1] = { [0] = { 0 } };
struct fastrpc_map *map = NULL, *iter, *m;
struct fastrpc_mem_unmap_req_msg req_msg = { 0 };
int err = 0;
u32 sc;
struct device *dev = fl->sctx->dev;
spin_lock(&fl->lock);
list_for_each_entry_safe(iter, m, &fl->maps, node) {
if ((req->fd < 0 || iter->fd == req->fd) && (iter->raddr == req->vaddr)) {
map = iter;
break;
}
}
spin_unlock(&fl->lock);
if (!map) {
dev_err(dev, "map not in list\n");
return -EINVAL;
}
req_msg.pgid = fl->tgid;
req_msg.len = map->len;
req_msg.vaddrin = map->raddr;
req_msg.fd = map->fd;
args[0].ptr = (u64) (uintptr_t) &req_msg;
args[0].length = sizeof(req_msg);
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MEM_UNMAP, 1, 0);
err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc,
&args[0]);
fastrpc_map_put(map);
if (err)
dev_err(dev, "unmmap\tpt fd = %d, 0x%09llx error\n", map->fd, map->raddr);
return err;
}
static int fastrpc_req_mem_unmap(struct fastrpc_user *fl, char __user *argp)
{
struct fastrpc_mem_unmap req;
if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
return fastrpc_req_mem_unmap_impl(fl, &req);
}
static int fastrpc_req_mem_map(struct fastrpc_user *fl, char __user *argp)
{
struct fastrpc_invoke_args args[4] = { [0 ... 3] = { 0 } };
struct fastrpc_mem_map_req_msg req_msg = { 0 };
struct fastrpc_mmap_rsp_msg rsp_msg = { 0 };
struct fastrpc_mem_unmap req_unmap = { 0 };
struct fastrpc_phy_page pages = { 0 };
struct fastrpc_mem_map req;
struct device *dev = fl->sctx->dev;
struct fastrpc_map *map = NULL;
int err;
u32 sc;
if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
/* create SMMU mapping */
err = fastrpc_map_create(fl, req.fd, req.length, 0, &map);
if (err) {
dev_err(dev, "failed to map buffer, fd = %d\n", req.fd);
return err;
}
req_msg.pgid = fl->tgid;
req_msg.fd = req.fd;
req_msg.offset = req.offset;
req_msg.vaddrin = req.vaddrin;
map->va = (void *) (uintptr_t) req.vaddrin;
req_msg.flags = req.flags;
req_msg.num = sizeof(pages);
req_msg.data_len = 0;
args[0].ptr = (u64) (uintptr_t) &req_msg;
args[0].length = sizeof(req_msg);
pages.addr = map->phys;
pages.size = map->size;
args[1].ptr = (u64) (uintptr_t) &pages;
args[1].length = sizeof(pages);
args[2].ptr = (u64) (uintptr_t) &pages;
args[2].length = 0;
args[3].ptr = (u64) (uintptr_t) &rsp_msg;
args[3].length = sizeof(rsp_msg);
sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MEM_MAP, 3, 1);
err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, &args[0]);
if (err) {
dev_err(dev, "mem mmap error, fd %d, vaddr %llx, size %lld\n",
req.fd, req.vaddrin, map->size);
goto err_invoke;
}
/* update the buffer to be able to deallocate the memory on the DSP */
map->raddr = rsp_msg.vaddr;
/* let the client know the address to use */
req.vaddrout = rsp_msg.vaddr;
if (copy_to_user((void __user *)argp, &req, sizeof(req))) {
/* unmap the memory and release the buffer */
req_unmap.vaddr = (uintptr_t) rsp_msg.vaddr;
req_unmap.length = map->size;
fastrpc_req_mem_unmap_impl(fl, &req_unmap);
return -EFAULT;
}
return 0;
err_invoke:
fastrpc_map_put(map);
return err;
}
static long fastrpc_device_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct fastrpc_user *fl = (struct fastrpc_user *)file->private_data;
char __user *argp = (char __user *)arg;
int err;
switch (cmd) {
case FASTRPC_IOCTL_INVOKE:
err = fastrpc_invoke(fl, argp);
break;
case FASTRPC_IOCTL_INIT_ATTACH:
err = fastrpc_init_attach(fl, ROOT_PD);
break;
case FASTRPC_IOCTL_INIT_ATTACH_SNS:
err = fastrpc_init_attach(fl, SENSORS_PD);
break;
case FASTRPC_IOCTL_INIT_CREATE_STATIC:
err = fastrpc_init_create_static_process(fl, argp);
break;
case FASTRPC_IOCTL_INIT_CREATE:
err = fastrpc_init_create_process(fl, argp);
break;
case FASTRPC_IOCTL_ALLOC_DMA_BUFF:
err = fastrpc_dmabuf_alloc(fl, argp);
break;
case FASTRPC_IOCTL_MMAP:
err = fastrpc_req_mmap(fl, argp);
break;
case FASTRPC_IOCTL_MUNMAP:
err = fastrpc_req_munmap(fl, argp);
break;
case FASTRPC_IOCTL_MEM_MAP:
err = fastrpc_req_mem_map(fl, argp);
break;
case FASTRPC_IOCTL_MEM_UNMAP:
err = fastrpc_req_mem_unmap(fl, argp);
break;
case FASTRPC_IOCTL_GET_DSP_INFO:
err = fastrpc_get_dsp_info(fl, argp);
break;
default:
err = -ENOTTY;
break;
}
return err;
}
static const struct file_operations fastrpc_fops = {
.open = fastrpc_device_open,
.release = fastrpc_device_release,
.unlocked_ioctl = fastrpc_device_ioctl,
.compat_ioctl = fastrpc_device_ioctl,
};
static int fastrpc_cb_probe(struct platform_device *pdev)
{
struct fastrpc_channel_ctx *cctx;
struct fastrpc_session_ctx *sess;
struct device *dev = &pdev->dev;
int i, sessions = 0;
unsigned long flags;
int rc;
cctx = dev_get_drvdata(dev->parent);
if (!cctx)
return -EINVAL;
of_property_read_u32(dev->of_node, "qcom,nsessions", &sessions);
spin_lock_irqsave(&cctx->lock, flags);
if (cctx->sesscount >= FASTRPC_MAX_SESSIONS) {
dev_err(&pdev->dev, "too many sessions\n");
spin_unlock_irqrestore(&cctx->lock, flags);
return -ENOSPC;
}
sess = &cctx->session[cctx->sesscount++];
sess->used = false;
sess->valid = true;
sess->dev = dev;
dev_set_drvdata(dev, sess);
if (of_property_read_u32(dev->of_node, "reg", &sess->sid))
dev_info(dev, "FastRPC Session ID not specified in DT\n");
if (sessions > 0) {
struct fastrpc_session_ctx *dup_sess;
for (i = 1; i < sessions; i++) {
if (cctx->sesscount >= FASTRPC_MAX_SESSIONS)
break;
dup_sess = &cctx->session[cctx->sesscount++];
memcpy(dup_sess, sess, sizeof(*dup_sess));
}
}
spin_unlock_irqrestore(&cctx->lock, flags);
rc = dma_set_mask(dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(dev, "32-bit DMA enable failed\n");
return rc;
}
return 0;
}
static int fastrpc_cb_remove(struct platform_device *pdev)
{
struct fastrpc_channel_ctx *cctx = dev_get_drvdata(pdev->dev.parent);
struct fastrpc_session_ctx *sess = dev_get_drvdata(&pdev->dev);
unsigned long flags;
int i;
spin_lock_irqsave(&cctx->lock, flags);
for (i = 1; i < FASTRPC_MAX_SESSIONS; i++) {
if (cctx->session[i].sid == sess->sid) {
cctx->session[i].valid = false;
cctx->sesscount--;
}
}
spin_unlock_irqrestore(&cctx->lock, flags);
return 0;
}
static const struct of_device_id fastrpc_match_table[] = {
{ .compatible = "qcom,fastrpc-compute-cb", },
{}
};
static struct platform_driver fastrpc_cb_driver = {
.probe = fastrpc_cb_probe,
.remove = fastrpc_cb_remove,
.driver = {
.name = "qcom,fastrpc-cb",
.of_match_table = fastrpc_match_table,
.suppress_bind_attrs = true,
},
};
static int fastrpc_device_register(struct device *dev, struct fastrpc_channel_ctx *cctx,
bool is_secured, const char *domain)
{
struct fastrpc_device *fdev;
int err;
fdev = devm_kzalloc(dev, sizeof(*fdev), GFP_KERNEL);
if (!fdev)
return -ENOMEM;
fdev->secure = is_secured;
fdev->cctx = cctx;
fdev->miscdev.minor = MISC_DYNAMIC_MINOR;
fdev->miscdev.fops = &fastrpc_fops;
fdev->miscdev.name = devm_kasprintf(dev, GFP_KERNEL, "fastrpc-%s%s",
domain, is_secured ? "-secure" : "");
if (!fdev->miscdev.name)
return -ENOMEM;
err = misc_register(&fdev->miscdev);
if (!err) {
if (is_secured)
cctx->secure_fdevice = fdev;
else
cctx->fdevice = fdev;
}
return err;
}
static int fastrpc_rpmsg_probe(struct rpmsg_device *rpdev)
{
struct device *rdev = &rpdev->dev;
struct fastrpc_channel_ctx *data;
int i, err, domain_id = -1, vmcount;
const char *domain;
bool secure_dsp;
unsigned int vmids[FASTRPC_MAX_VMIDS];
err = of_property_read_string(rdev->of_node, "label", &domain);
if (err) {
dev_info(rdev, "FastRPC Domain not specified in DT\n");
return err;
}
for (i = 0; i <= CDSP_DOMAIN_ID; i++) {
if (!strcmp(domains[i], domain)) {
domain_id = i;
break;
}
}
if (domain_id < 0) {
dev_info(rdev, "FastRPC Invalid Domain ID %d\n", domain_id);
return -EINVAL;
}
if (of_reserved_mem_device_init_by_idx(rdev, rdev->of_node, 0))
dev_info(rdev, "no reserved DMA memory for FASTRPC\n");
vmcount = of_property_read_variable_u32_array(rdev->of_node,
"qcom,vmids", &vmids[0], 0, FASTRPC_MAX_VMIDS);
if (vmcount < 0)
vmcount = 0;
else if (!qcom_scm_is_available())
return -EPROBE_DEFER;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
if (vmcount) {
data->vmcount = vmcount;
data->perms = BIT(QCOM_SCM_VMID_HLOS);
for (i = 0; i < data->vmcount; i++) {
data->vmperms[i].vmid = vmids[i];
data->vmperms[i].perm = QCOM_SCM_PERM_RWX;
}
}
secure_dsp = !(of_property_read_bool(rdev->of_node, "qcom,non-secure-domain"));
data->secure = secure_dsp;
switch (domain_id) {
case ADSP_DOMAIN_ID:
case MDSP_DOMAIN_ID:
case SDSP_DOMAIN_ID:
/* Unsigned PD offloading is only supported on CDSP*/
data->unsigned_support = false;
err = fastrpc_device_register(rdev, data, secure_dsp, domains[domain_id]);
if (err)
goto fdev_error;
break;
case CDSP_DOMAIN_ID:
data->unsigned_support = true;
/* Create both device nodes so that we can allow both Signed and Unsigned PD */
err = fastrpc_device_register(rdev, data, true, domains[domain_id]);
if (err)
goto fdev_error;
err = fastrpc_device_register(rdev, data, false, domains[domain_id]);
if (err)
goto fdev_error;
break;
default:
err = -EINVAL;
goto fdev_error;
}
kref_init(&data->refcount);
dev_set_drvdata(&rpdev->dev, data);
rdev->dma_mask = &data->dma_mask;
dma_set_mask_and_coherent(rdev, DMA_BIT_MASK(32));
INIT_LIST_HEAD(&data->users);
INIT_LIST_HEAD(&data->invoke_interrupted_mmaps);
spin_lock_init(&data->lock);
idr_init(&data->ctx_idr);
data->domain_id = domain_id;
data->rpdev = rpdev;
err = of_platform_populate(rdev->of_node, NULL, NULL, rdev);
if (err)
goto populate_error;
return 0;
populate_error:
if (data->fdevice)
misc_deregister(&data->fdevice->miscdev);
if (data->secure_fdevice)
misc_deregister(&data->secure_fdevice->miscdev);
fdev_error:
kfree(data);
return err;
}
static void fastrpc_notify_users(struct fastrpc_user *user)
{
struct fastrpc_invoke_ctx *ctx;
spin_lock(&user->lock);
list_for_each_entry(ctx, &user->pending, node) {
ctx->retval = -EPIPE;
complete(&ctx->work);
}
spin_unlock(&user->lock);
}
static void fastrpc_rpmsg_remove(struct rpmsg_device *rpdev)
{
struct fastrpc_channel_ctx *cctx = dev_get_drvdata(&rpdev->dev);
struct fastrpc_buf *buf, *b;
struct fastrpc_user *user;
unsigned long flags;
/* No invocations past this point */
spin_lock_irqsave(&cctx->lock, flags);
cctx->rpdev = NULL;
list_for_each_entry(user, &cctx->users, user)
fastrpc_notify_users(user);
spin_unlock_irqrestore(&cctx->lock, flags);
if (cctx->fdevice)
misc_deregister(&cctx->fdevice->miscdev);
if (cctx->secure_fdevice)
misc_deregister(&cctx->secure_fdevice->miscdev);
list_for_each_entry_safe(buf, b, &cctx->invoke_interrupted_mmaps, node)
list_del(&buf->node);
if (cctx->remote_heap)
fastrpc_buf_free(cctx->remote_heap);
of_platform_depopulate(&rpdev->dev);
fastrpc_channel_ctx_put(cctx);
}
static int fastrpc_rpmsg_callback(struct rpmsg_device *rpdev, void *data,
int len, void *priv, u32 addr)
{
struct fastrpc_channel_ctx *cctx = dev_get_drvdata(&rpdev->dev);
struct fastrpc_invoke_rsp *rsp = data;
struct fastrpc_invoke_ctx *ctx;
unsigned long flags;
unsigned long ctxid;
if (len < sizeof(*rsp))
return -EINVAL;
ctxid = ((rsp->ctx & FASTRPC_CTXID_MASK) >> 4);
spin_lock_irqsave(&cctx->lock, flags);
ctx = idr_find(&cctx->ctx_idr, ctxid);
spin_unlock_irqrestore(&cctx->lock, flags);
if (!ctx) {
dev_err(&rpdev->dev, "No context ID matches response\n");
return -ENOENT;
}
ctx->retval = rsp->retval;
complete(&ctx->work);
/*
* The DMA buffer associated with the context cannot be freed in
* interrupt context so schedule it through a worker thread to
* avoid a kernel BUG.
*/
schedule_work(&ctx->put_work);
return 0;
}
static const struct of_device_id fastrpc_rpmsg_of_match[] = {
{ .compatible = "qcom,fastrpc" },
{ },
};
MODULE_DEVICE_TABLE(of, fastrpc_rpmsg_of_match);
static struct rpmsg_driver fastrpc_driver = {
.probe = fastrpc_rpmsg_probe,
.remove = fastrpc_rpmsg_remove,
.callback = fastrpc_rpmsg_callback,
.drv = {
.name = "qcom,fastrpc",
.of_match_table = fastrpc_rpmsg_of_match,
},
};
static int fastrpc_init(void)
{
int ret;
ret = platform_driver_register(&fastrpc_cb_driver);
if (ret < 0) {
pr_err("fastrpc: failed to register cb driver\n");
return ret;
}
ret = register_rpmsg_driver(&fastrpc_driver);
if (ret < 0) {
pr_err("fastrpc: failed to register rpmsg driver\n");
platform_driver_unregister(&fastrpc_cb_driver);
return ret;
}
return 0;
}
module_init(fastrpc_init);
static void fastrpc_exit(void)
{
platform_driver_unregister(&fastrpc_cb_driver);
unregister_rpmsg_driver(&fastrpc_driver);
}
module_exit(fastrpc_exit);
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(DMA_BUF);