| /* |
| * Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst) |
| * |
| * Based on bo.c which bears the following copyright notice, |
| * but is dual licensed: |
| * |
| * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| /* |
| * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| */ |
| |
| #include <linux/reservation.h> |
| #include <linux/export.h> |
| |
| /** |
| * DOC: Reservation Object Overview |
| * |
| * The reservation object provides a mechanism to manage shared and |
| * exclusive fences associated with a buffer. A reservation object |
| * can have attached one exclusive fence (normally associated with |
| * write operations) or N shared fences (read operations). The RCU |
| * mechanism is used to protect read access to fences from locked |
| * write-side updates. |
| */ |
| |
| DEFINE_WD_CLASS(reservation_ww_class); |
| EXPORT_SYMBOL(reservation_ww_class); |
| |
| struct lock_class_key reservation_seqcount_class; |
| EXPORT_SYMBOL(reservation_seqcount_class); |
| |
| const char reservation_seqcount_string[] = "reservation_seqcount"; |
| EXPORT_SYMBOL(reservation_seqcount_string); |
| |
| /** |
| * reservation_object_reserve_shared - Reserve space to add a shared |
| * fence to a reservation_object. |
| * @obj: reservation object |
| * |
| * Should be called before reservation_object_add_shared_fence(). Must |
| * be called with obj->lock held. |
| * |
| * RETURNS |
| * Zero for success, or -errno |
| */ |
| int reservation_object_reserve_shared(struct reservation_object *obj) |
| { |
| struct reservation_object_list *fobj, *old; |
| u32 max; |
| |
| old = reservation_object_get_list(obj); |
| |
| if (old && old->shared_max) { |
| if (old->shared_count < old->shared_max) { |
| /* perform an in-place update */ |
| kfree(obj->staged); |
| obj->staged = NULL; |
| return 0; |
| } else |
| max = old->shared_max * 2; |
| } else |
| max = 4; |
| |
| /* |
| * resize obj->staged or allocate if it doesn't exist, |
| * noop if already correct size |
| */ |
| fobj = krealloc(obj->staged, offsetof(typeof(*fobj), shared[max]), |
| GFP_KERNEL); |
| if (!fobj) |
| return -ENOMEM; |
| |
| obj->staged = fobj; |
| fobj->shared_max = max; |
| return 0; |
| } |
| EXPORT_SYMBOL(reservation_object_reserve_shared); |
| |
| static void |
| reservation_object_add_shared_inplace(struct reservation_object *obj, |
| struct reservation_object_list *fobj, |
| struct dma_fence *fence) |
| { |
| struct dma_fence *signaled = NULL; |
| u32 i, signaled_idx; |
| |
| dma_fence_get(fence); |
| |
| preempt_disable(); |
| write_seqcount_begin(&obj->seq); |
| |
| for (i = 0; i < fobj->shared_count; ++i) { |
| struct dma_fence *old_fence; |
| |
| old_fence = rcu_dereference_protected(fobj->shared[i], |
| reservation_object_held(obj)); |
| |
| if (old_fence->context == fence->context) { |
| /* memory barrier is added by write_seqcount_begin */ |
| RCU_INIT_POINTER(fobj->shared[i], fence); |
| write_seqcount_end(&obj->seq); |
| preempt_enable(); |
| |
| dma_fence_put(old_fence); |
| return; |
| } |
| |
| if (!signaled && dma_fence_is_signaled(old_fence)) { |
| signaled = old_fence; |
| signaled_idx = i; |
| } |
| } |
| |
| /* |
| * memory barrier is added by write_seqcount_begin, |
| * fobj->shared_count is protected by this lock too |
| */ |
| if (signaled) { |
| RCU_INIT_POINTER(fobj->shared[signaled_idx], fence); |
| } else { |
| BUG_ON(fobj->shared_count >= fobj->shared_max); |
| RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence); |
| fobj->shared_count++; |
| } |
| |
| write_seqcount_end(&obj->seq); |
| preempt_enable(); |
| |
| dma_fence_put(signaled); |
| } |
| |
| static void |
| reservation_object_add_shared_replace(struct reservation_object *obj, |
| struct reservation_object_list *old, |
| struct reservation_object_list *fobj, |
| struct dma_fence *fence) |
| { |
| unsigned i, j, k; |
| |
| dma_fence_get(fence); |
| |
| if (!old) { |
| RCU_INIT_POINTER(fobj->shared[0], fence); |
| fobj->shared_count = 1; |
| goto done; |
| } |
| |
| /* |
| * no need to bump fence refcounts, rcu_read access |
| * requires the use of kref_get_unless_zero, and the |
| * references from the old struct are carried over to |
| * the new. |
| */ |
| for (i = 0, j = 0, k = fobj->shared_max; i < old->shared_count; ++i) { |
| struct dma_fence *check; |
| |
| check = rcu_dereference_protected(old->shared[i], |
| reservation_object_held(obj)); |
| |
| if (check->context == fence->context || |
| dma_fence_is_signaled(check)) |
| RCU_INIT_POINTER(fobj->shared[--k], check); |
| else |
| RCU_INIT_POINTER(fobj->shared[j++], check); |
| } |
| fobj->shared_count = j; |
| RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence); |
| fobj->shared_count++; |
| |
| done: |
| preempt_disable(); |
| write_seqcount_begin(&obj->seq); |
| /* |
| * RCU_INIT_POINTER can be used here, |
| * seqcount provides the necessary barriers |
| */ |
| RCU_INIT_POINTER(obj->fence, fobj); |
| write_seqcount_end(&obj->seq); |
| preempt_enable(); |
| |
| if (!old) |
| return; |
| |
| /* Drop the references to the signaled fences */ |
| for (i = k; i < fobj->shared_max; ++i) { |
| struct dma_fence *f; |
| |
| f = rcu_dereference_protected(fobj->shared[i], |
| reservation_object_held(obj)); |
| dma_fence_put(f); |
| } |
| kfree_rcu(old, rcu); |
| } |
| |
| /** |
| * reservation_object_add_shared_fence - Add a fence to a shared slot |
| * @obj: the reservation object |
| * @fence: the shared fence to add |
| * |
| * Add a fence to a shared slot, obj->lock must be held, and |
| * reservation_object_reserve_shared() has been called. |
| */ |
| void reservation_object_add_shared_fence(struct reservation_object *obj, |
| struct dma_fence *fence) |
| { |
| struct reservation_object_list *old, *fobj = obj->staged; |
| |
| old = reservation_object_get_list(obj); |
| obj->staged = NULL; |
| |
| if (!fobj) |
| reservation_object_add_shared_inplace(obj, old, fence); |
| else |
| reservation_object_add_shared_replace(obj, old, fobj, fence); |
| } |
| EXPORT_SYMBOL(reservation_object_add_shared_fence); |
| |
| /** |
| * reservation_object_add_excl_fence - Add an exclusive fence. |
| * @obj: the reservation object |
| * @fence: the shared fence to add |
| * |
| * Add a fence to the exclusive slot. The obj->lock must be held. |
| */ |
| void reservation_object_add_excl_fence(struct reservation_object *obj, |
| struct dma_fence *fence) |
| { |
| struct dma_fence *old_fence = reservation_object_get_excl(obj); |
| struct reservation_object_list *old; |
| u32 i = 0; |
| |
| old = reservation_object_get_list(obj); |
| if (old) |
| i = old->shared_count; |
| |
| if (fence) |
| dma_fence_get(fence); |
| |
| preempt_disable(); |
| write_seqcount_begin(&obj->seq); |
| /* write_seqcount_begin provides the necessary memory barrier */ |
| RCU_INIT_POINTER(obj->fence_excl, fence); |
| if (old) |
| old->shared_count = 0; |
| write_seqcount_end(&obj->seq); |
| preempt_enable(); |
| |
| /* inplace update, no shared fences */ |
| while (i--) |
| dma_fence_put(rcu_dereference_protected(old->shared[i], |
| reservation_object_held(obj))); |
| |
| dma_fence_put(old_fence); |
| } |
| EXPORT_SYMBOL(reservation_object_add_excl_fence); |
| |
| /** |
| * reservation_object_copy_fences - Copy all fences from src to dst. |
| * @dst: the destination reservation object |
| * @src: the source reservation object |
| * |
| * Copy all fences from src to dst. dst-lock must be held. |
| */ |
| int reservation_object_copy_fences(struct reservation_object *dst, |
| struct reservation_object *src) |
| { |
| struct reservation_object_list *src_list, *dst_list; |
| struct dma_fence *old, *new; |
| size_t size; |
| unsigned i; |
| |
| rcu_read_lock(); |
| src_list = rcu_dereference(src->fence); |
| |
| retry: |
| if (src_list) { |
| unsigned shared_count = src_list->shared_count; |
| |
| size = offsetof(typeof(*src_list), shared[shared_count]); |
| rcu_read_unlock(); |
| |
| dst_list = kmalloc(size, GFP_KERNEL); |
| if (!dst_list) |
| return -ENOMEM; |
| |
| rcu_read_lock(); |
| src_list = rcu_dereference(src->fence); |
| if (!src_list || src_list->shared_count > shared_count) { |
| kfree(dst_list); |
| goto retry; |
| } |
| |
| dst_list->shared_count = 0; |
| dst_list->shared_max = shared_count; |
| for (i = 0; i < src_list->shared_count; ++i) { |
| struct dma_fence *fence; |
| |
| fence = rcu_dereference(src_list->shared[i]); |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, |
| &fence->flags)) |
| continue; |
| |
| if (!dma_fence_get_rcu(fence)) { |
| kfree(dst_list); |
| src_list = rcu_dereference(src->fence); |
| goto retry; |
| } |
| |
| if (dma_fence_is_signaled(fence)) { |
| dma_fence_put(fence); |
| continue; |
| } |
| |
| rcu_assign_pointer(dst_list->shared[dst_list->shared_count++], fence); |
| } |
| } else { |
| dst_list = NULL; |
| } |
| |
| new = dma_fence_get_rcu_safe(&src->fence_excl); |
| rcu_read_unlock(); |
| |
| kfree(dst->staged); |
| dst->staged = NULL; |
| |
| src_list = reservation_object_get_list(dst); |
| old = reservation_object_get_excl(dst); |
| |
| preempt_disable(); |
| write_seqcount_begin(&dst->seq); |
| /* write_seqcount_begin provides the necessary memory barrier */ |
| RCU_INIT_POINTER(dst->fence_excl, new); |
| RCU_INIT_POINTER(dst->fence, dst_list); |
| write_seqcount_end(&dst->seq); |
| preempt_enable(); |
| |
| if (src_list) |
| kfree_rcu(src_list, rcu); |
| dma_fence_put(old); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(reservation_object_copy_fences); |
| |
| /** |
| * reservation_object_get_fences_rcu - Get an object's shared and exclusive |
| * fences without update side lock held |
| * @obj: the reservation object |
| * @pfence_excl: the returned exclusive fence (or NULL) |
| * @pshared_count: the number of shared fences returned |
| * @pshared: the array of shared fence ptrs returned (array is krealloc'd to |
| * the required size, and must be freed by caller) |
| * |
| * Retrieve all fences from the reservation object. If the pointer for the |
| * exclusive fence is not specified the fence is put into the array of the |
| * shared fences as well. Returns either zero or -ENOMEM. |
| */ |
| int reservation_object_get_fences_rcu(struct reservation_object *obj, |
| struct dma_fence **pfence_excl, |
| unsigned *pshared_count, |
| struct dma_fence ***pshared) |
| { |
| struct dma_fence **shared = NULL; |
| struct dma_fence *fence_excl; |
| unsigned int shared_count; |
| int ret = 1; |
| |
| do { |
| struct reservation_object_list *fobj; |
| unsigned int i, seq; |
| size_t sz = 0; |
| |
| shared_count = i = 0; |
| |
| rcu_read_lock(); |
| seq = read_seqcount_begin(&obj->seq); |
| |
| fence_excl = rcu_dereference(obj->fence_excl); |
| if (fence_excl && !dma_fence_get_rcu(fence_excl)) |
| goto unlock; |
| |
| fobj = rcu_dereference(obj->fence); |
| if (fobj) |
| sz += sizeof(*shared) * fobj->shared_max; |
| |
| if (!pfence_excl && fence_excl) |
| sz += sizeof(*shared); |
| |
| if (sz) { |
| struct dma_fence **nshared; |
| |
| nshared = krealloc(shared, sz, |
| GFP_NOWAIT | __GFP_NOWARN); |
| if (!nshared) { |
| rcu_read_unlock(); |
| nshared = krealloc(shared, sz, GFP_KERNEL); |
| if (nshared) { |
| shared = nshared; |
| continue; |
| } |
| |
| ret = -ENOMEM; |
| break; |
| } |
| shared = nshared; |
| shared_count = fobj ? fobj->shared_count : 0; |
| for (i = 0; i < shared_count; ++i) { |
| shared[i] = rcu_dereference(fobj->shared[i]); |
| if (!dma_fence_get_rcu(shared[i])) |
| break; |
| } |
| |
| if (!pfence_excl && fence_excl) { |
| shared[i] = fence_excl; |
| fence_excl = NULL; |
| ++i; |
| ++shared_count; |
| } |
| } |
| |
| if (i != shared_count || read_seqcount_retry(&obj->seq, seq)) { |
| while (i--) |
| dma_fence_put(shared[i]); |
| dma_fence_put(fence_excl); |
| goto unlock; |
| } |
| |
| ret = 0; |
| unlock: |
| rcu_read_unlock(); |
| } while (ret); |
| |
| if (!shared_count) { |
| kfree(shared); |
| shared = NULL; |
| } |
| |
| *pshared_count = shared_count; |
| *pshared = shared; |
| if (pfence_excl) |
| *pfence_excl = fence_excl; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(reservation_object_get_fences_rcu); |
| |
| /** |
| * reservation_object_wait_timeout_rcu - Wait on reservation's objects |
| * shared and/or exclusive fences. |
| * @obj: the reservation object |
| * @wait_all: if true, wait on all fences, else wait on just exclusive fence |
| * @intr: if true, do interruptible wait |
| * @timeout: timeout value in jiffies or zero to return immediately |
| * |
| * RETURNS |
| * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or |
| * greater than zer on success. |
| */ |
| long reservation_object_wait_timeout_rcu(struct reservation_object *obj, |
| bool wait_all, bool intr, |
| unsigned long timeout) |
| { |
| struct dma_fence *fence; |
| unsigned seq, shared_count; |
| long ret = timeout ? timeout : 1; |
| int i; |
| |
| retry: |
| shared_count = 0; |
| seq = read_seqcount_begin(&obj->seq); |
| rcu_read_lock(); |
| i = -1; |
| |
| fence = rcu_dereference(obj->fence_excl); |
| if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { |
| if (!dma_fence_get_rcu(fence)) |
| goto unlock_retry; |
| |
| if (dma_fence_is_signaled(fence)) { |
| dma_fence_put(fence); |
| fence = NULL; |
| } |
| |
| } else { |
| fence = NULL; |
| } |
| |
| if (wait_all) { |
| struct reservation_object_list *fobj = |
| rcu_dereference(obj->fence); |
| |
| if (fobj) |
| shared_count = fobj->shared_count; |
| |
| for (i = 0; !fence && i < shared_count; ++i) { |
| struct dma_fence *lfence = rcu_dereference(fobj->shared[i]); |
| |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, |
| &lfence->flags)) |
| continue; |
| |
| if (!dma_fence_get_rcu(lfence)) |
| goto unlock_retry; |
| |
| if (dma_fence_is_signaled(lfence)) { |
| dma_fence_put(lfence); |
| continue; |
| } |
| |
| fence = lfence; |
| break; |
| } |
| } |
| |
| rcu_read_unlock(); |
| if (fence) { |
| if (read_seqcount_retry(&obj->seq, seq)) { |
| dma_fence_put(fence); |
| goto retry; |
| } |
| |
| ret = dma_fence_wait_timeout(fence, intr, ret); |
| dma_fence_put(fence); |
| if (ret > 0 && wait_all && (i + 1 < shared_count)) |
| goto retry; |
| } |
| return ret; |
| |
| unlock_retry: |
| rcu_read_unlock(); |
| goto retry; |
| } |
| EXPORT_SYMBOL_GPL(reservation_object_wait_timeout_rcu); |
| |
| |
| static inline int |
| reservation_object_test_signaled_single(struct dma_fence *passed_fence) |
| { |
| struct dma_fence *fence, *lfence = passed_fence; |
| int ret = 1; |
| |
| if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &lfence->flags)) { |
| fence = dma_fence_get_rcu(lfence); |
| if (!fence) |
| return -1; |
| |
| ret = !!dma_fence_is_signaled(fence); |
| dma_fence_put(fence); |
| } |
| return ret; |
| } |
| |
| /** |
| * reservation_object_test_signaled_rcu - Test if a reservation object's |
| * fences have been signaled. |
| * @obj: the reservation object |
| * @test_all: if true, test all fences, otherwise only test the exclusive |
| * fence |
| * |
| * RETURNS |
| * true if all fences signaled, else false |
| */ |
| bool reservation_object_test_signaled_rcu(struct reservation_object *obj, |
| bool test_all) |
| { |
| unsigned seq, shared_count; |
| int ret; |
| |
| rcu_read_lock(); |
| retry: |
| ret = true; |
| shared_count = 0; |
| seq = read_seqcount_begin(&obj->seq); |
| |
| if (test_all) { |
| unsigned i; |
| |
| struct reservation_object_list *fobj = |
| rcu_dereference(obj->fence); |
| |
| if (fobj) |
| shared_count = fobj->shared_count; |
| |
| for (i = 0; i < shared_count; ++i) { |
| struct dma_fence *fence = rcu_dereference(fobj->shared[i]); |
| |
| ret = reservation_object_test_signaled_single(fence); |
| if (ret < 0) |
| goto retry; |
| else if (!ret) |
| break; |
| } |
| |
| if (read_seqcount_retry(&obj->seq, seq)) |
| goto retry; |
| } |
| |
| if (!shared_count) { |
| struct dma_fence *fence_excl = rcu_dereference(obj->fence_excl); |
| |
| if (fence_excl) { |
| ret = reservation_object_test_signaled_single( |
| fence_excl); |
| if (ret < 0) |
| goto retry; |
| |
| if (read_seqcount_retry(&obj->seq, seq)) |
| goto retry; |
| } |
| } |
| |
| rcu_read_unlock(); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(reservation_object_test_signaled_rcu); |