| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Slab allocator functions that are independent of the allocator strategy | 
 |  * | 
 |  * (C) 2012 Christoph Lameter <cl@linux.com> | 
 |  */ | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/poison.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/kfence.h> | 
 | #include <linux/module.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/kasan.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/page.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/stackdepot.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/kmem.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #include "slab.h" | 
 |  | 
 | enum slab_state slab_state; | 
 | LIST_HEAD(slab_caches); | 
 | DEFINE_MUTEX(slab_mutex); | 
 | struct kmem_cache *kmem_cache; | 
 |  | 
 | static LIST_HEAD(slab_caches_to_rcu_destroy); | 
 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | 
 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | 
 | 		    slab_caches_to_rcu_destroy_workfn); | 
 |  | 
 | /* | 
 |  * Set of flags that will prevent slab merging | 
 |  */ | 
 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
 | 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ | 
 | 		SLAB_FAILSLAB | kasan_never_merge()) | 
 |  | 
 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ | 
 | 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) | 
 |  | 
 | /* | 
 |  * Merge control. If this is set then no merging of slab caches will occur. | 
 |  */ | 
 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); | 
 |  | 
 | static int __init setup_slab_nomerge(char *str) | 
 | { | 
 | 	slab_nomerge = true; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __init setup_slab_merge(char *str) | 
 | { | 
 | 	slab_nomerge = false; | 
 | 	return 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB | 
 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | 
 | __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); | 
 | #endif | 
 |  | 
 | __setup("slab_nomerge", setup_slab_nomerge); | 
 | __setup("slab_merge", setup_slab_merge); | 
 |  | 
 | /* | 
 |  * Determine the size of a slab object | 
 |  */ | 
 | unsigned int kmem_cache_size(struct kmem_cache *s) | 
 | { | 
 | 	return s->object_size; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_size); | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | static int kmem_cache_sanity_check(const char *name, unsigned int size) | 
 | { | 
 | 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { | 
 | 		pr_err("kmem_cache_create(%s) integrity check failed\n", name); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (s) | 
 | 			kmem_cache_free(s, p[i]); | 
 | 		else | 
 | 			kfree(p[i]); | 
 | 	} | 
 | } | 
 |  | 
 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, | 
 | 								void **p) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		void *x = p[i] = kmem_cache_alloc(s, flags); | 
 | 		if (!x) { | 
 | 			__kmem_cache_free_bulk(s, i, p); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Figure out what the alignment of the objects will be given a set of | 
 |  * flags, a user specified alignment and the size of the objects. | 
 |  */ | 
 | static unsigned int calculate_alignment(slab_flags_t flags, | 
 | 		unsigned int align, unsigned int size) | 
 | { | 
 | 	/* | 
 | 	 * If the user wants hardware cache aligned objects then follow that | 
 | 	 * suggestion if the object is sufficiently large. | 
 | 	 * | 
 | 	 * The hardware cache alignment cannot override the specified | 
 | 	 * alignment though. If that is greater then use it. | 
 | 	 */ | 
 | 	if (flags & SLAB_HWCACHE_ALIGN) { | 
 | 		unsigned int ralign; | 
 |  | 
 | 		ralign = cache_line_size(); | 
 | 		while (size <= ralign / 2) | 
 | 			ralign /= 2; | 
 | 		align = max(align, ralign); | 
 | 	} | 
 |  | 
 | 	align = max(align, arch_slab_minalign()); | 
 |  | 
 | 	return ALIGN(align, sizeof(void *)); | 
 | } | 
 |  | 
 | /* | 
 |  * Find a mergeable slab cache | 
 |  */ | 
 | int slab_unmergeable(struct kmem_cache *s) | 
 | { | 
 | 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | 
 | 		return 1; | 
 |  | 
 | 	if (s->ctor) | 
 | 		return 1; | 
 |  | 
 | 	if (s->usersize) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * We may have set a slab to be unmergeable during bootstrap. | 
 | 	 */ | 
 | 	if (s->refcount < 0) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, | 
 | 		slab_flags_t flags, const char *name, void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (slab_nomerge) | 
 | 		return NULL; | 
 |  | 
 | 	if (ctor) | 
 | 		return NULL; | 
 |  | 
 | 	size = ALIGN(size, sizeof(void *)); | 
 | 	align = calculate_alignment(flags, align, size); | 
 | 	size = ALIGN(size, align); | 
 | 	flags = kmem_cache_flags(size, flags, name); | 
 |  | 
 | 	if (flags & SLAB_NEVER_MERGE) | 
 | 		return NULL; | 
 |  | 
 | 	list_for_each_entry_reverse(s, &slab_caches, list) { | 
 | 		if (slab_unmergeable(s)) | 
 | 			continue; | 
 |  | 
 | 		if (size > s->size) | 
 | 			continue; | 
 |  | 
 | 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Check if alignment is compatible. | 
 | 		 * Courtesy of Adrian Drzewiecki | 
 | 		 */ | 
 | 		if ((s->size & ~(align - 1)) != s->size) | 
 | 			continue; | 
 |  | 
 | 		if (s->size - size >= sizeof(void *)) | 
 | 			continue; | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_SLAB) && align && | 
 | 			(align > s->align || s->align % align)) | 
 | 			continue; | 
 |  | 
 | 		return s; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct kmem_cache *create_cache(const char *name, | 
 | 		unsigned int object_size, unsigned int align, | 
 | 		slab_flags_t flags, unsigned int useroffset, | 
 | 		unsigned int usersize, void (*ctor)(void *), | 
 | 		struct kmem_cache *root_cache) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON(useroffset + usersize > object_size)) | 
 | 		useroffset = usersize = 0; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | 
 | 	if (!s) | 
 | 		goto out; | 
 |  | 
 | 	s->name = name; | 
 | 	s->size = s->object_size = object_size; | 
 | 	s->align = align; | 
 | 	s->ctor = ctor; | 
 | 	s->useroffset = useroffset; | 
 | 	s->usersize = usersize; | 
 |  | 
 | 	err = __kmem_cache_create(s, flags); | 
 | 	if (err) | 
 | 		goto out_free_cache; | 
 |  | 
 | 	s->refcount = 1; | 
 | 	list_add(&s->list, &slab_caches); | 
 | out: | 
 | 	if (err) | 
 | 		return ERR_PTR(err); | 
 | 	return s; | 
 |  | 
 | out_free_cache: | 
 | 	kmem_cache_free(kmem_cache, s); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /** | 
 |  * kmem_cache_create_usercopy - Create a cache with a region suitable | 
 |  * for copying to userspace | 
 |  * @name: A string which is used in /proc/slabinfo to identify this cache. | 
 |  * @size: The size of objects to be created in this cache. | 
 |  * @align: The required alignment for the objects. | 
 |  * @flags: SLAB flags | 
 |  * @useroffset: Usercopy region offset | 
 |  * @usersize: Usercopy region size | 
 |  * @ctor: A constructor for the objects. | 
 |  * | 
 |  * Cannot be called within a interrupt, but can be interrupted. | 
 |  * The @ctor is run when new pages are allocated by the cache. | 
 |  * | 
 |  * The flags are | 
 |  * | 
 |  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
 |  * to catch references to uninitialised memory. | 
 |  * | 
 |  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check | 
 |  * for buffer overruns. | 
 |  * | 
 |  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
 |  * cacheline.  This can be beneficial if you're counting cycles as closely | 
 |  * as davem. | 
 |  * | 
 |  * Return: a pointer to the cache on success, NULL on failure. | 
 |  */ | 
 | struct kmem_cache * | 
 | kmem_cache_create_usercopy(const char *name, | 
 | 		  unsigned int size, unsigned int align, | 
 | 		  slab_flags_t flags, | 
 | 		  unsigned int useroffset, unsigned int usersize, | 
 | 		  void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *s = NULL; | 
 | 	const char *cache_name; | 
 | 	int err; | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	/* | 
 | 	 * If no slub_debug was enabled globally, the static key is not yet | 
 | 	 * enabled by setup_slub_debug(). Enable it if the cache is being | 
 | 	 * created with any of the debugging flags passed explicitly. | 
 | 	 * It's also possible that this is the first cache created with | 
 | 	 * SLAB_STORE_USER and we should init stack_depot for it. | 
 | 	 */ | 
 | 	if (flags & SLAB_DEBUG_FLAGS) | 
 | 		static_branch_enable(&slub_debug_enabled); | 
 | 	if (flags & SLAB_STORE_USER) | 
 | 		stack_depot_init(); | 
 | #endif | 
 |  | 
 | 	mutex_lock(&slab_mutex); | 
 |  | 
 | 	err = kmem_cache_sanity_check(name, size); | 
 | 	if (err) { | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Refuse requests with allocator specific flags */ | 
 | 	if (flags & ~SLAB_FLAGS_PERMITTED) { | 
 | 		err = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some allocators will constraint the set of valid flags to a subset | 
 | 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this | 
 | 	 * case, and we'll just provide them with a sanitized version of the | 
 | 	 * passed flags. | 
 | 	 */ | 
 | 	flags &= CACHE_CREATE_MASK; | 
 |  | 
 | 	/* Fail closed on bad usersize of useroffset values. */ | 
 | 	if (WARN_ON(!usersize && useroffset) || | 
 | 	    WARN_ON(size < usersize || size - usersize < useroffset)) | 
 | 		usersize = useroffset = 0; | 
 |  | 
 | 	if (!usersize) | 
 | 		s = __kmem_cache_alias(name, size, align, flags, ctor); | 
 | 	if (s) | 
 | 		goto out_unlock; | 
 |  | 
 | 	cache_name = kstrdup_const(name, GFP_KERNEL); | 
 | 	if (!cache_name) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	s = create_cache(cache_name, size, | 
 | 			 calculate_alignment(flags, align, size), | 
 | 			 flags, useroffset, usersize, ctor, NULL); | 
 | 	if (IS_ERR(s)) { | 
 | 		err = PTR_ERR(s); | 
 | 		kfree_const(cache_name); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&slab_mutex); | 
 |  | 
 | 	if (err) { | 
 | 		if (flags & SLAB_PANIC) | 
 | 			panic("%s: Failed to create slab '%s'. Error %d\n", | 
 | 				__func__, name, err); | 
 | 		else { | 
 | 			pr_warn("%s(%s) failed with error %d\n", | 
 | 				__func__, name, err); | 
 | 			dump_stack(); | 
 | 		} | 
 | 		return NULL; | 
 | 	} | 
 | 	return s; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_create_usercopy); | 
 |  | 
 | /** | 
 |  * kmem_cache_create - Create a cache. | 
 |  * @name: A string which is used in /proc/slabinfo to identify this cache. | 
 |  * @size: The size of objects to be created in this cache. | 
 |  * @align: The required alignment for the objects. | 
 |  * @flags: SLAB flags | 
 |  * @ctor: A constructor for the objects. | 
 |  * | 
 |  * Cannot be called within a interrupt, but can be interrupted. | 
 |  * The @ctor is run when new pages are allocated by the cache. | 
 |  * | 
 |  * The flags are | 
 |  * | 
 |  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
 |  * to catch references to uninitialised memory. | 
 |  * | 
 |  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check | 
 |  * for buffer overruns. | 
 |  * | 
 |  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
 |  * cacheline.  This can be beneficial if you're counting cycles as closely | 
 |  * as davem. | 
 |  * | 
 |  * Return: a pointer to the cache on success, NULL on failure. | 
 |  */ | 
 | struct kmem_cache * | 
 | kmem_cache_create(const char *name, unsigned int size, unsigned int align, | 
 | 		slab_flags_t flags, void (*ctor)(void *)) | 
 | { | 
 | 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, | 
 | 					  ctor); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_create); | 
 |  | 
 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) | 
 | { | 
 | 	LIST_HEAD(to_destroy); | 
 | 	struct kmem_cache *s, *s2; | 
 |  | 
 | 	/* | 
 | 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the | 
 | 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed | 
 | 	 * through RCU and the associated kmem_cache are dereferenced | 
 | 	 * while freeing the pages, so the kmem_caches should be freed only | 
 | 	 * after the pending RCU operations are finished.  As rcu_barrier() | 
 | 	 * is a pretty slow operation, we batch all pending destructions | 
 | 	 * asynchronously. | 
 | 	 */ | 
 | 	mutex_lock(&slab_mutex); | 
 | 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | 
 | 	mutex_unlock(&slab_mutex); | 
 |  | 
 | 	if (list_empty(&to_destroy)) | 
 | 		return; | 
 |  | 
 | 	rcu_barrier(); | 
 |  | 
 | 	list_for_each_entry_safe(s, s2, &to_destroy, list) { | 
 | 		debugfs_slab_release(s); | 
 | 		kfence_shutdown_cache(s); | 
 | #ifdef SLAB_SUPPORTS_SYSFS | 
 | 		sysfs_slab_release(s); | 
 | #else | 
 | 		slab_kmem_cache_release(s); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | static int shutdown_cache(struct kmem_cache *s) | 
 | { | 
 | 	/* free asan quarantined objects */ | 
 | 	kasan_cache_shutdown(s); | 
 |  | 
 | 	if (__kmem_cache_shutdown(s) != 0) | 
 | 		return -EBUSY; | 
 |  | 
 | 	list_del(&s->list); | 
 |  | 
 | 	if (s->flags & SLAB_TYPESAFE_BY_RCU) { | 
 | #ifdef SLAB_SUPPORTS_SYSFS | 
 | 		sysfs_slab_unlink(s); | 
 | #endif | 
 | 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy); | 
 | 		schedule_work(&slab_caches_to_rcu_destroy_work); | 
 | 	} else { | 
 | 		kfence_shutdown_cache(s); | 
 | 		debugfs_slab_release(s); | 
 | #ifdef SLAB_SUPPORTS_SYSFS | 
 | 		sysfs_slab_unlink(s); | 
 | 		sysfs_slab_release(s); | 
 | #else | 
 | 		slab_kmem_cache_release(s); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void slab_kmem_cache_release(struct kmem_cache *s) | 
 | { | 
 | 	__kmem_cache_release(s); | 
 | 	kfree_const(s->name); | 
 | 	kmem_cache_free(kmem_cache, s); | 
 | } | 
 |  | 
 | void kmem_cache_destroy(struct kmem_cache *s) | 
 | { | 
 | 	if (unlikely(!s) || !kasan_check_byte(s)) | 
 | 		return; | 
 |  | 
 | 	cpus_read_lock(); | 
 | 	mutex_lock(&slab_mutex); | 
 |  | 
 | 	s->refcount--; | 
 | 	if (s->refcount) | 
 | 		goto out_unlock; | 
 |  | 
 | 	WARN(shutdown_cache(s), | 
 | 	     "%s %s: Slab cache still has objects when called from %pS", | 
 | 	     __func__, s->name, (void *)_RET_IP_); | 
 | out_unlock: | 
 | 	mutex_unlock(&slab_mutex); | 
 | 	cpus_read_unlock(); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_destroy); | 
 |  | 
 | /** | 
 |  * kmem_cache_shrink - Shrink a cache. | 
 |  * @cachep: The cache to shrink. | 
 |  * | 
 |  * Releases as many slabs as possible for a cache. | 
 |  * To help debugging, a zero exit status indicates all slabs were released. | 
 |  * | 
 |  * Return: %0 if all slabs were released, non-zero otherwise | 
 |  */ | 
 | int kmem_cache_shrink(struct kmem_cache *cachep) | 
 | { | 
 | 	int ret; | 
 |  | 
 |  | 
 | 	kasan_cache_shrink(cachep); | 
 | 	ret = __kmem_cache_shrink(cachep); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_shrink); | 
 |  | 
 | bool slab_is_available(void) | 
 | { | 
 | 	return slab_state >= UP; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | /** | 
 |  * kmem_valid_obj - does the pointer reference a valid slab object? | 
 |  * @object: pointer to query. | 
 |  * | 
 |  * Return: %true if the pointer is to a not-yet-freed object from | 
 |  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer | 
 |  * is to an already-freed object, and %false otherwise. | 
 |  */ | 
 | bool kmem_valid_obj(void *object) | 
 | { | 
 | 	struct folio *folio; | 
 |  | 
 | 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */ | 
 | 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) | 
 | 		return false; | 
 | 	folio = virt_to_folio(object); | 
 | 	return folio_test_slab(folio); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kmem_valid_obj); | 
 |  | 
 | static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) | 
 | { | 
 | 	if (__kfence_obj_info(kpp, object, slab)) | 
 | 		return; | 
 | 	__kmem_obj_info(kpp, object, slab); | 
 | } | 
 |  | 
 | /** | 
 |  * kmem_dump_obj - Print available slab provenance information | 
 |  * @object: slab object for which to find provenance information. | 
 |  * | 
 |  * This function uses pr_cont(), so that the caller is expected to have | 
 |  * printed out whatever preamble is appropriate.  The provenance information | 
 |  * depends on the type of object and on how much debugging is enabled. | 
 |  * For a slab-cache object, the fact that it is a slab object is printed, | 
 |  * and, if available, the slab name, return address, and stack trace from | 
 |  * the allocation and last free path of that object. | 
 |  * | 
 |  * This function will splat if passed a pointer to a non-slab object. | 
 |  * If you are not sure what type of object you have, you should instead | 
 |  * use mem_dump_obj(). | 
 |  */ | 
 | void kmem_dump_obj(void *object) | 
 | { | 
 | 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; | 
 | 	int i; | 
 | 	struct slab *slab; | 
 | 	unsigned long ptroffset; | 
 | 	struct kmem_obj_info kp = { }; | 
 |  | 
 | 	if (WARN_ON_ONCE(!virt_addr_valid(object))) | 
 | 		return; | 
 | 	slab = virt_to_slab(object); | 
 | 	if (WARN_ON_ONCE(!slab)) { | 
 | 		pr_cont(" non-slab memory.\n"); | 
 | 		return; | 
 | 	} | 
 | 	kmem_obj_info(&kp, object, slab); | 
 | 	if (kp.kp_slab_cache) | 
 | 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); | 
 | 	else | 
 | 		pr_cont(" slab%s", cp); | 
 | 	if (is_kfence_address(object)) | 
 | 		pr_cont(" (kfence)"); | 
 | 	if (kp.kp_objp) | 
 | 		pr_cont(" start %px", kp.kp_objp); | 
 | 	if (kp.kp_data_offset) | 
 | 		pr_cont(" data offset %lu", kp.kp_data_offset); | 
 | 	if (kp.kp_objp) { | 
 | 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; | 
 | 		pr_cont(" pointer offset %lu", ptroffset); | 
 | 	} | 
 | 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) | 
 | 		pr_cont(" size %u", kp.kp_slab_cache->usersize); | 
 | 	if (kp.kp_ret) | 
 | 		pr_cont(" allocated at %pS\n", kp.kp_ret); | 
 | 	else | 
 | 		pr_cont("\n"); | 
 | 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { | 
 | 		if (!kp.kp_stack[i]) | 
 | 			break; | 
 | 		pr_info("    %pS\n", kp.kp_stack[i]); | 
 | 	} | 
 |  | 
 | 	if (kp.kp_free_stack[0]) | 
 | 		pr_cont(" Free path:\n"); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { | 
 | 		if (!kp.kp_free_stack[i]) | 
 | 			break; | 
 | 		pr_info("    %pS\n", kp.kp_free_stack[i]); | 
 | 	} | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(kmem_dump_obj); | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_SLOB | 
 | /* Create a cache during boot when no slab services are available yet */ | 
 | void __init create_boot_cache(struct kmem_cache *s, const char *name, | 
 | 		unsigned int size, slab_flags_t flags, | 
 | 		unsigned int useroffset, unsigned int usersize) | 
 | { | 
 | 	int err; | 
 | 	unsigned int align = ARCH_KMALLOC_MINALIGN; | 
 |  | 
 | 	s->name = name; | 
 | 	s->size = s->object_size = size; | 
 |  | 
 | 	/* | 
 | 	 * For power of two sizes, guarantee natural alignment for kmalloc | 
 | 	 * caches, regardless of SL*B debugging options. | 
 | 	 */ | 
 | 	if (is_power_of_2(size)) | 
 | 		align = max(align, size); | 
 | 	s->align = calculate_alignment(flags, align, size); | 
 |  | 
 | 	s->useroffset = useroffset; | 
 | 	s->usersize = usersize; | 
 |  | 
 | 	err = __kmem_cache_create(s, flags); | 
 |  | 
 | 	if (err) | 
 | 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", | 
 | 					name, size, err); | 
 |  | 
 | 	s->refcount = -1;	/* Exempt from merging for now */ | 
 | } | 
 |  | 
 | struct kmem_cache *__init create_kmalloc_cache(const char *name, | 
 | 		unsigned int size, slab_flags_t flags, | 
 | 		unsigned int useroffset, unsigned int usersize) | 
 | { | 
 | 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
 |  | 
 | 	if (!s) | 
 | 		panic("Out of memory when creating slab %s\n", name); | 
 |  | 
 | 	create_boot_cache(s, name, size, flags, useroffset, usersize); | 
 | 	kasan_cache_create_kmalloc(s); | 
 | 	list_add(&s->list, &slab_caches); | 
 | 	s->refcount = 1; | 
 | 	return s; | 
 | } | 
 |  | 
 | struct kmem_cache * | 
 | kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = | 
 | { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; | 
 | EXPORT_SYMBOL(kmalloc_caches); | 
 |  | 
 | /* | 
 |  * Conversion table for small slabs sizes / 8 to the index in the | 
 |  * kmalloc array. This is necessary for slabs < 192 since we have non power | 
 |  * of two cache sizes there. The size of larger slabs can be determined using | 
 |  * fls. | 
 |  */ | 
 | static u8 size_index[24] __ro_after_init = { | 
 | 	3,	/* 8 */ | 
 | 	4,	/* 16 */ | 
 | 	5,	/* 24 */ | 
 | 	5,	/* 32 */ | 
 | 	6,	/* 40 */ | 
 | 	6,	/* 48 */ | 
 | 	6,	/* 56 */ | 
 | 	6,	/* 64 */ | 
 | 	1,	/* 72 */ | 
 | 	1,	/* 80 */ | 
 | 	1,	/* 88 */ | 
 | 	1,	/* 96 */ | 
 | 	7,	/* 104 */ | 
 | 	7,	/* 112 */ | 
 | 	7,	/* 120 */ | 
 | 	7,	/* 128 */ | 
 | 	2,	/* 136 */ | 
 | 	2,	/* 144 */ | 
 | 	2,	/* 152 */ | 
 | 	2,	/* 160 */ | 
 | 	2,	/* 168 */ | 
 | 	2,	/* 176 */ | 
 | 	2,	/* 184 */ | 
 | 	2	/* 192 */ | 
 | }; | 
 |  | 
 | static inline unsigned int size_index_elem(unsigned int bytes) | 
 | { | 
 | 	return (bytes - 1) / 8; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the kmem_cache structure that serves a given size of | 
 |  * allocation | 
 |  */ | 
 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | 
 | { | 
 | 	unsigned int index; | 
 |  | 
 | 	if (size <= 192) { | 
 | 		if (!size) | 
 | 			return ZERO_SIZE_PTR; | 
 |  | 
 | 		index = size_index[size_index_elem(size)]; | 
 | 	} else { | 
 | 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) | 
 | 			return NULL; | 
 | 		index = fls(size - 1); | 
 | 	} | 
 |  | 
 | 	return kmalloc_caches[kmalloc_type(flags)][index]; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz, | 
 | #else | 
 | #define KMALLOC_DMA_NAME(sz) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, | 
 | #else | 
 | #define KMALLOC_CGROUP_NAME(sz) | 
 | #endif | 
 |  | 
 | #define INIT_KMALLOC_INFO(__size, __short_size)			\ | 
 | {								\ | 
 | 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\ | 
 | 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\ | 
 | 	KMALLOC_CGROUP_NAME(__short_size)			\ | 
 | 	KMALLOC_DMA_NAME(__short_size)				\ | 
 | 	.size = __size,						\ | 
 | } | 
 |  | 
 | /* | 
 |  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | 
 |  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is | 
 |  * kmalloc-32M. | 
 |  */ | 
 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { | 
 | 	INIT_KMALLOC_INFO(0, 0), | 
 | 	INIT_KMALLOC_INFO(96, 96), | 
 | 	INIT_KMALLOC_INFO(192, 192), | 
 | 	INIT_KMALLOC_INFO(8, 8), | 
 | 	INIT_KMALLOC_INFO(16, 16), | 
 | 	INIT_KMALLOC_INFO(32, 32), | 
 | 	INIT_KMALLOC_INFO(64, 64), | 
 | 	INIT_KMALLOC_INFO(128, 128), | 
 | 	INIT_KMALLOC_INFO(256, 256), | 
 | 	INIT_KMALLOC_INFO(512, 512), | 
 | 	INIT_KMALLOC_INFO(1024, 1k), | 
 | 	INIT_KMALLOC_INFO(2048, 2k), | 
 | 	INIT_KMALLOC_INFO(4096, 4k), | 
 | 	INIT_KMALLOC_INFO(8192, 8k), | 
 | 	INIT_KMALLOC_INFO(16384, 16k), | 
 | 	INIT_KMALLOC_INFO(32768, 32k), | 
 | 	INIT_KMALLOC_INFO(65536, 64k), | 
 | 	INIT_KMALLOC_INFO(131072, 128k), | 
 | 	INIT_KMALLOC_INFO(262144, 256k), | 
 | 	INIT_KMALLOC_INFO(524288, 512k), | 
 | 	INIT_KMALLOC_INFO(1048576, 1M), | 
 | 	INIT_KMALLOC_INFO(2097152, 2M), | 
 | 	INIT_KMALLOC_INFO(4194304, 4M), | 
 | 	INIT_KMALLOC_INFO(8388608, 8M), | 
 | 	INIT_KMALLOC_INFO(16777216, 16M), | 
 | 	INIT_KMALLOC_INFO(33554432, 32M) | 
 | }; | 
 |  | 
 | /* | 
 |  * Patch up the size_index table if we have strange large alignment | 
 |  * requirements for the kmalloc array. This is only the case for | 
 |  * MIPS it seems. The standard arches will not generate any code here. | 
 |  * | 
 |  * Largest permitted alignment is 256 bytes due to the way we | 
 |  * handle the index determination for the smaller caches. | 
 |  * | 
 |  * Make sure that nothing crazy happens if someone starts tinkering | 
 |  * around with ARCH_KMALLOC_MINALIGN | 
 |  */ | 
 | void __init setup_kmalloc_cache_index_table(void) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
 | 		!is_power_of_2(KMALLOC_MIN_SIZE)); | 
 |  | 
 | 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | 
 | 		unsigned int elem = size_index_elem(i); | 
 |  | 
 | 		if (elem >= ARRAY_SIZE(size_index)) | 
 | 			break; | 
 | 		size_index[elem] = KMALLOC_SHIFT_LOW; | 
 | 	} | 
 |  | 
 | 	if (KMALLOC_MIN_SIZE >= 64) { | 
 | 		/* | 
 | 		 * The 96 byte sized cache is not used if the alignment | 
 | 		 * is 64 byte. | 
 | 		 */ | 
 | 		for (i = 64 + 8; i <= 96; i += 8) | 
 | 			size_index[size_index_elem(i)] = 7; | 
 |  | 
 | 	} | 
 |  | 
 | 	if (KMALLOC_MIN_SIZE >= 128) { | 
 | 		/* | 
 | 		 * The 192 byte sized cache is not used if the alignment | 
 | 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
 | 		 * instead. | 
 | 		 */ | 
 | 		for (i = 128 + 8; i <= 192; i += 8) | 
 | 			size_index[size_index_elem(i)] = 8; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init | 
 | new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) | 
 | { | 
 | 	if (type == KMALLOC_RECLAIM) { | 
 | 		flags |= SLAB_RECLAIM_ACCOUNT; | 
 | 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) { | 
 | 		if (mem_cgroup_kmem_disabled()) { | 
 | 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; | 
 | 			return; | 
 | 		} | 
 | 		flags |= SLAB_ACCOUNT; | 
 | 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { | 
 | 		flags |= SLAB_CACHE_DMA; | 
 | 	} | 
 |  | 
 | 	kmalloc_caches[type][idx] = create_kmalloc_cache( | 
 | 					kmalloc_info[idx].name[type], | 
 | 					kmalloc_info[idx].size, flags, 0, | 
 | 					kmalloc_info[idx].size); | 
 |  | 
 | 	/* | 
 | 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for | 
 | 	 * KMALLOC_NORMAL caches. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL)) | 
 | 		kmalloc_caches[type][idx]->refcount = -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Create the kmalloc array. Some of the regular kmalloc arrays | 
 |  * may already have been created because they were needed to | 
 |  * enable allocations for slab creation. | 
 |  */ | 
 | void __init create_kmalloc_caches(slab_flags_t flags) | 
 | { | 
 | 	int i; | 
 | 	enum kmalloc_cache_type type; | 
 |  | 
 | 	/* | 
 | 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined | 
 | 	 */ | 
 | 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { | 
 | 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { | 
 | 			if (!kmalloc_caches[type][i]) | 
 | 				new_kmalloc_cache(i, type, flags); | 
 |  | 
 | 			/* | 
 | 			 * Caches that are not of the two-to-the-power-of size. | 
 | 			 * These have to be created immediately after the | 
 | 			 * earlier power of two caches | 
 | 			 */ | 
 | 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 && | 
 | 					!kmalloc_caches[type][1]) | 
 | 				new_kmalloc_cache(1, type, flags); | 
 | 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 && | 
 | 					!kmalloc_caches[type][2]) | 
 | 				new_kmalloc_cache(2, type, flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Kmalloc array is now usable */ | 
 | 	slab_state = UP; | 
 | } | 
 | #endif /* !CONFIG_SLOB */ | 
 |  | 
 | gfp_t kmalloc_fix_flags(gfp_t flags) | 
 | { | 
 | 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | 
 |  | 
 | 	flags &= ~GFP_SLAB_BUG_MASK; | 
 | 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | 
 | 			invalid_mask, &invalid_mask, flags, &flags); | 
 | 	dump_stack(); | 
 |  | 
 | 	return flags; | 
 | } | 
 |  | 
 | /* | 
 |  * To avoid unnecessary overhead, we pass through large allocation requests | 
 |  * directly to the page allocator. We use __GFP_COMP, because we will need to | 
 |  * know the allocation order to free the pages properly in kfree. | 
 |  */ | 
 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) | 
 | { | 
 | 	void *ret = NULL; | 
 | 	struct page *page; | 
 |  | 
 | 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) | 
 | 		flags = kmalloc_fix_flags(flags); | 
 |  | 
 | 	flags |= __GFP_COMP; | 
 | 	page = alloc_pages(flags, order); | 
 | 	if (likely(page)) { | 
 | 		ret = page_address(page); | 
 | 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, | 
 | 				      PAGE_SIZE << order); | 
 | 	} | 
 | 	ret = kasan_kmalloc_large(ret, size, flags); | 
 | 	/* As ret might get tagged, call kmemleak hook after KASAN. */ | 
 | 	kmemleak_alloc(ret, size, 1, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmalloc_order); | 
 |  | 
 | #ifdef CONFIG_TRACING | 
 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | 
 | { | 
 | 	void *ret = kmalloc_order(size, flags, order); | 
 | 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmalloc_order_trace); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
 | /* Randomize a generic freelist */ | 
 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | 
 | 			       unsigned int count) | 
 | { | 
 | 	unsigned int rand; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < count; i++) | 
 | 		list[i] = i; | 
 |  | 
 | 	/* Fisher-Yates shuffle */ | 
 | 	for (i = count - 1; i > 0; i--) { | 
 | 		rand = prandom_u32_state(state); | 
 | 		rand %= (i + 1); | 
 | 		swap(list[i], list[rand]); | 
 | 	} | 
 | } | 
 |  | 
 | /* Create a random sequence per cache */ | 
 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | 
 | 				    gfp_t gfp) | 
 | { | 
 | 	struct rnd_state state; | 
 |  | 
 | 	if (count < 2 || cachep->random_seq) | 
 | 		return 0; | 
 |  | 
 | 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | 
 | 	if (!cachep->random_seq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Get best entropy at this stage of boot */ | 
 | 	prandom_seed_state(&state, get_random_long()); | 
 |  | 
 | 	freelist_randomize(&state, cachep->random_seq, count); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Destroy the per-cache random freelist sequence */ | 
 | void cache_random_seq_destroy(struct kmem_cache *cachep) | 
 | { | 
 | 	kfree(cachep->random_seq); | 
 | 	cachep->random_seq = NULL; | 
 | } | 
 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
 |  | 
 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) | 
 | #ifdef CONFIG_SLAB | 
 | #define SLABINFO_RIGHTS (0600) | 
 | #else | 
 | #define SLABINFO_RIGHTS (0400) | 
 | #endif | 
 |  | 
 | static void print_slabinfo_header(struct seq_file *m) | 
 | { | 
 | 	/* | 
 | 	 * Output format version, so at least we can change it | 
 | 	 * without _too_ many complaints. | 
 | 	 */ | 
 | #ifdef CONFIG_DEBUG_SLAB | 
 | 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
 | #else | 
 | 	seq_puts(m, "slabinfo - version: 2.1\n"); | 
 | #endif | 
 | 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | 
 | 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
 | 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
 | #ifdef CONFIG_DEBUG_SLAB | 
 | 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | 
 | 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
 | #endif | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | static void *slab_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	mutex_lock(&slab_mutex); | 
 | 	return seq_list_start(&slab_caches, *pos); | 
 | } | 
 |  | 
 | static void *slab_next(struct seq_file *m, void *p, loff_t *pos) | 
 | { | 
 | 	return seq_list_next(p, &slab_caches, pos); | 
 | } | 
 |  | 
 | static void slab_stop(struct seq_file *m, void *p) | 
 | { | 
 | 	mutex_unlock(&slab_mutex); | 
 | } | 
 |  | 
 | static void cache_show(struct kmem_cache *s, struct seq_file *m) | 
 | { | 
 | 	struct slabinfo sinfo; | 
 |  | 
 | 	memset(&sinfo, 0, sizeof(sinfo)); | 
 | 	get_slabinfo(s, &sinfo); | 
 |  | 
 | 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
 | 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size, | 
 | 		   sinfo.objects_per_slab, (1 << sinfo.cache_order)); | 
 |  | 
 | 	seq_printf(m, " : tunables %4u %4u %4u", | 
 | 		   sinfo.limit, sinfo.batchcount, sinfo.shared); | 
 | 	seq_printf(m, " : slabdata %6lu %6lu %6lu", | 
 | 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | 
 | 	slabinfo_show_stats(m, s); | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | static int slab_show(struct seq_file *m, void *p) | 
 | { | 
 | 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | 
 |  | 
 | 	if (p == slab_caches.next) | 
 | 		print_slabinfo_header(m); | 
 | 	cache_show(s, m); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dump_unreclaimable_slab(void) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	struct slabinfo sinfo; | 
 |  | 
 | 	/* | 
 | 	 * Here acquiring slab_mutex is risky since we don't prefer to get | 
 | 	 * sleep in oom path. But, without mutex hold, it may introduce a | 
 | 	 * risk of crash. | 
 | 	 * Use mutex_trylock to protect the list traverse, dump nothing | 
 | 	 * without acquiring the mutex. | 
 | 	 */ | 
 | 	if (!mutex_trylock(&slab_mutex)) { | 
 | 		pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_info("Unreclaimable slab info:\n"); | 
 | 	pr_info("Name                      Used          Total\n"); | 
 |  | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 			continue; | 
 |  | 
 | 		get_slabinfo(s, &sinfo); | 
 |  | 
 | 		if (sinfo.num_objs > 0) | 
 | 			pr_info("%-17s %10luKB %10luKB\n", s->name, | 
 | 				(sinfo.active_objs * s->size) / 1024, | 
 | 				(sinfo.num_objs * s->size) / 1024); | 
 | 	} | 
 | 	mutex_unlock(&slab_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * slabinfo_op - iterator that generates /proc/slabinfo | 
 |  * | 
 |  * Output layout: | 
 |  * cache-name | 
 |  * num-active-objs | 
 |  * total-objs | 
 |  * object size | 
 |  * num-active-slabs | 
 |  * total-slabs | 
 |  * num-pages-per-slab | 
 |  * + further values on SMP and with statistics enabled | 
 |  */ | 
 | static const struct seq_operations slabinfo_op = { | 
 | 	.start = slab_start, | 
 | 	.next = slab_next, | 
 | 	.stop = slab_stop, | 
 | 	.show = slab_show, | 
 | }; | 
 |  | 
 | static int slabinfo_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &slabinfo_op); | 
 | } | 
 |  | 
 | static const struct proc_ops slabinfo_proc_ops = { | 
 | 	.proc_flags	= PROC_ENTRY_PERMANENT, | 
 | 	.proc_open	= slabinfo_open, | 
 | 	.proc_read	= seq_read, | 
 | 	.proc_write	= slabinfo_write, | 
 | 	.proc_lseek	= seq_lseek, | 
 | 	.proc_release	= seq_release, | 
 | }; | 
 |  | 
 | static int __init slab_proc_init(void) | 
 | { | 
 | 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); | 
 | 	return 0; | 
 | } | 
 | module_init(slab_proc_init); | 
 |  | 
 | #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ | 
 |  | 
 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | 
 | 					   gfp_t flags) | 
 | { | 
 | 	void *ret; | 
 | 	size_t ks; | 
 |  | 
 | 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */ | 
 | 	if (likely(!ZERO_OR_NULL_PTR(p))) { | 
 | 		if (!kasan_check_byte(p)) | 
 | 			return NULL; | 
 | 		ks = kfence_ksize(p) ?: __ksize(p); | 
 | 	} else | 
 | 		ks = 0; | 
 |  | 
 | 	/* If the object still fits, repoison it precisely. */ | 
 | 	if (ks >= new_size) { | 
 | 		p = kasan_krealloc((void *)p, new_size, flags); | 
 | 		return (void *)p; | 
 | 	} | 
 |  | 
 | 	ret = kmalloc_track_caller(new_size, flags); | 
 | 	if (ret && p) { | 
 | 		/* Disable KASAN checks as the object's redzone is accessed. */ | 
 | 		kasan_disable_current(); | 
 | 		memcpy(ret, kasan_reset_tag(p), ks); | 
 | 		kasan_enable_current(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * krealloc - reallocate memory. The contents will remain unchanged. | 
 |  * @p: object to reallocate memory for. | 
 |  * @new_size: how many bytes of memory are required. | 
 |  * @flags: the type of memory to allocate. | 
 |  * | 
 |  * The contents of the object pointed to are preserved up to the | 
 |  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). | 
 |  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size | 
 |  * is 0 and @p is not a %NULL pointer, the object pointed to is freed. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL in case of error | 
 |  */ | 
 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | 
 | { | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(!new_size)) { | 
 | 		kfree(p); | 
 | 		return ZERO_SIZE_PTR; | 
 | 	} | 
 |  | 
 | 	ret = __do_krealloc(p, new_size, flags); | 
 | 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) | 
 | 		kfree(p); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(krealloc); | 
 |  | 
 | /** | 
 |  * kfree_sensitive - Clear sensitive information in memory before freeing | 
 |  * @p: object to free memory of | 
 |  * | 
 |  * The memory of the object @p points to is zeroed before freed. | 
 |  * If @p is %NULL, kfree_sensitive() does nothing. | 
 |  * | 
 |  * Note: this function zeroes the whole allocated buffer which can be a good | 
 |  * deal bigger than the requested buffer size passed to kmalloc(). So be | 
 |  * careful when using this function in performance sensitive code. | 
 |  */ | 
 | void kfree_sensitive(const void *p) | 
 | { | 
 | 	size_t ks; | 
 | 	void *mem = (void *)p; | 
 |  | 
 | 	ks = ksize(mem); | 
 | 	if (ks) | 
 | 		memzero_explicit(mem, ks); | 
 | 	kfree(mem); | 
 | } | 
 | EXPORT_SYMBOL(kfree_sensitive); | 
 |  | 
 | /** | 
 |  * ksize - get the actual amount of memory allocated for a given object | 
 |  * @objp: Pointer to the object | 
 |  * | 
 |  * kmalloc may internally round up allocations and return more memory | 
 |  * than requested. ksize() can be used to determine the actual amount of | 
 |  * memory allocated. The caller may use this additional memory, even though | 
 |  * a smaller amount of memory was initially specified with the kmalloc call. | 
 |  * The caller must guarantee that objp points to a valid object previously | 
 |  * allocated with either kmalloc() or kmem_cache_alloc(). The object | 
 |  * must not be freed during the duration of the call. | 
 |  * | 
 |  * Return: size of the actual memory used by @objp in bytes | 
 |  */ | 
 | size_t ksize(const void *objp) | 
 | { | 
 | 	size_t size; | 
 |  | 
 | 	/* | 
 | 	 * We need to first check that the pointer to the object is valid, and | 
 | 	 * only then unpoison the memory. The report printed from ksize() is | 
 | 	 * more useful, then when it's printed later when the behaviour could | 
 | 	 * be undefined due to a potential use-after-free or double-free. | 
 | 	 * | 
 | 	 * We use kasan_check_byte(), which is supported for the hardware | 
 | 	 * tag-based KASAN mode, unlike kasan_check_read/write(). | 
 | 	 * | 
 | 	 * If the pointed to memory is invalid, we return 0 to avoid users of | 
 | 	 * ksize() writing to and potentially corrupting the memory region. | 
 | 	 * | 
 | 	 * We want to perform the check before __ksize(), to avoid potentially | 
 | 	 * crashing in __ksize() due to accessing invalid metadata. | 
 | 	 */ | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) | 
 | 		return 0; | 
 |  | 
 | 	size = kfence_ksize(objp) ?: __ksize(objp); | 
 | 	/* | 
 | 	 * We assume that ksize callers could use whole allocated area, | 
 | 	 * so we need to unpoison this area. | 
 | 	 */ | 
 | 	kasan_unpoison_range(objp, size); | 
 | 	return size; | 
 | } | 
 | EXPORT_SYMBOL(ksize); | 
 |  | 
 | /* Tracepoints definitions. */ | 
 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | 
 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | 
 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | 
 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | 
 | EXPORT_TRACEPOINT_SYMBOL(kfree); | 
 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | 
 |  | 
 | int should_failslab(struct kmem_cache *s, gfp_t gfpflags) | 
 | { | 
 | 	if (__should_failslab(s, gfpflags)) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 | ALLOW_ERROR_INJECTION(should_failslab, ERRNO); |