| /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. | 
 |  * | 
 |  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/crypto.h> | 
 | #include <crypto/md5.h> | 
 | #include <crypto/sha.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/des.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/sched.h> | 
 |  | 
 | #include <crypto/internal/hash.h> | 
 | #include <crypto/scatterwalk.h> | 
 | #include <crypto/algapi.h> | 
 |  | 
 | #include <asm/hypervisor.h> | 
 | #include <asm/mdesc.h> | 
 |  | 
 | #include "n2_core.h" | 
 |  | 
 | #define DRV_MODULE_NAME		"n2_crypto" | 
 | #define DRV_MODULE_VERSION	"0.2" | 
 | #define DRV_MODULE_RELDATE	"July 28, 2011" | 
 |  | 
 | static char version[] = | 
 | 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | 
 |  | 
 | MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); | 
 | MODULE_DESCRIPTION("Niagara2 Crypto driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(DRV_MODULE_VERSION); | 
 |  | 
 | #define N2_CRA_PRIORITY		200 | 
 |  | 
 | static DEFINE_MUTEX(spu_lock); | 
 |  | 
 | struct spu_queue { | 
 | 	cpumask_t		sharing; | 
 | 	unsigned long		qhandle; | 
 |  | 
 | 	spinlock_t		lock; | 
 | 	u8			q_type; | 
 | 	void			*q; | 
 | 	unsigned long		head; | 
 | 	unsigned long		tail; | 
 | 	struct list_head	jobs; | 
 |  | 
 | 	unsigned long		devino; | 
 |  | 
 | 	char			irq_name[32]; | 
 | 	unsigned int		irq; | 
 |  | 
 | 	struct list_head	list; | 
 | }; | 
 |  | 
 | static struct spu_queue **cpu_to_cwq; | 
 | static struct spu_queue **cpu_to_mau; | 
 |  | 
 | static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) | 
 | { | 
 | 	if (q->q_type == HV_NCS_QTYPE_MAU) { | 
 | 		off += MAU_ENTRY_SIZE; | 
 | 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) | 
 | 			off = 0; | 
 | 	} else { | 
 | 		off += CWQ_ENTRY_SIZE; | 
 | 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) | 
 | 			off = 0; | 
 | 	} | 
 | 	return off; | 
 | } | 
 |  | 
 | struct n2_request_common { | 
 | 	struct list_head	entry; | 
 | 	unsigned int		offset; | 
 | }; | 
 | #define OFFSET_NOT_RUNNING	(~(unsigned int)0) | 
 |  | 
 | /* An async job request records the final tail value it used in | 
 |  * n2_request_common->offset, test to see if that offset is in | 
 |  * the range old_head, new_head, inclusive. | 
 |  */ | 
 | static inline bool job_finished(struct spu_queue *q, unsigned int offset, | 
 | 				unsigned long old_head, unsigned long new_head) | 
 | { | 
 | 	if (old_head <= new_head) { | 
 | 		if (offset > old_head && offset <= new_head) | 
 | 			return true; | 
 | 	} else { | 
 | 		if (offset > old_head || offset <= new_head) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* When the HEAD marker is unequal to the actual HEAD, we get | 
 |  * a virtual device INO interrupt.  We should process the | 
 |  * completed CWQ entries and adjust the HEAD marker to clear | 
 |  * the IRQ. | 
 |  */ | 
 | static irqreturn_t cwq_intr(int irq, void *dev_id) | 
 | { | 
 | 	unsigned long off, new_head, hv_ret; | 
 | 	struct spu_queue *q = dev_id; | 
 |  | 
 | 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", | 
 | 	       smp_processor_id(), q->qhandle); | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |  | 
 | 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); | 
 |  | 
 | 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", | 
 | 	       smp_processor_id(), new_head, hv_ret); | 
 |  | 
 | 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { | 
 | 		/* XXX ... XXX */ | 
 | 	} | 
 |  | 
 | 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); | 
 | 	if (hv_ret == HV_EOK) | 
 | 		q->head = new_head; | 
 |  | 
 | 	spin_unlock(&q->lock); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static irqreturn_t mau_intr(int irq, void *dev_id) | 
 | { | 
 | 	struct spu_queue *q = dev_id; | 
 | 	unsigned long head, hv_ret; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |  | 
 | 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", | 
 | 	       smp_processor_id(), q->qhandle); | 
 |  | 
 | 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head); | 
 |  | 
 | 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", | 
 | 	       smp_processor_id(), head, hv_ret); | 
 |  | 
 | 	sun4v_ncs_sethead_marker(q->qhandle, head); | 
 |  | 
 | 	spin_unlock(&q->lock); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void *spu_queue_next(struct spu_queue *q, void *cur) | 
 | { | 
 | 	return q->q + spu_next_offset(q, cur - q->q); | 
 | } | 
 |  | 
 | static int spu_queue_num_free(struct spu_queue *q) | 
 | { | 
 | 	unsigned long head = q->head; | 
 | 	unsigned long tail = q->tail; | 
 | 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); | 
 | 	unsigned long diff; | 
 |  | 
 | 	if (head > tail) | 
 | 		diff = head - tail; | 
 | 	else | 
 | 		diff = (end - tail) + head; | 
 |  | 
 | 	return (diff / CWQ_ENTRY_SIZE) - 1; | 
 | } | 
 |  | 
 | static void *spu_queue_alloc(struct spu_queue *q, int num_entries) | 
 | { | 
 | 	int avail = spu_queue_num_free(q); | 
 |  | 
 | 	if (avail >= num_entries) | 
 | 		return q->q + q->tail; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static unsigned long spu_queue_submit(struct spu_queue *q, void *last) | 
 | { | 
 | 	unsigned long hv_ret, new_tail; | 
 |  | 
 | 	new_tail = spu_next_offset(q, last - q->q); | 
 |  | 
 | 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); | 
 | 	if (hv_ret == HV_EOK) | 
 | 		q->tail = new_tail; | 
 | 	return hv_ret; | 
 | } | 
 |  | 
 | static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, | 
 | 			     int enc_type, int auth_type, | 
 | 			     unsigned int hash_len, | 
 | 			     bool sfas, bool sob, bool eob, bool encrypt, | 
 | 			     int opcode) | 
 | { | 
 | 	u64 word = (len - 1) & CONTROL_LEN; | 
 |  | 
 | 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); | 
 | 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); | 
 | 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); | 
 | 	if (sfas) | 
 | 		word |= CONTROL_STORE_FINAL_AUTH_STATE; | 
 | 	if (sob) | 
 | 		word |= CONTROL_START_OF_BLOCK; | 
 | 	if (eob) | 
 | 		word |= CONTROL_END_OF_BLOCK; | 
 | 	if (encrypt) | 
 | 		word |= CONTROL_ENCRYPT; | 
 | 	if (hmac_key_len) | 
 | 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; | 
 | 	if (hash_len) | 
 | 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; | 
 |  | 
 | 	return word; | 
 | } | 
 |  | 
 | #if 0 | 
 | static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) | 
 | { | 
 | 	if (this_len >= 64 || | 
 | 	    qp->head != qp->tail) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | struct n2_ahash_alg { | 
 | 	struct list_head	entry; | 
 | 	const char		*hash_zero; | 
 | 	const u32		*hash_init; | 
 | 	u8			hw_op_hashsz; | 
 | 	u8			digest_size; | 
 | 	u8			auth_type; | 
 | 	u8			hmac_type; | 
 | 	struct ahash_alg	alg; | 
 | }; | 
 |  | 
 | static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_alg *alg = tfm->__crt_alg; | 
 | 	struct ahash_alg *ahash_alg; | 
 |  | 
 | 	ahash_alg = container_of(alg, struct ahash_alg, halg.base); | 
 |  | 
 | 	return container_of(ahash_alg, struct n2_ahash_alg, alg); | 
 | } | 
 |  | 
 | struct n2_hmac_alg { | 
 | 	const char		*child_alg; | 
 | 	struct n2_ahash_alg	derived; | 
 | }; | 
 |  | 
 | static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_alg *alg = tfm->__crt_alg; | 
 | 	struct ahash_alg *ahash_alg; | 
 |  | 
 | 	ahash_alg = container_of(alg, struct ahash_alg, halg.base); | 
 |  | 
 | 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); | 
 | } | 
 |  | 
 | struct n2_hash_ctx { | 
 | 	struct crypto_ahash		*fallback_tfm; | 
 | }; | 
 |  | 
 | #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */ | 
 |  | 
 | struct n2_hmac_ctx { | 
 | 	struct n2_hash_ctx		base; | 
 |  | 
 | 	struct crypto_shash		*child_shash; | 
 |  | 
 | 	int				hash_key_len; | 
 | 	unsigned char			hash_key[N2_HASH_KEY_MAX]; | 
 | }; | 
 |  | 
 | struct n2_hash_req_ctx { | 
 | 	union { | 
 | 		struct md5_state	md5; | 
 | 		struct sha1_state	sha1; | 
 | 		struct sha256_state	sha256; | 
 | 	} u; | 
 |  | 
 | 	struct ahash_request		fallback_req; | 
 | }; | 
 |  | 
 | static int n2_hash_async_init(struct ahash_request *req) | 
 | { | 
 | 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
 |  | 
 | 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
 | 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 |  | 
 | 	return crypto_ahash_init(&rctx->fallback_req); | 
 | } | 
 |  | 
 | static int n2_hash_async_update(struct ahash_request *req) | 
 | { | 
 | 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
 |  | 
 | 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
 | 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	rctx->fallback_req.nbytes = req->nbytes; | 
 | 	rctx->fallback_req.src = req->src; | 
 |  | 
 | 	return crypto_ahash_update(&rctx->fallback_req); | 
 | } | 
 |  | 
 | static int n2_hash_async_final(struct ahash_request *req) | 
 | { | 
 | 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
 |  | 
 | 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
 | 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	rctx->fallback_req.result = req->result; | 
 |  | 
 | 	return crypto_ahash_final(&rctx->fallback_req); | 
 | } | 
 |  | 
 | static int n2_hash_async_finup(struct ahash_request *req) | 
 | { | 
 | 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
 |  | 
 | 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
 | 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	rctx->fallback_req.nbytes = req->nbytes; | 
 | 	rctx->fallback_req.src = req->src; | 
 | 	rctx->fallback_req.result = req->result; | 
 |  | 
 | 	return crypto_ahash_finup(&rctx->fallback_req); | 
 | } | 
 |  | 
 | static int n2_hash_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm); | 
 | 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
 | 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); | 
 | 	struct crypto_ahash *fallback_tfm; | 
 | 	int err; | 
 |  | 
 | 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, | 
 | 					  CRYPTO_ALG_NEED_FALLBACK); | 
 | 	if (IS_ERR(fallback_tfm)) { | 
 | 		pr_warning("Fallback driver '%s' could not be loaded!\n", | 
 | 			   fallback_driver_name); | 
 | 		err = PTR_ERR(fallback_tfm); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + | 
 | 					 crypto_ahash_reqsize(fallback_tfm))); | 
 |  | 
 | 	ctx->fallback_tfm = fallback_tfm; | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void n2_hash_cra_exit(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
 | 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); | 
 |  | 
 | 	crypto_free_ahash(ctx->fallback_tfm); | 
 | } | 
 |  | 
 | static int n2_hmac_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm); | 
 | 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
 | 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); | 
 | 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); | 
 | 	struct crypto_ahash *fallback_tfm; | 
 | 	struct crypto_shash *child_shash; | 
 | 	int err; | 
 |  | 
 | 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, | 
 | 					  CRYPTO_ALG_NEED_FALLBACK); | 
 | 	if (IS_ERR(fallback_tfm)) { | 
 | 		pr_warning("Fallback driver '%s' could not be loaded!\n", | 
 | 			   fallback_driver_name); | 
 | 		err = PTR_ERR(fallback_tfm); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); | 
 | 	if (IS_ERR(child_shash)) { | 
 | 		pr_warning("Child shash '%s' could not be loaded!\n", | 
 | 			   n2alg->child_alg); | 
 | 		err = PTR_ERR(child_shash); | 
 | 		goto out_free_fallback; | 
 | 	} | 
 |  | 
 | 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + | 
 | 					 crypto_ahash_reqsize(fallback_tfm))); | 
 |  | 
 | 	ctx->child_shash = child_shash; | 
 | 	ctx->base.fallback_tfm = fallback_tfm; | 
 | 	return 0; | 
 |  | 
 | out_free_fallback: | 
 | 	crypto_free_ahash(fallback_tfm); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void n2_hmac_cra_exit(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
 | 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); | 
 |  | 
 | 	crypto_free_ahash(ctx->base.fallback_tfm); | 
 | 	crypto_free_shash(ctx->child_shash); | 
 | } | 
 |  | 
 | static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, | 
 | 				unsigned int keylen) | 
 | { | 
 | 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); | 
 | 	struct crypto_shash *child_shash = ctx->child_shash; | 
 | 	struct crypto_ahash *fallback_tfm; | 
 | 	SHASH_DESC_ON_STACK(shash, child_shash); | 
 | 	int err, bs, ds; | 
 |  | 
 | 	fallback_tfm = ctx->base.fallback_tfm; | 
 | 	err = crypto_ahash_setkey(fallback_tfm, key, keylen); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	shash->tfm = child_shash; | 
 | 	shash->flags = crypto_ahash_get_flags(tfm) & | 
 | 		CRYPTO_TFM_REQ_MAY_SLEEP; | 
 |  | 
 | 	bs = crypto_shash_blocksize(child_shash); | 
 | 	ds = crypto_shash_digestsize(child_shash); | 
 | 	BUG_ON(ds > N2_HASH_KEY_MAX); | 
 | 	if (keylen > bs) { | 
 | 		err = crypto_shash_digest(shash, key, keylen, | 
 | 					  ctx->hash_key); | 
 | 		if (err) | 
 | 			return err; | 
 | 		keylen = ds; | 
 | 	} else if (keylen <= N2_HASH_KEY_MAX) | 
 | 		memcpy(ctx->hash_key, key, keylen); | 
 |  | 
 | 	ctx->hash_key_len = keylen; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static unsigned long wait_for_tail(struct spu_queue *qp) | 
 | { | 
 | 	unsigned long head, hv_ret; | 
 |  | 
 | 	do { | 
 | 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); | 
 | 		if (hv_ret != HV_EOK) { | 
 | 			pr_err("Hypervisor error on gethead\n"); | 
 | 			break; | 
 | 		} | 
 | 		if (head == qp->tail) { | 
 | 			qp->head = head; | 
 | 			break; | 
 | 		} | 
 | 	} while (1); | 
 | 	return hv_ret; | 
 | } | 
 |  | 
 | static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, | 
 | 					      struct cwq_initial_entry *ent) | 
 | { | 
 | 	unsigned long hv_ret = spu_queue_submit(qp, ent); | 
 |  | 
 | 	if (hv_ret == HV_EOK) | 
 | 		hv_ret = wait_for_tail(qp); | 
 |  | 
 | 	return hv_ret; | 
 | } | 
 |  | 
 | static int n2_do_async_digest(struct ahash_request *req, | 
 | 			      unsigned int auth_type, unsigned int digest_size, | 
 | 			      unsigned int result_size, void *hash_loc, | 
 | 			      unsigned long auth_key, unsigned int auth_key_len) | 
 | { | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct cwq_initial_entry *ent; | 
 | 	struct crypto_hash_walk walk; | 
 | 	struct spu_queue *qp; | 
 | 	unsigned long flags; | 
 | 	int err = -ENODEV; | 
 | 	int nbytes, cpu; | 
 |  | 
 | 	/* The total effective length of the operation may not | 
 | 	 * exceed 2^16. | 
 | 	 */ | 
 | 	if (unlikely(req->nbytes > (1 << 16))) { | 
 | 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
 |  | 
 | 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
 | 		rctx->fallback_req.base.flags = | 
 | 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 		rctx->fallback_req.nbytes = req->nbytes; | 
 | 		rctx->fallback_req.src = req->src; | 
 | 		rctx->fallback_req.result = req->result; | 
 |  | 
 | 		return crypto_ahash_digest(&rctx->fallback_req); | 
 | 	} | 
 |  | 
 | 	nbytes = crypto_hash_walk_first(req, &walk); | 
 |  | 
 | 	cpu = get_cpu(); | 
 | 	qp = cpu_to_cwq[cpu]; | 
 | 	if (!qp) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irqsave(&qp->lock, flags); | 
 |  | 
 | 	/* XXX can do better, improve this later by doing a by-hand scatterlist | 
 | 	 * XXX walk, etc. | 
 | 	 */ | 
 | 	ent = qp->q + qp->tail; | 
 |  | 
 | 	ent->control = control_word_base(nbytes, auth_key_len, 0, | 
 | 					 auth_type, digest_size, | 
 | 					 false, true, false, false, | 
 | 					 OPCODE_INPLACE_BIT | | 
 | 					 OPCODE_AUTH_MAC); | 
 | 	ent->src_addr = __pa(walk.data); | 
 | 	ent->auth_key_addr = auth_key; | 
 | 	ent->auth_iv_addr = __pa(hash_loc); | 
 | 	ent->final_auth_state_addr = 0UL; | 
 | 	ent->enc_key_addr = 0UL; | 
 | 	ent->enc_iv_addr = 0UL; | 
 | 	ent->dest_addr = __pa(hash_loc); | 
 |  | 
 | 	nbytes = crypto_hash_walk_done(&walk, 0); | 
 | 	while (nbytes > 0) { | 
 | 		ent = spu_queue_next(qp, ent); | 
 |  | 
 | 		ent->control = (nbytes - 1); | 
 | 		ent->src_addr = __pa(walk.data); | 
 | 		ent->auth_key_addr = 0UL; | 
 | 		ent->auth_iv_addr = 0UL; | 
 | 		ent->final_auth_state_addr = 0UL; | 
 | 		ent->enc_key_addr = 0UL; | 
 | 		ent->enc_iv_addr = 0UL; | 
 | 		ent->dest_addr = 0UL; | 
 |  | 
 | 		nbytes = crypto_hash_walk_done(&walk, 0); | 
 | 	} | 
 | 	ent->control |= CONTROL_END_OF_BLOCK; | 
 |  | 
 | 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK) | 
 | 		err = -EINVAL; | 
 | 	else | 
 | 		err = 0; | 
 |  | 
 | 	spin_unlock_irqrestore(&qp->lock, flags); | 
 |  | 
 | 	if (!err) | 
 | 		memcpy(req->result, hash_loc, result_size); | 
 | out: | 
 | 	put_cpu(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int n2_hash_async_digest(struct ahash_request *req) | 
 | { | 
 | 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); | 
 | 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 	int ds; | 
 |  | 
 | 	ds = n2alg->digest_size; | 
 | 	if (unlikely(req->nbytes == 0)) { | 
 | 		memcpy(req->result, n2alg->hash_zero, ds); | 
 | 		return 0; | 
 | 	} | 
 | 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); | 
 |  | 
 | 	return n2_do_async_digest(req, n2alg->auth_type, | 
 | 				  n2alg->hw_op_hashsz, ds, | 
 | 				  &rctx->u, 0UL, 0); | 
 | } | 
 |  | 
 | static int n2_hmac_async_digest(struct ahash_request *req) | 
 | { | 
 | 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); | 
 | 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); | 
 | 	int ds; | 
 |  | 
 | 	ds = n2alg->derived.digest_size; | 
 | 	if (unlikely(req->nbytes == 0) || | 
 | 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { | 
 | 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
 | 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
 |  | 
 | 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
 | 		rctx->fallback_req.base.flags = | 
 | 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 		rctx->fallback_req.nbytes = req->nbytes; | 
 | 		rctx->fallback_req.src = req->src; | 
 | 		rctx->fallback_req.result = req->result; | 
 |  | 
 | 		return crypto_ahash_digest(&rctx->fallback_req); | 
 | 	} | 
 | 	memcpy(&rctx->u, n2alg->derived.hash_init, | 
 | 	       n2alg->derived.hw_op_hashsz); | 
 |  | 
 | 	return n2_do_async_digest(req, n2alg->derived.hmac_type, | 
 | 				  n2alg->derived.hw_op_hashsz, ds, | 
 | 				  &rctx->u, | 
 | 				  __pa(&ctx->hash_key), | 
 | 				  ctx->hash_key_len); | 
 | } | 
 |  | 
 | struct n2_cipher_context { | 
 | 	int			key_len; | 
 | 	int			enc_type; | 
 | 	union { | 
 | 		u8		aes[AES_MAX_KEY_SIZE]; | 
 | 		u8		des[DES_KEY_SIZE]; | 
 | 		u8		des3[3 * DES_KEY_SIZE]; | 
 | 		u8		arc4[258]; /* S-box, X, Y */ | 
 | 	} key; | 
 | }; | 
 |  | 
 | #define N2_CHUNK_ARR_LEN	16 | 
 |  | 
 | struct n2_crypto_chunk { | 
 | 	struct list_head	entry; | 
 | 	unsigned long		iv_paddr : 44; | 
 | 	unsigned long		arr_len : 20; | 
 | 	unsigned long		dest_paddr; | 
 | 	unsigned long		dest_final; | 
 | 	struct { | 
 | 		unsigned long	src_paddr : 44; | 
 | 		unsigned long	src_len : 20; | 
 | 	} arr[N2_CHUNK_ARR_LEN]; | 
 | }; | 
 |  | 
 | struct n2_request_context { | 
 | 	struct ablkcipher_walk	walk; | 
 | 	struct list_head	chunk_list; | 
 | 	struct n2_crypto_chunk	chunk; | 
 | 	u8			temp_iv[16]; | 
 | }; | 
 |  | 
 | /* The SPU allows some level of flexibility for partial cipher blocks | 
 |  * being specified in a descriptor. | 
 |  * | 
 |  * It merely requires that every descriptor's length field is at least | 
 |  * as large as the cipher block size.  This means that a cipher block | 
 |  * can span at most 2 descriptors.  However, this does not allow a | 
 |  * partial block to span into the final descriptor as that would | 
 |  * violate the rule (since every descriptor's length must be at lest | 
 |  * the block size).  So, for example, assuming an 8 byte block size: | 
 |  * | 
 |  *	0xe --> 0xa --> 0x8 | 
 |  * | 
 |  * is a valid length sequence, whereas: | 
 |  * | 
 |  *	0xe --> 0xb --> 0x7 | 
 |  * | 
 |  * is not a valid sequence. | 
 |  */ | 
 |  | 
 | struct n2_cipher_alg { | 
 | 	struct list_head	entry; | 
 | 	u8			enc_type; | 
 | 	struct crypto_alg	alg; | 
 | }; | 
 |  | 
 | static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_alg *alg = tfm->__crt_alg; | 
 |  | 
 | 	return container_of(alg, struct n2_cipher_alg, alg); | 
 | } | 
 |  | 
 | struct n2_cipher_request_context { | 
 | 	struct ablkcipher_walk	walk; | 
 | }; | 
 |  | 
 | static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 			 unsigned int keylen) | 
 | { | 
 | 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); | 
 | 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); | 
 |  | 
 | 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); | 
 |  | 
 | 	switch (keylen) { | 
 | 	case AES_KEYSIZE_128: | 
 | 		ctx->enc_type |= ENC_TYPE_ALG_AES128; | 
 | 		break; | 
 | 	case AES_KEYSIZE_192: | 
 | 		ctx->enc_type |= ENC_TYPE_ALG_AES192; | 
 | 		break; | 
 | 	case AES_KEYSIZE_256: | 
 | 		ctx->enc_type |= ENC_TYPE_ALG_AES256; | 
 | 		break; | 
 | 	default: | 
 | 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctx->key_len = keylen; | 
 | 	memcpy(ctx->key.aes, key, keylen); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 			 unsigned int keylen) | 
 | { | 
 | 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); | 
 | 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); | 
 | 	u32 tmp[DES_EXPKEY_WORDS]; | 
 | 	int err; | 
 |  | 
 | 	ctx->enc_type = n2alg->enc_type; | 
 |  | 
 | 	if (keylen != DES_KEY_SIZE) { | 
 | 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = des_ekey(tmp, key); | 
 | 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { | 
 | 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctx->key_len = keylen; | 
 | 	memcpy(ctx->key.des, key, keylen); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 			  unsigned int keylen) | 
 | { | 
 | 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); | 
 | 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); | 
 |  | 
 | 	ctx->enc_type = n2alg->enc_type; | 
 |  | 
 | 	if (keylen != (3 * DES_KEY_SIZE)) { | 
 | 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	ctx->key_len = keylen; | 
 | 	memcpy(ctx->key.des3, key, keylen); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 			  unsigned int keylen) | 
 | { | 
 | 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); | 
 | 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); | 
 | 	u8 *s = ctx->key.arc4; | 
 | 	u8 *x = s + 256; | 
 | 	u8 *y = x + 1; | 
 | 	int i, j, k; | 
 |  | 
 | 	ctx->enc_type = n2alg->enc_type; | 
 |  | 
 | 	j = k = 0; | 
 | 	*x = 0; | 
 | 	*y = 0; | 
 | 	for (i = 0; i < 256; i++) | 
 | 		s[i] = i; | 
 | 	for (i = 0; i < 256; i++) { | 
 | 		u8 a = s[i]; | 
 | 		j = (j + key[k] + a) & 0xff; | 
 | 		s[i] = s[j]; | 
 | 		s[j] = a; | 
 | 		if (++k >= keylen) | 
 | 			k = 0; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int cipher_descriptor_len(int nbytes, unsigned int block_size) | 
 | { | 
 | 	int this_len = nbytes; | 
 |  | 
 | 	this_len -= (nbytes & (block_size - 1)); | 
 | 	return this_len > (1 << 16) ? (1 << 16) : this_len; | 
 | } | 
 |  | 
 | static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp, | 
 | 			    struct spu_queue *qp, bool encrypt) | 
 | { | 
 | 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct cwq_initial_entry *ent; | 
 | 	bool in_place; | 
 | 	int i; | 
 |  | 
 | 	ent = spu_queue_alloc(qp, cp->arr_len); | 
 | 	if (!ent) { | 
 | 		pr_info("queue_alloc() of %d fails\n", | 
 | 			cp->arr_len); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr); | 
 |  | 
 | 	ent->control = control_word_base(cp->arr[0].src_len, | 
 | 					 0, ctx->enc_type, 0, 0, | 
 | 					 false, true, false, encrypt, | 
 | 					 OPCODE_ENCRYPT | | 
 | 					 (in_place ? OPCODE_INPLACE_BIT : 0)); | 
 | 	ent->src_addr = cp->arr[0].src_paddr; | 
 | 	ent->auth_key_addr = 0UL; | 
 | 	ent->auth_iv_addr = 0UL; | 
 | 	ent->final_auth_state_addr = 0UL; | 
 | 	ent->enc_key_addr = __pa(&ctx->key); | 
 | 	ent->enc_iv_addr = cp->iv_paddr; | 
 | 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); | 
 |  | 
 | 	for (i = 1; i < cp->arr_len; i++) { | 
 | 		ent = spu_queue_next(qp, ent); | 
 |  | 
 | 		ent->control = cp->arr[i].src_len - 1; | 
 | 		ent->src_addr = cp->arr[i].src_paddr; | 
 | 		ent->auth_key_addr = 0UL; | 
 | 		ent->auth_iv_addr = 0UL; | 
 | 		ent->final_auth_state_addr = 0UL; | 
 | 		ent->enc_key_addr = 0UL; | 
 | 		ent->enc_iv_addr = 0UL; | 
 | 		ent->dest_addr = 0UL; | 
 | 	} | 
 | 	ent->control |= CONTROL_END_OF_BLOCK; | 
 |  | 
 | 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; | 
 | } | 
 |  | 
 | static int n2_compute_chunks(struct ablkcipher_request *req) | 
 | { | 
 | 	struct n2_request_context *rctx = ablkcipher_request_ctx(req); | 
 | 	struct ablkcipher_walk *walk = &rctx->walk; | 
 | 	struct n2_crypto_chunk *chunk; | 
 | 	unsigned long dest_prev; | 
 | 	unsigned int tot_len; | 
 | 	bool prev_in_place; | 
 | 	int err, nbytes; | 
 |  | 
 | 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes); | 
 | 	err = ablkcipher_walk_phys(req, walk); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	INIT_LIST_HEAD(&rctx->chunk_list); | 
 |  | 
 | 	chunk = &rctx->chunk; | 
 | 	INIT_LIST_HEAD(&chunk->entry); | 
 |  | 
 | 	chunk->iv_paddr = 0UL; | 
 | 	chunk->arr_len = 0; | 
 | 	chunk->dest_paddr = 0UL; | 
 |  | 
 | 	prev_in_place = false; | 
 | 	dest_prev = ~0UL; | 
 | 	tot_len = 0; | 
 |  | 
 | 	while ((nbytes = walk->nbytes) != 0) { | 
 | 		unsigned long dest_paddr, src_paddr; | 
 | 		bool in_place; | 
 | 		int this_len; | 
 |  | 
 | 		src_paddr = (page_to_phys(walk->src.page) + | 
 | 			     walk->src.offset); | 
 | 		dest_paddr = (page_to_phys(walk->dst.page) + | 
 | 			      walk->dst.offset); | 
 | 		in_place = (src_paddr == dest_paddr); | 
 | 		this_len = cipher_descriptor_len(nbytes, walk->blocksize); | 
 |  | 
 | 		if (chunk->arr_len != 0) { | 
 | 			if (in_place != prev_in_place || | 
 | 			    (!prev_in_place && | 
 | 			     dest_paddr != dest_prev) || | 
 | 			    chunk->arr_len == N2_CHUNK_ARR_LEN || | 
 | 			    tot_len + this_len > (1 << 16)) { | 
 | 				chunk->dest_final = dest_prev; | 
 | 				list_add_tail(&chunk->entry, | 
 | 					      &rctx->chunk_list); | 
 | 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); | 
 | 				if (!chunk) { | 
 | 					err = -ENOMEM; | 
 | 					break; | 
 | 				} | 
 | 				INIT_LIST_HEAD(&chunk->entry); | 
 | 			} | 
 | 		} | 
 | 		if (chunk->arr_len == 0) { | 
 | 			chunk->dest_paddr = dest_paddr; | 
 | 			tot_len = 0; | 
 | 		} | 
 | 		chunk->arr[chunk->arr_len].src_paddr = src_paddr; | 
 | 		chunk->arr[chunk->arr_len].src_len = this_len; | 
 | 		chunk->arr_len++; | 
 |  | 
 | 		dest_prev = dest_paddr + this_len; | 
 | 		prev_in_place = in_place; | 
 | 		tot_len += this_len; | 
 |  | 
 | 		err = ablkcipher_walk_done(req, walk, nbytes - this_len); | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 | 	if (!err && chunk->arr_len != 0) { | 
 | 		chunk->dest_final = dest_prev; | 
 | 		list_add_tail(&chunk->entry, &rctx->chunk_list); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv) | 
 | { | 
 | 	struct n2_request_context *rctx = ablkcipher_request_ctx(req); | 
 | 	struct n2_crypto_chunk *c, *tmp; | 
 |  | 
 | 	if (final_iv) | 
 | 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); | 
 |  | 
 | 	ablkcipher_walk_complete(&rctx->walk); | 
 | 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { | 
 | 		list_del(&c->entry); | 
 | 		if (unlikely(c != &rctx->chunk)) | 
 | 			kfree(c); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt) | 
 | { | 
 | 	struct n2_request_context *rctx = ablkcipher_request_ctx(req); | 
 | 	struct crypto_tfm *tfm = req->base.tfm; | 
 | 	int err = n2_compute_chunks(req); | 
 | 	struct n2_crypto_chunk *c, *tmp; | 
 | 	unsigned long flags, hv_ret; | 
 | 	struct spu_queue *qp; | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	qp = cpu_to_cwq[get_cpu()]; | 
 | 	err = -ENODEV; | 
 | 	if (!qp) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irqsave(&qp->lock, flags); | 
 |  | 
 | 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { | 
 | 		err = __n2_crypt_chunk(tfm, c, qp, encrypt); | 
 | 		if (err) | 
 | 			break; | 
 | 		list_del(&c->entry); | 
 | 		if (unlikely(c != &rctx->chunk)) | 
 | 			kfree(c); | 
 | 	} | 
 | 	if (!err) { | 
 | 		hv_ret = wait_for_tail(qp); | 
 | 		if (hv_ret != HV_EOK) | 
 | 			err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&qp->lock, flags); | 
 |  | 
 | out: | 
 | 	put_cpu(); | 
 |  | 
 | 	n2_chunk_complete(req, NULL); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int n2_encrypt_ecb(struct ablkcipher_request *req) | 
 | { | 
 | 	return n2_do_ecb(req, true); | 
 | } | 
 |  | 
 | static int n2_decrypt_ecb(struct ablkcipher_request *req) | 
 | { | 
 | 	return n2_do_ecb(req, false); | 
 | } | 
 |  | 
 | static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt) | 
 | { | 
 | 	struct n2_request_context *rctx = ablkcipher_request_ctx(req); | 
 | 	struct crypto_tfm *tfm = req->base.tfm; | 
 | 	unsigned long flags, hv_ret, iv_paddr; | 
 | 	int err = n2_compute_chunks(req); | 
 | 	struct n2_crypto_chunk *c, *tmp; | 
 | 	struct spu_queue *qp; | 
 | 	void *final_iv_addr; | 
 |  | 
 | 	final_iv_addr = NULL; | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	qp = cpu_to_cwq[get_cpu()]; | 
 | 	err = -ENODEV; | 
 | 	if (!qp) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irqsave(&qp->lock, flags); | 
 |  | 
 | 	if (encrypt) { | 
 | 		iv_paddr = __pa(rctx->walk.iv); | 
 | 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list, | 
 | 					 entry) { | 
 | 			c->iv_paddr = iv_paddr; | 
 | 			err = __n2_crypt_chunk(tfm, c, qp, true); | 
 | 			if (err) | 
 | 				break; | 
 | 			iv_paddr = c->dest_final - rctx->walk.blocksize; | 
 | 			list_del(&c->entry); | 
 | 			if (unlikely(c != &rctx->chunk)) | 
 | 				kfree(c); | 
 | 		} | 
 | 		final_iv_addr = __va(iv_paddr); | 
 | 	} else { | 
 | 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, | 
 | 						 entry) { | 
 | 			if (c == &rctx->chunk) { | 
 | 				iv_paddr = __pa(rctx->walk.iv); | 
 | 			} else { | 
 | 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + | 
 | 					    tmp->arr[tmp->arr_len-1].src_len - | 
 | 					    rctx->walk.blocksize); | 
 | 			} | 
 | 			if (!final_iv_addr) { | 
 | 				unsigned long pa; | 
 |  | 
 | 				pa = (c->arr[c->arr_len-1].src_paddr + | 
 | 				      c->arr[c->arr_len-1].src_len - | 
 | 				      rctx->walk.blocksize); | 
 | 				final_iv_addr = rctx->temp_iv; | 
 | 				memcpy(rctx->temp_iv, __va(pa), | 
 | 				       rctx->walk.blocksize); | 
 | 			} | 
 | 			c->iv_paddr = iv_paddr; | 
 | 			err = __n2_crypt_chunk(tfm, c, qp, false); | 
 | 			if (err) | 
 | 				break; | 
 | 			list_del(&c->entry); | 
 | 			if (unlikely(c != &rctx->chunk)) | 
 | 				kfree(c); | 
 | 		} | 
 | 	} | 
 | 	if (!err) { | 
 | 		hv_ret = wait_for_tail(qp); | 
 | 		if (hv_ret != HV_EOK) | 
 | 			err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&qp->lock, flags); | 
 |  | 
 | out: | 
 | 	put_cpu(); | 
 |  | 
 | 	n2_chunk_complete(req, err ? NULL : final_iv_addr); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int n2_encrypt_chaining(struct ablkcipher_request *req) | 
 | { | 
 | 	return n2_do_chaining(req, true); | 
 | } | 
 |  | 
 | static int n2_decrypt_chaining(struct ablkcipher_request *req) | 
 | { | 
 | 	return n2_do_chaining(req, false); | 
 | } | 
 |  | 
 | struct n2_cipher_tmpl { | 
 | 	const char		*name; | 
 | 	const char		*drv_name; | 
 | 	u8			block_size; | 
 | 	u8			enc_type; | 
 | 	struct ablkcipher_alg	ablkcipher; | 
 | }; | 
 |  | 
 | static const struct n2_cipher_tmpl cipher_tmpls[] = { | 
 | 	/* ARC4: only ECB is supported (chaining bits ignored) */ | 
 | 	{	.name		= "ecb(arc4)", | 
 | 		.drv_name	= "ecb-arc4", | 
 | 		.block_size	= 1, | 
 | 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM | | 
 | 				   ENC_TYPE_CHAINING_ECB), | 
 | 		.ablkcipher	= { | 
 | 			.min_keysize	= 1, | 
 | 			.max_keysize	= 256, | 
 | 			.setkey		= n2_arc4_setkey, | 
 | 			.encrypt	= n2_encrypt_ecb, | 
 | 			.decrypt	= n2_decrypt_ecb, | 
 | 		}, | 
 | 	}, | 
 |  | 
 | 	/* DES: ECB CBC and CFB are supported */ | 
 | 	{	.name		= "ecb(des)", | 
 | 		.drv_name	= "ecb-des", | 
 | 		.block_size	= DES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_DES | | 
 | 				   ENC_TYPE_CHAINING_ECB), | 
 | 		.ablkcipher	= { | 
 | 			.min_keysize	= DES_KEY_SIZE, | 
 | 			.max_keysize	= DES_KEY_SIZE, | 
 | 			.setkey		= n2_des_setkey, | 
 | 			.encrypt	= n2_encrypt_ecb, | 
 | 			.decrypt	= n2_decrypt_ecb, | 
 | 		}, | 
 | 	}, | 
 | 	{	.name		= "cbc(des)", | 
 | 		.drv_name	= "cbc-des", | 
 | 		.block_size	= DES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_DES | | 
 | 				   ENC_TYPE_CHAINING_CBC), | 
 | 		.ablkcipher	= { | 
 | 			.ivsize		= DES_BLOCK_SIZE, | 
 | 			.min_keysize	= DES_KEY_SIZE, | 
 | 			.max_keysize	= DES_KEY_SIZE, | 
 | 			.setkey		= n2_des_setkey, | 
 | 			.encrypt	= n2_encrypt_chaining, | 
 | 			.decrypt	= n2_decrypt_chaining, | 
 | 		}, | 
 | 	}, | 
 | 	{	.name		= "cfb(des)", | 
 | 		.drv_name	= "cfb-des", | 
 | 		.block_size	= DES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_DES | | 
 | 				   ENC_TYPE_CHAINING_CFB), | 
 | 		.ablkcipher	= { | 
 | 			.min_keysize	= DES_KEY_SIZE, | 
 | 			.max_keysize	= DES_KEY_SIZE, | 
 | 			.setkey		= n2_des_setkey, | 
 | 			.encrypt	= n2_encrypt_chaining, | 
 | 			.decrypt	= n2_decrypt_chaining, | 
 | 		}, | 
 | 	}, | 
 |  | 
 | 	/* 3DES: ECB CBC and CFB are supported */ | 
 | 	{	.name		= "ecb(des3_ede)", | 
 | 		.drv_name	= "ecb-3des", | 
 | 		.block_size	= DES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_3DES | | 
 | 				   ENC_TYPE_CHAINING_ECB), | 
 | 		.ablkcipher	= { | 
 | 			.min_keysize	= 3 * DES_KEY_SIZE, | 
 | 			.max_keysize	= 3 * DES_KEY_SIZE, | 
 | 			.setkey		= n2_3des_setkey, | 
 | 			.encrypt	= n2_encrypt_ecb, | 
 | 			.decrypt	= n2_decrypt_ecb, | 
 | 		}, | 
 | 	}, | 
 | 	{	.name		= "cbc(des3_ede)", | 
 | 		.drv_name	= "cbc-3des", | 
 | 		.block_size	= DES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_3DES | | 
 | 				   ENC_TYPE_CHAINING_CBC), | 
 | 		.ablkcipher	= { | 
 | 			.ivsize		= DES_BLOCK_SIZE, | 
 | 			.min_keysize	= 3 * DES_KEY_SIZE, | 
 | 			.max_keysize	= 3 * DES_KEY_SIZE, | 
 | 			.setkey		= n2_3des_setkey, | 
 | 			.encrypt	= n2_encrypt_chaining, | 
 | 			.decrypt	= n2_decrypt_chaining, | 
 | 		}, | 
 | 	}, | 
 | 	{	.name		= "cfb(des3_ede)", | 
 | 		.drv_name	= "cfb-3des", | 
 | 		.block_size	= DES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_3DES | | 
 | 				   ENC_TYPE_CHAINING_CFB), | 
 | 		.ablkcipher	= { | 
 | 			.min_keysize	= 3 * DES_KEY_SIZE, | 
 | 			.max_keysize	= 3 * DES_KEY_SIZE, | 
 | 			.setkey		= n2_3des_setkey, | 
 | 			.encrypt	= n2_encrypt_chaining, | 
 | 			.decrypt	= n2_decrypt_chaining, | 
 | 		}, | 
 | 	}, | 
 | 	/* AES: ECB CBC and CTR are supported */ | 
 | 	{	.name		= "ecb(aes)", | 
 | 		.drv_name	= "ecb-aes", | 
 | 		.block_size	= AES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_AES128 | | 
 | 				   ENC_TYPE_CHAINING_ECB), | 
 | 		.ablkcipher	= { | 
 | 			.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 			.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 			.setkey		= n2_aes_setkey, | 
 | 			.encrypt	= n2_encrypt_ecb, | 
 | 			.decrypt	= n2_decrypt_ecb, | 
 | 		}, | 
 | 	}, | 
 | 	{	.name		= "cbc(aes)", | 
 | 		.drv_name	= "cbc-aes", | 
 | 		.block_size	= AES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_AES128 | | 
 | 				   ENC_TYPE_CHAINING_CBC), | 
 | 		.ablkcipher	= { | 
 | 			.ivsize		= AES_BLOCK_SIZE, | 
 | 			.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 			.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 			.setkey		= n2_aes_setkey, | 
 | 			.encrypt	= n2_encrypt_chaining, | 
 | 			.decrypt	= n2_decrypt_chaining, | 
 | 		}, | 
 | 	}, | 
 | 	{	.name		= "ctr(aes)", | 
 | 		.drv_name	= "ctr-aes", | 
 | 		.block_size	= AES_BLOCK_SIZE, | 
 | 		.enc_type	= (ENC_TYPE_ALG_AES128 | | 
 | 				   ENC_TYPE_CHAINING_COUNTER), | 
 | 		.ablkcipher	= { | 
 | 			.ivsize		= AES_BLOCK_SIZE, | 
 | 			.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 			.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 			.setkey		= n2_aes_setkey, | 
 | 			.encrypt	= n2_encrypt_chaining, | 
 | 			.decrypt	= n2_encrypt_chaining, | 
 | 		}, | 
 | 	}, | 
 |  | 
 | }; | 
 | #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls) | 
 |  | 
 | static LIST_HEAD(cipher_algs); | 
 |  | 
 | struct n2_hash_tmpl { | 
 | 	const char	*name; | 
 | 	const char	*hash_zero; | 
 | 	const u32	*hash_init; | 
 | 	u8		hw_op_hashsz; | 
 | 	u8		digest_size; | 
 | 	u8		block_size; | 
 | 	u8		auth_type; | 
 | 	u8		hmac_type; | 
 | }; | 
 |  | 
 | static const char md5_zero[MD5_DIGEST_SIZE] = { | 
 | 	0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, | 
 | 	0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e, | 
 | }; | 
 | static const u32 md5_init[MD5_HASH_WORDS] = { | 
 | 	cpu_to_le32(MD5_H0), | 
 | 	cpu_to_le32(MD5_H1), | 
 | 	cpu_to_le32(MD5_H2), | 
 | 	cpu_to_le32(MD5_H3), | 
 | }; | 
 | static const char sha1_zero[SHA1_DIGEST_SIZE] = { | 
 | 	0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, | 
 | 	0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, | 
 | 	0x07, 0x09 | 
 | }; | 
 | static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = { | 
 | 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, | 
 | }; | 
 | static const char sha256_zero[SHA256_DIGEST_SIZE] = { | 
 | 	0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, | 
 | 	0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, | 
 | 	0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, | 
 | 	0x1b, 0x78, 0x52, 0xb8, 0x55 | 
 | }; | 
 | static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = { | 
 | 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, | 
 | 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, | 
 | }; | 
 | static const char sha224_zero[SHA224_DIGEST_SIZE] = { | 
 | 	0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47, | 
 | 	0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2, | 
 | 	0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4, | 
 | 	0x2f | 
 | }; | 
 | static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = { | 
 | 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, | 
 | 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, | 
 | }; | 
 |  | 
 | static const struct n2_hash_tmpl hash_tmpls[] = { | 
 | 	{ .name		= "md5", | 
 | 	  .hash_zero	= md5_zero, | 
 | 	  .hash_init	= md5_init, | 
 | 	  .auth_type	= AUTH_TYPE_MD5, | 
 | 	  .hmac_type	= AUTH_TYPE_HMAC_MD5, | 
 | 	  .hw_op_hashsz	= MD5_DIGEST_SIZE, | 
 | 	  .digest_size	= MD5_DIGEST_SIZE, | 
 | 	  .block_size	= MD5_HMAC_BLOCK_SIZE }, | 
 | 	{ .name		= "sha1", | 
 | 	  .hash_zero	= sha1_zero, | 
 | 	  .hash_init	= sha1_init, | 
 | 	  .auth_type	= AUTH_TYPE_SHA1, | 
 | 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1, | 
 | 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE, | 
 | 	  .digest_size	= SHA1_DIGEST_SIZE, | 
 | 	  .block_size	= SHA1_BLOCK_SIZE }, | 
 | 	{ .name		= "sha256", | 
 | 	  .hash_zero	= sha256_zero, | 
 | 	  .hash_init	= sha256_init, | 
 | 	  .auth_type	= AUTH_TYPE_SHA256, | 
 | 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256, | 
 | 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE, | 
 | 	  .digest_size	= SHA256_DIGEST_SIZE, | 
 | 	  .block_size	= SHA256_BLOCK_SIZE }, | 
 | 	{ .name		= "sha224", | 
 | 	  .hash_zero	= sha224_zero, | 
 | 	  .hash_init	= sha224_init, | 
 | 	  .auth_type	= AUTH_TYPE_SHA256, | 
 | 	  .hmac_type	= AUTH_TYPE_RESERVED, | 
 | 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE, | 
 | 	  .digest_size	= SHA224_DIGEST_SIZE, | 
 | 	  .block_size	= SHA224_BLOCK_SIZE }, | 
 | }; | 
 | #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) | 
 |  | 
 | static LIST_HEAD(ahash_algs); | 
 | static LIST_HEAD(hmac_algs); | 
 |  | 
 | static int algs_registered; | 
 |  | 
 | static void __n2_unregister_algs(void) | 
 | { | 
 | 	struct n2_cipher_alg *cipher, *cipher_tmp; | 
 | 	struct n2_ahash_alg *alg, *alg_tmp; | 
 | 	struct n2_hmac_alg *hmac, *hmac_tmp; | 
 |  | 
 | 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) { | 
 | 		crypto_unregister_alg(&cipher->alg); | 
 | 		list_del(&cipher->entry); | 
 | 		kfree(cipher); | 
 | 	} | 
 | 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { | 
 | 		crypto_unregister_ahash(&hmac->derived.alg); | 
 | 		list_del(&hmac->derived.entry); | 
 | 		kfree(hmac); | 
 | 	} | 
 | 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { | 
 | 		crypto_unregister_ahash(&alg->alg); | 
 | 		list_del(&alg->entry); | 
 | 		kfree(alg); | 
 | 	} | 
 | } | 
 |  | 
 | static int n2_cipher_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl) | 
 | { | 
 | 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); | 
 | 	struct crypto_alg *alg; | 
 | 	int err; | 
 |  | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	alg = &p->alg; | 
 |  | 
 | 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); | 
 | 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); | 
 | 	alg->cra_priority = N2_CRA_PRIORITY; | 
 | 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | | 
 | 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; | 
 | 	alg->cra_blocksize = tmpl->block_size; | 
 | 	p->enc_type = tmpl->enc_type; | 
 | 	alg->cra_ctxsize = sizeof(struct n2_cipher_context); | 
 | 	alg->cra_type = &crypto_ablkcipher_type; | 
 | 	alg->cra_u.ablkcipher = tmpl->ablkcipher; | 
 | 	alg->cra_init = n2_cipher_cra_init; | 
 | 	alg->cra_module = THIS_MODULE; | 
 |  | 
 | 	list_add(&p->entry, &cipher_algs); | 
 | 	err = crypto_register_alg(alg); | 
 | 	if (err) { | 
 | 		pr_err("%s alg registration failed\n", alg->cra_name); | 
 | 		list_del(&p->entry); | 
 | 		kfree(p); | 
 | 	} else { | 
 | 		pr_info("%s alg registered\n", alg->cra_name); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) | 
 | { | 
 | 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); | 
 | 	struct ahash_alg *ahash; | 
 | 	struct crypto_alg *base; | 
 | 	int err; | 
 |  | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	p->child_alg = n2ahash->alg.halg.base.cra_name; | 
 | 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); | 
 | 	INIT_LIST_HEAD(&p->derived.entry); | 
 |  | 
 | 	ahash = &p->derived.alg; | 
 | 	ahash->digest = n2_hmac_async_digest; | 
 | 	ahash->setkey = n2_hmac_async_setkey; | 
 |  | 
 | 	base = &ahash->halg.base; | 
 | 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg); | 
 | 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg); | 
 |  | 
 | 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx); | 
 | 	base->cra_init = n2_hmac_cra_init; | 
 | 	base->cra_exit = n2_hmac_cra_exit; | 
 |  | 
 | 	list_add(&p->derived.entry, &hmac_algs); | 
 | 	err = crypto_register_ahash(ahash); | 
 | 	if (err) { | 
 | 		pr_err("%s alg registration failed\n", base->cra_name); | 
 | 		list_del(&p->derived.entry); | 
 | 		kfree(p); | 
 | 	} else { | 
 | 		pr_info("%s alg registered\n", base->cra_name); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) | 
 | { | 
 | 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); | 
 | 	struct hash_alg_common *halg; | 
 | 	struct crypto_alg *base; | 
 | 	struct ahash_alg *ahash; | 
 | 	int err; | 
 |  | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	p->hash_zero = tmpl->hash_zero; | 
 | 	p->hash_init = tmpl->hash_init; | 
 | 	p->auth_type = tmpl->auth_type; | 
 | 	p->hmac_type = tmpl->hmac_type; | 
 | 	p->hw_op_hashsz = tmpl->hw_op_hashsz; | 
 | 	p->digest_size = tmpl->digest_size; | 
 |  | 
 | 	ahash = &p->alg; | 
 | 	ahash->init = n2_hash_async_init; | 
 | 	ahash->update = n2_hash_async_update; | 
 | 	ahash->final = n2_hash_async_final; | 
 | 	ahash->finup = n2_hash_async_finup; | 
 | 	ahash->digest = n2_hash_async_digest; | 
 |  | 
 | 	halg = &ahash->halg; | 
 | 	halg->digestsize = tmpl->digest_size; | 
 |  | 
 | 	base = &halg->base; | 
 | 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); | 
 | 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); | 
 | 	base->cra_priority = N2_CRA_PRIORITY; | 
 | 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | | 
 | 			  CRYPTO_ALG_KERN_DRIVER_ONLY | | 
 | 			  CRYPTO_ALG_NEED_FALLBACK; | 
 | 	base->cra_blocksize = tmpl->block_size; | 
 | 	base->cra_ctxsize = sizeof(struct n2_hash_ctx); | 
 | 	base->cra_module = THIS_MODULE; | 
 | 	base->cra_init = n2_hash_cra_init; | 
 | 	base->cra_exit = n2_hash_cra_exit; | 
 |  | 
 | 	list_add(&p->entry, &ahash_algs); | 
 | 	err = crypto_register_ahash(ahash); | 
 | 	if (err) { | 
 | 		pr_err("%s alg registration failed\n", base->cra_name); | 
 | 		list_del(&p->entry); | 
 | 		kfree(p); | 
 | 	} else { | 
 | 		pr_info("%s alg registered\n", base->cra_name); | 
 | 	} | 
 | 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED) | 
 | 		err = __n2_register_one_hmac(p); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int n2_register_algs(void) | 
 | { | 
 | 	int i, err = 0; | 
 |  | 
 | 	mutex_lock(&spu_lock); | 
 | 	if (algs_registered++) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < NUM_HASH_TMPLS; i++) { | 
 | 		err = __n2_register_one_ahash(&hash_tmpls[i]); | 
 | 		if (err) { | 
 | 			__n2_unregister_algs(); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) { | 
 | 		err = __n2_register_one_cipher(&cipher_tmpls[i]); | 
 | 		if (err) { | 
 | 			__n2_unregister_algs(); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&spu_lock); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void n2_unregister_algs(void) | 
 | { | 
 | 	mutex_lock(&spu_lock); | 
 | 	if (!--algs_registered) | 
 | 		__n2_unregister_algs(); | 
 | 	mutex_unlock(&spu_lock); | 
 | } | 
 |  | 
 | /* To map CWQ queues to interrupt sources, the hypervisor API provides | 
 |  * a devino.  This isn't very useful to us because all of the | 
 |  * interrupts listed in the device_node have been translated to | 
 |  * Linux virtual IRQ cookie numbers. | 
 |  * | 
 |  * So we have to back-translate, going through the 'intr' and 'ino' | 
 |  * property tables of the n2cp MDESC node, matching it with the OF | 
 |  * 'interrupts' property entries, in order to to figure out which | 
 |  * devino goes to which already-translated IRQ. | 
 |  */ | 
 | static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, | 
 | 			     unsigned long dev_ino) | 
 | { | 
 | 	const unsigned int *dev_intrs; | 
 | 	unsigned int intr; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ip->num_intrs; i++) { | 
 | 		if (ip->ino_table[i].ino == dev_ino) | 
 | 			break; | 
 | 	} | 
 | 	if (i == ip->num_intrs) | 
 | 		return -ENODEV; | 
 |  | 
 | 	intr = ip->ino_table[i].intr; | 
 |  | 
 | 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); | 
 | 	if (!dev_intrs) | 
 | 		return -ENODEV; | 
 |  | 
 | 	for (i = 0; i < dev->archdata.num_irqs; i++) { | 
 | 		if (dev_intrs[i] == intr) | 
 | 			return i; | 
 | 	} | 
 |  | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, | 
 | 		       const char *irq_name, struct spu_queue *p, | 
 | 		       irq_handler_t handler) | 
 | { | 
 | 	unsigned long herr; | 
 | 	int index; | 
 |  | 
 | 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); | 
 | 	if (herr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	index = find_devino_index(dev, ip, p->devino); | 
 | 	if (index < 0) | 
 | 		return index; | 
 |  | 
 | 	p->irq = dev->archdata.irqs[index]; | 
 |  | 
 | 	sprintf(p->irq_name, "%s-%d", irq_name, index); | 
 |  | 
 | 	return request_irq(p->irq, handler, 0, p->irq_name, p); | 
 | } | 
 |  | 
 | static struct kmem_cache *queue_cache[2]; | 
 |  | 
 | static void *new_queue(unsigned long q_type) | 
 | { | 
 | 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); | 
 | } | 
 |  | 
 | static void free_queue(void *p, unsigned long q_type) | 
 | { | 
 | 	return kmem_cache_free(queue_cache[q_type - 1], p); | 
 | } | 
 |  | 
 | static int queue_cache_init(void) | 
 | { | 
 | 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) | 
 | 		queue_cache[HV_NCS_QTYPE_MAU - 1] = | 
 | 			kmem_cache_create("mau_queue", | 
 | 					  (MAU_NUM_ENTRIES * | 
 | 					   MAU_ENTRY_SIZE), | 
 | 					  MAU_ENTRY_SIZE, 0, NULL); | 
 | 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) | 
 | 		queue_cache[HV_NCS_QTYPE_CWQ - 1] = | 
 | 			kmem_cache_create("cwq_queue", | 
 | 					  (CWQ_NUM_ENTRIES * | 
 | 					   CWQ_ENTRY_SIZE), | 
 | 					  CWQ_ENTRY_SIZE, 0, NULL); | 
 | 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { | 
 | 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void queue_cache_destroy(void) | 
 | { | 
 | 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); | 
 | 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); | 
 | } | 
 |  | 
 | static int spu_queue_register(struct spu_queue *p, unsigned long q_type) | 
 | { | 
 | 	cpumask_var_t old_allowed; | 
 | 	unsigned long hv_ret; | 
 |  | 
 | 	if (cpumask_empty(&p->sharing)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cpumask_copy(old_allowed, ¤t->cpus_allowed); | 
 |  | 
 | 	set_cpus_allowed_ptr(current, &p->sharing); | 
 |  | 
 | 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), | 
 | 				 CWQ_NUM_ENTRIES, &p->qhandle); | 
 | 	if (!hv_ret) | 
 | 		sun4v_ncs_sethead_marker(p->qhandle, 0); | 
 |  | 
 | 	set_cpus_allowed_ptr(current, old_allowed); | 
 |  | 
 | 	free_cpumask_var(old_allowed); | 
 |  | 
 | 	return (hv_ret ? -EINVAL : 0); | 
 | } | 
 |  | 
 | static int spu_queue_setup(struct spu_queue *p) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	p->q = new_queue(p->q_type); | 
 | 	if (!p->q) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = spu_queue_register(p, p->q_type); | 
 | 	if (err) { | 
 | 		free_queue(p->q, p->q_type); | 
 | 		p->q = NULL; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void spu_queue_destroy(struct spu_queue *p) | 
 | { | 
 | 	unsigned long hv_ret; | 
 |  | 
 | 	if (!p->q) | 
 | 		return; | 
 |  | 
 | 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); | 
 |  | 
 | 	if (!hv_ret) | 
 | 		free_queue(p->q, p->q_type); | 
 | } | 
 |  | 
 | static void spu_list_destroy(struct list_head *list) | 
 | { | 
 | 	struct spu_queue *p, *n; | 
 |  | 
 | 	list_for_each_entry_safe(p, n, list, list) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < NR_CPUS; i++) { | 
 | 			if (cpu_to_cwq[i] == p) | 
 | 				cpu_to_cwq[i] = NULL; | 
 | 		} | 
 |  | 
 | 		if (p->irq) { | 
 | 			free_irq(p->irq, p); | 
 | 			p->irq = 0; | 
 | 		} | 
 | 		spu_queue_destroy(p); | 
 | 		list_del(&p->list); | 
 | 		kfree(p); | 
 | 	} | 
 | } | 
 |  | 
 | /* Walk the backward arcs of a CWQ 'exec-unit' node, | 
 |  * gathering cpu membership information. | 
 |  */ | 
 | static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, | 
 | 			       struct platform_device *dev, | 
 | 			       u64 node, struct spu_queue *p, | 
 | 			       struct spu_queue **table) | 
 | { | 
 | 	u64 arc; | 
 |  | 
 | 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { | 
 | 		u64 tgt = mdesc_arc_target(mdesc, arc); | 
 | 		const char *name = mdesc_node_name(mdesc, tgt); | 
 | 		const u64 *id; | 
 |  | 
 | 		if (strcmp(name, "cpu")) | 
 | 			continue; | 
 | 		id = mdesc_get_property(mdesc, tgt, "id", NULL); | 
 | 		if (table[*id] != NULL) { | 
 | 			dev_err(&dev->dev, "%s: SPU cpu slot already set.\n", | 
 | 				dev->dev.of_node->full_name); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		cpumask_set_cpu(*id, &p->sharing); | 
 | 		table[*id] = p; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Process an 'exec-unit' MDESC node of type 'cwq'.  */ | 
 | static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, | 
 | 			    struct platform_device *dev, struct mdesc_handle *mdesc, | 
 | 			    u64 node, const char *iname, unsigned long q_type, | 
 | 			    irq_handler_t handler, struct spu_queue **table) | 
 | { | 
 | 	struct spu_queue *p; | 
 | 	int err; | 
 |  | 
 | 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); | 
 | 	if (!p) { | 
 | 		dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n", | 
 | 			dev->dev.of_node->full_name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	cpumask_clear(&p->sharing); | 
 | 	spin_lock_init(&p->lock); | 
 | 	p->q_type = q_type; | 
 | 	INIT_LIST_HEAD(&p->jobs); | 
 | 	list_add(&p->list, list); | 
 |  | 
 | 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = spu_queue_setup(p); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return spu_map_ino(dev, ip, iname, p, handler); | 
 | } | 
 |  | 
 | static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, | 
 | 			  struct spu_mdesc_info *ip, struct list_head *list, | 
 | 			  const char *exec_name, unsigned long q_type, | 
 | 			  irq_handler_t handler, struct spu_queue **table) | 
 | { | 
 | 	int err = 0; | 
 | 	u64 node; | 
 |  | 
 | 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { | 
 | 		const char *type; | 
 |  | 
 | 		type = mdesc_get_property(mdesc, node, "type", NULL); | 
 | 		if (!type || strcmp(type, exec_name)) | 
 | 			continue; | 
 |  | 
 | 		err = handle_exec_unit(ip, list, dev, mdesc, node, | 
 | 				       exec_name, q_type, handler, table); | 
 | 		if (err) { | 
 | 			spu_list_destroy(list); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int get_irq_props(struct mdesc_handle *mdesc, u64 node, | 
 | 			 struct spu_mdesc_info *ip) | 
 | { | 
 | 	const u64 *ino; | 
 | 	int ino_len; | 
 | 	int i; | 
 |  | 
 | 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len); | 
 | 	if (!ino) { | 
 | 		printk("NO 'ino'\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ip->num_intrs = ino_len / sizeof(u64); | 
 | 	ip->ino_table = kzalloc((sizeof(struct ino_blob) * | 
 | 				 ip->num_intrs), | 
 | 				GFP_KERNEL); | 
 | 	if (!ip->ino_table) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < ip->num_intrs; i++) { | 
 | 		struct ino_blob *b = &ip->ino_table[i]; | 
 | 		b->intr = i + 1; | 
 | 		b->ino = ino[i]; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, | 
 | 				struct platform_device *dev, | 
 | 				struct spu_mdesc_info *ip, | 
 | 				const char *node_name) | 
 | { | 
 | 	const unsigned int *reg; | 
 | 	u64 node; | 
 |  | 
 | 	reg = of_get_property(dev->dev.of_node, "reg", NULL); | 
 | 	if (!reg) | 
 | 		return -ENODEV; | 
 |  | 
 | 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { | 
 | 		const char *name; | 
 | 		const u64 *chdl; | 
 |  | 
 | 		name = mdesc_get_property(mdesc, node, "name", NULL); | 
 | 		if (!name || strcmp(name, node_name)) | 
 | 			continue; | 
 | 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); | 
 | 		if (!chdl || (*chdl != *reg)) | 
 | 			continue; | 
 | 		ip->cfg_handle = *chdl; | 
 | 		return get_irq_props(mdesc, node, ip); | 
 | 	} | 
 |  | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static unsigned long n2_spu_hvapi_major; | 
 | static unsigned long n2_spu_hvapi_minor; | 
 |  | 
 | static int n2_spu_hvapi_register(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	n2_spu_hvapi_major = 2; | 
 | 	n2_spu_hvapi_minor = 0; | 
 |  | 
 | 	err = sun4v_hvapi_register(HV_GRP_NCS, | 
 | 				   n2_spu_hvapi_major, | 
 | 				   &n2_spu_hvapi_minor); | 
 |  | 
 | 	if (!err) | 
 | 		pr_info("Registered NCS HVAPI version %lu.%lu\n", | 
 | 			n2_spu_hvapi_major, | 
 | 			n2_spu_hvapi_minor); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void n2_spu_hvapi_unregister(void) | 
 | { | 
 | 	sun4v_hvapi_unregister(HV_GRP_NCS); | 
 | } | 
 |  | 
 | static int global_ref; | 
 |  | 
 | static int grab_global_resources(void) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	mutex_lock(&spu_lock); | 
 |  | 
 | 	if (global_ref++) | 
 | 		goto out; | 
 |  | 
 | 	err = n2_spu_hvapi_register(); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = queue_cache_init(); | 
 | 	if (err) | 
 | 		goto out_hvapi_release; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, | 
 | 			     GFP_KERNEL); | 
 | 	if (!cpu_to_cwq) | 
 | 		goto out_queue_cache_destroy; | 
 |  | 
 | 	cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, | 
 | 			     GFP_KERNEL); | 
 | 	if (!cpu_to_mau) | 
 | 		goto out_free_cwq_table; | 
 |  | 
 | 	err = 0; | 
 |  | 
 | out: | 
 | 	if (err) | 
 | 		global_ref--; | 
 | 	mutex_unlock(&spu_lock); | 
 | 	return err; | 
 |  | 
 | out_free_cwq_table: | 
 | 	kfree(cpu_to_cwq); | 
 | 	cpu_to_cwq = NULL; | 
 |  | 
 | out_queue_cache_destroy: | 
 | 	queue_cache_destroy(); | 
 |  | 
 | out_hvapi_release: | 
 | 	n2_spu_hvapi_unregister(); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static void release_global_resources(void) | 
 | { | 
 | 	mutex_lock(&spu_lock); | 
 | 	if (!--global_ref) { | 
 | 		kfree(cpu_to_cwq); | 
 | 		cpu_to_cwq = NULL; | 
 |  | 
 | 		kfree(cpu_to_mau); | 
 | 		cpu_to_mau = NULL; | 
 |  | 
 | 		queue_cache_destroy(); | 
 | 		n2_spu_hvapi_unregister(); | 
 | 	} | 
 | 	mutex_unlock(&spu_lock); | 
 | } | 
 |  | 
 | static struct n2_crypto *alloc_n2cp(void) | 
 | { | 
 | 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); | 
 |  | 
 | 	if (np) | 
 | 		INIT_LIST_HEAD(&np->cwq_list); | 
 |  | 
 | 	return np; | 
 | } | 
 |  | 
 | static void free_n2cp(struct n2_crypto *np) | 
 | { | 
 | 	if (np->cwq_info.ino_table) { | 
 | 		kfree(np->cwq_info.ino_table); | 
 | 		np->cwq_info.ino_table = NULL; | 
 | 	} | 
 |  | 
 | 	kfree(np); | 
 | } | 
 |  | 
 | static void n2_spu_driver_version(void) | 
 | { | 
 | 	static int n2_spu_version_printed; | 
 |  | 
 | 	if (n2_spu_version_printed++ == 0) | 
 | 		pr_info("%s", version); | 
 | } | 
 |  | 
 | static int n2_crypto_probe(struct platform_device *dev) | 
 | { | 
 | 	struct mdesc_handle *mdesc; | 
 | 	const char *full_name; | 
 | 	struct n2_crypto *np; | 
 | 	int err; | 
 |  | 
 | 	n2_spu_driver_version(); | 
 |  | 
 | 	full_name = dev->dev.of_node->full_name; | 
 | 	pr_info("Found N2CP at %s\n", full_name); | 
 |  | 
 | 	np = alloc_n2cp(); | 
 | 	if (!np) { | 
 | 		dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n", | 
 | 			full_name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	err = grab_global_resources(); | 
 | 	if (err) { | 
 | 		dev_err(&dev->dev, "%s: Unable to grab " | 
 | 			"global resources.\n", full_name); | 
 | 		goto out_free_n2cp; | 
 | 	} | 
 |  | 
 | 	mdesc = mdesc_grab(); | 
 |  | 
 | 	if (!mdesc) { | 
 | 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", | 
 | 			full_name); | 
 | 		err = -ENODEV; | 
 | 		goto out_free_global; | 
 | 	} | 
 | 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); | 
 | 	if (err) { | 
 | 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", | 
 | 			full_name); | 
 | 		mdesc_release(mdesc); | 
 | 		goto out_free_global; | 
 | 	} | 
 |  | 
 | 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, | 
 | 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, | 
 | 			     cpu_to_cwq); | 
 | 	mdesc_release(mdesc); | 
 |  | 
 | 	if (err) { | 
 | 		dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n", | 
 | 			full_name); | 
 | 		goto out_free_global; | 
 | 	} | 
 |  | 
 | 	err = n2_register_algs(); | 
 | 	if (err) { | 
 | 		dev_err(&dev->dev, "%s: Unable to register algorithms.\n", | 
 | 			full_name); | 
 | 		goto out_free_spu_list; | 
 | 	} | 
 |  | 
 | 	dev_set_drvdata(&dev->dev, np); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_spu_list: | 
 | 	spu_list_destroy(&np->cwq_list); | 
 |  | 
 | out_free_global: | 
 | 	release_global_resources(); | 
 |  | 
 | out_free_n2cp: | 
 | 	free_n2cp(np); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int n2_crypto_remove(struct platform_device *dev) | 
 | { | 
 | 	struct n2_crypto *np = dev_get_drvdata(&dev->dev); | 
 |  | 
 | 	n2_unregister_algs(); | 
 |  | 
 | 	spu_list_destroy(&np->cwq_list); | 
 |  | 
 | 	release_global_resources(); | 
 |  | 
 | 	free_n2cp(np); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct n2_mau *alloc_ncp(void) | 
 | { | 
 | 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); | 
 |  | 
 | 	if (mp) | 
 | 		INIT_LIST_HEAD(&mp->mau_list); | 
 |  | 
 | 	return mp; | 
 | } | 
 |  | 
 | static void free_ncp(struct n2_mau *mp) | 
 | { | 
 | 	if (mp->mau_info.ino_table) { | 
 | 		kfree(mp->mau_info.ino_table); | 
 | 		mp->mau_info.ino_table = NULL; | 
 | 	} | 
 |  | 
 | 	kfree(mp); | 
 | } | 
 |  | 
 | static int n2_mau_probe(struct platform_device *dev) | 
 | { | 
 | 	struct mdesc_handle *mdesc; | 
 | 	const char *full_name; | 
 | 	struct n2_mau *mp; | 
 | 	int err; | 
 |  | 
 | 	n2_spu_driver_version(); | 
 |  | 
 | 	full_name = dev->dev.of_node->full_name; | 
 | 	pr_info("Found NCP at %s\n", full_name); | 
 |  | 
 | 	mp = alloc_ncp(); | 
 | 	if (!mp) { | 
 | 		dev_err(&dev->dev, "%s: Unable to allocate ncp.\n", | 
 | 			full_name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	err = grab_global_resources(); | 
 | 	if (err) { | 
 | 		dev_err(&dev->dev, "%s: Unable to grab " | 
 | 			"global resources.\n", full_name); | 
 | 		goto out_free_ncp; | 
 | 	} | 
 |  | 
 | 	mdesc = mdesc_grab(); | 
 |  | 
 | 	if (!mdesc) { | 
 | 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", | 
 | 			full_name); | 
 | 		err = -ENODEV; | 
 | 		goto out_free_global; | 
 | 	} | 
 |  | 
 | 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); | 
 | 	if (err) { | 
 | 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", | 
 | 			full_name); | 
 | 		mdesc_release(mdesc); | 
 | 		goto out_free_global; | 
 | 	} | 
 |  | 
 | 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, | 
 | 			     "mau", HV_NCS_QTYPE_MAU, mau_intr, | 
 | 			     cpu_to_mau); | 
 | 	mdesc_release(mdesc); | 
 |  | 
 | 	if (err) { | 
 | 		dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n", | 
 | 			full_name); | 
 | 		goto out_free_global; | 
 | 	} | 
 |  | 
 | 	dev_set_drvdata(&dev->dev, mp); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_global: | 
 | 	release_global_resources(); | 
 |  | 
 | out_free_ncp: | 
 | 	free_ncp(mp); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int n2_mau_remove(struct platform_device *dev) | 
 | { | 
 | 	struct n2_mau *mp = dev_get_drvdata(&dev->dev); | 
 |  | 
 | 	spu_list_destroy(&mp->mau_list); | 
 |  | 
 | 	release_global_resources(); | 
 |  | 
 | 	free_ncp(mp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct of_device_id n2_crypto_match[] = { | 
 | 	{ | 
 | 		.name = "n2cp", | 
 | 		.compatible = "SUNW,n2-cwq", | 
 | 	}, | 
 | 	{ | 
 | 		.name = "n2cp", | 
 | 		.compatible = "SUNW,vf-cwq", | 
 | 	}, | 
 | 	{ | 
 | 		.name = "n2cp", | 
 | 		.compatible = "SUNW,kt-cwq", | 
 | 	}, | 
 | 	{}, | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(of, n2_crypto_match); | 
 |  | 
 | static struct platform_driver n2_crypto_driver = { | 
 | 	.driver = { | 
 | 		.name		=	"n2cp", | 
 | 		.of_match_table	=	n2_crypto_match, | 
 | 	}, | 
 | 	.probe		=	n2_crypto_probe, | 
 | 	.remove		=	n2_crypto_remove, | 
 | }; | 
 |  | 
 | static struct of_device_id n2_mau_match[] = { | 
 | 	{ | 
 | 		.name = "ncp", | 
 | 		.compatible = "SUNW,n2-mau", | 
 | 	}, | 
 | 	{ | 
 | 		.name = "ncp", | 
 | 		.compatible = "SUNW,vf-mau", | 
 | 	}, | 
 | 	{ | 
 | 		.name = "ncp", | 
 | 		.compatible = "SUNW,kt-mau", | 
 | 	}, | 
 | 	{}, | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(of, n2_mau_match); | 
 |  | 
 | static struct platform_driver n2_mau_driver = { | 
 | 	.driver = { | 
 | 		.name		=	"ncp", | 
 | 		.of_match_table	=	n2_mau_match, | 
 | 	}, | 
 | 	.probe		=	n2_mau_probe, | 
 | 	.remove		=	n2_mau_remove, | 
 | }; | 
 |  | 
 | static int __init n2_init(void) | 
 | { | 
 | 	int err = platform_driver_register(&n2_crypto_driver); | 
 |  | 
 | 	if (!err) { | 
 | 		err = platform_driver_register(&n2_mau_driver); | 
 | 		if (err) | 
 | 			platform_driver_unregister(&n2_crypto_driver); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __exit n2_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&n2_mau_driver); | 
 | 	platform_driver_unregister(&n2_crypto_driver); | 
 | } | 
 |  | 
 | module_init(n2_init); | 
 | module_exit(n2_exit); |