blob: 6e19d22e6a01503792584c1a9eebf548e36ed3d8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2021 Google LLC.
*
* Driver for Semtech's SX9360 capacitive proximity/button solution.
* Based on SX9360 driver and copy of datasheet at:
* https://edit.wpgdadawant.com/uploads/news_file/program/2019/30184/tech_files/program_30184_suggest_other_file.pdf
*/
#include <linux/acpi.h>
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include "sx_common.h"
/* Nominal Oscillator Frequency. */
#define SX9360_FOSC_MHZ 4
#define SX9360_FOSC_HZ (SX9360_FOSC_MHZ * 1000000)
/* Register definitions. */
#define SX9360_REG_IRQ_SRC SX_COMMON_REG_IRQ_SRC
#define SX9360_REG_STAT 0x01
#define SX9360_REG_STAT_COMPSTAT_MASK GENMASK(2, 1)
#define SX9360_REG_IRQ_MSK 0x02
#define SX9360_CONVDONE_IRQ BIT(0)
#define SX9360_FAR_IRQ BIT(2)
#define SX9360_CLOSE_IRQ BIT(3)
#define SX9360_REG_IRQ_CFG 0x03
#define SX9360_REG_GNRL_CTRL0 0x10
#define SX9360_REG_GNRL_CTRL0_PHEN_MASK GENMASK(1, 0)
#define SX9360_REG_GNRL_CTRL1 0x11
#define SX9360_REG_GNRL_CTRL1_SCANPERIOD_MASK GENMASK(2, 0)
#define SX9360_REG_GNRL_CTRL2 0x12
#define SX9360_REG_GNRL_CTRL2_PERIOD_102MS 0x32
#define SX9360_REG_GNRL_REG_2_PERIOD_MS(_r) \
(((_r) * 8192) / (SX9360_FOSC_HZ / 1000))
#define SX9360_REG_GNRL_FREQ_2_REG(_f) (((_f) * 8192) / SX9360_FOSC_HZ)
#define SX9360_REG_GNRL_REG_2_FREQ(_r) (SX9360_FOSC_HZ / ((_r) * 8192))
#define SX9360_REG_AFE_CTRL1 0x21
#define SX9360_REG_AFE_CTRL1_RESFILTIN_MASK GENMASK(3, 0)
#define SX9360_REG_AFE_CTRL1_RESFILTIN_0OHMS 0
#define SX9360_REG_AFE_PARAM0_PHR 0x22
#define SX9360_REG_AFE_PARAM1_PHR 0x23
#define SX9360_REG_AFE_PARAM0_PHM 0x24
#define SX9360_REG_AFE_PARAM0_RSVD 0x08
#define SX9360_REG_AFE_PARAM0_RESOLUTION_MASK GENMASK(2, 0)
#define SX9360_REG_AFE_PARAM0_RESOLUTION_128 0x02
#define SX9360_REG_AFE_PARAM1_PHM 0x25
#define SX9360_REG_AFE_PARAM1_AGAIN_PHM_6PF 0x40
#define SX9360_REG_AFE_PARAM1_FREQ_83_33HZ 0x06
#define SX9360_REG_PROX_CTRL0_PHR 0x40
#define SX9360_REG_PROX_CTRL0_PHM 0x41
#define SX9360_REG_PROX_CTRL0_GAIN_MASK GENMASK(5, 3)
#define SX9360_REG_PROX_CTRL0_GAIN_1 0x80
#define SX9360_REG_PROX_CTRL0_RAWFILT_MASK GENMASK(2, 0)
#define SX9360_REG_PROX_CTRL0_RAWFILT_1P50 0x01
#define SX9360_REG_PROX_CTRL1 0x42
#define SX9360_REG_PROX_CTRL1_AVGNEG_THRESH_MASK GENMASK(5, 3)
#define SX9360_REG_PROX_CTRL1_AVGNEG_THRESH_16K 0x20
#define SX9360_REG_PROX_CTRL2 0x43
#define SX9360_REG_PROX_CTRL2_AVGDEB_MASK GENMASK(7, 6)
#define SX9360_REG_PROX_CTRL2_AVGDEB_2SAMPLES 0x40
#define SX9360_REG_PROX_CTRL2_AVGPOS_THRESH_16K 0x20
#define SX9360_REG_PROX_CTRL3 0x44
#define SX9360_REG_PROX_CTRL3_AVGNEG_FILT_MASK GENMASK(5, 3)
#define SX9360_REG_PROX_CTRL3_AVGNEG_FILT_2 0x08
#define SX9360_REG_PROX_CTRL3_AVGPOS_FILT_MASK GENMASK(2, 0)
#define SX9360_REG_PROX_CTRL3_AVGPOS_FILT_256 0x04
#define SX9360_REG_PROX_CTRL4 0x45
#define SX9360_REG_PROX_CTRL4_HYST_MASK GENMASK(5, 4)
#define SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK GENMASK(3, 2)
#define SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK GENMASK(1, 0)
#define SX9360_REG_PROX_CTRL5 0x46
#define SX9360_REG_PROX_CTRL5_PROXTHRESH_32 0x08
#define SX9360_REG_REF_CORR0 0x60
#define SX9360_REG_REF_CORR1 0x61
#define SX9360_REG_USEFUL_PHR_MSB 0x90
#define SX9360_REG_USEFUL_PHR_LSB 0x91
#define SX9360_REG_OFFSET_PMR_MSB 0x92
#define SX9360_REG_OFFSET_PMR_LSB 0x93
#define SX9360_REG_USEFUL_PHM_MSB 0x94
#define SX9360_REG_USEFUL_PHM_LSB 0x95
#define SX9360_REG_AVG_PHM_MSB 0x96
#define SX9360_REG_AVG_PHM_LSB 0x97
#define SX9360_REG_DIFF_PHM_MSB 0x98
#define SX9360_REG_DIFF_PHM_LSB 0x99
#define SX9360_REG_OFFSET_PHM_MSB 0x9a
#define SX9360_REG_OFFSET_PHM_LSB 0x9b
#define SX9360_REG_USE_FILTER_MSB 0x9a
#define SX9360_REG_USE_FILTER_LSB 0x9b
#define SX9360_REG_RESET 0xcf
/* Write this to REG_RESET to do a soft reset. */
#define SX9360_SOFT_RESET 0xde
#define SX9360_REG_WHOAMI 0xfa
#define SX9360_WHOAMI_VALUE 0x60
#define SX9360_REG_REVISION 0xfe
/* 2 channels, Phase Reference and Measurement. */
#define SX9360_NUM_CHANNELS 2
static const struct iio_chan_spec sx9360_channels[] = {
{
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_HARDWAREGAIN),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate_available =
BIT(IIO_CHAN_INFO_HARDWAREGAIN),
.info_mask_shared_by_all_available =
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.indexed = 1,
.address = SX9360_REG_USEFUL_PHR_MSB,
.channel = 0,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 12,
.storagebits = 16,
.endianness = IIO_BE,
},
},
{
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_HARDWAREGAIN),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate_available =
BIT(IIO_CHAN_INFO_HARDWAREGAIN),
.info_mask_shared_by_all_available =
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.indexed = 1,
.address = SX9360_REG_USEFUL_PHM_MSB,
.event_spec = sx_common_events,
.num_event_specs = ARRAY_SIZE(sx_common_events),
.channel = 1,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 12,
.storagebits = 16,
.endianness = IIO_BE,
},
},
IIO_CHAN_SOFT_TIMESTAMP(2),
};
/*
* Each entry contains the integer part (val) and the fractional part, in micro
* seconds. It conforms to the IIO output IIO_VAL_INT_PLUS_MICRO.
*
* The frequency control register holds the period, with a ~2ms increment.
* Therefore the smallest frequency is 4MHz / (2047 * 8192),
* The fastest is 4MHz / 8192.
* The interval is not linear, but given there is 2047 possible value,
* Returns the fake increment of (Max-Min)/2047
*/
static const struct {
int val;
int val2;
} sx9360_samp_freq_interval[] = {
{ 0, 281250 }, /* 4MHz / (8192 * 2047) */
{ 0, 281250 },
{ 448, 281250 }, /* 4MHz / 8192 */
};
static const struct regmap_range sx9360_writable_reg_ranges[] = {
/*
* To set COMPSTAT for compensation, even if datasheet says register is
* RO.
*/
regmap_reg_range(SX9360_REG_STAT, SX9360_REG_IRQ_CFG),
regmap_reg_range(SX9360_REG_GNRL_CTRL0, SX9360_REG_GNRL_CTRL2),
regmap_reg_range(SX9360_REG_AFE_CTRL1, SX9360_REG_AFE_PARAM1_PHM),
regmap_reg_range(SX9360_REG_PROX_CTRL0_PHR, SX9360_REG_PROX_CTRL5),
regmap_reg_range(SX9360_REG_REF_CORR0, SX9360_REG_REF_CORR1),
regmap_reg_range(SX9360_REG_OFFSET_PMR_MSB, SX9360_REG_OFFSET_PMR_LSB),
regmap_reg_range(SX9360_REG_RESET, SX9360_REG_RESET),
};
static const struct regmap_access_table sx9360_writeable_regs = {
.yes_ranges = sx9360_writable_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(sx9360_writable_reg_ranges),
};
/*
* All allocated registers are readable, so we just list unallocated
* ones.
*/
static const struct regmap_range sx9360_non_readable_reg_ranges[] = {
regmap_reg_range(SX9360_REG_IRQ_CFG + 1, SX9360_REG_GNRL_CTRL0 - 1),
regmap_reg_range(SX9360_REG_GNRL_CTRL2 + 1, SX9360_REG_AFE_CTRL1 - 1),
regmap_reg_range(SX9360_REG_AFE_PARAM1_PHM + 1,
SX9360_REG_PROX_CTRL0_PHR - 1),
regmap_reg_range(SX9360_REG_PROX_CTRL5 + 1, SX9360_REG_REF_CORR0 - 1),
regmap_reg_range(SX9360_REG_REF_CORR1 + 1,
SX9360_REG_USEFUL_PHR_MSB - 1),
regmap_reg_range(SX9360_REG_USE_FILTER_LSB + 1, SX9360_REG_RESET - 1),
regmap_reg_range(SX9360_REG_RESET + 1, SX9360_REG_WHOAMI - 1),
regmap_reg_range(SX9360_REG_WHOAMI + 1, SX9360_REG_REVISION - 1),
};
static const struct regmap_access_table sx9360_readable_regs = {
.no_ranges = sx9360_non_readable_reg_ranges,
.n_no_ranges = ARRAY_SIZE(sx9360_non_readable_reg_ranges),
};
static const struct regmap_range sx9360_volatile_reg_ranges[] = {
regmap_reg_range(SX9360_REG_IRQ_SRC, SX9360_REG_STAT),
regmap_reg_range(SX9360_REG_USEFUL_PHR_MSB, SX9360_REG_USE_FILTER_LSB),
regmap_reg_range(SX9360_REG_WHOAMI, SX9360_REG_WHOAMI),
regmap_reg_range(SX9360_REG_REVISION, SX9360_REG_REVISION),
};
static const struct regmap_access_table sx9360_volatile_regs = {
.yes_ranges = sx9360_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(sx9360_volatile_reg_ranges),
};
static const struct regmap_config sx9360_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = SX9360_REG_REVISION,
.cache_type = REGCACHE_RBTREE,
.wr_table = &sx9360_writeable_regs,
.rd_table = &sx9360_readable_regs,
.volatile_table = &sx9360_volatile_regs,
};
static int sx9360_read_prox_data(struct sx_common_data *data,
const struct iio_chan_spec *chan,
__be16 *val)
{
return regmap_bulk_read(data->regmap, chan->address, val, sizeof(*val));
}
/*
* If we have no interrupt support, we have to wait for a scan period
* after enabling a channel to get a result.
*/
static int sx9360_wait_for_sample(struct sx_common_data *data)
{
int ret;
__be16 buf;
ret = regmap_bulk_read(data->regmap, SX9360_REG_GNRL_CTRL1,
&buf, sizeof(buf));
if (ret < 0)
return ret;
msleep(SX9360_REG_GNRL_REG_2_PERIOD_MS(be16_to_cpu(buf)));
return 0;
}
static int sx9360_read_gain(struct sx_common_data *data,
const struct iio_chan_spec *chan, int *val)
{
unsigned int reg, regval;
int ret;
reg = SX9360_REG_PROX_CTRL0_PHR + chan->channel;
ret = regmap_read(data->regmap, reg, &regval);
if (ret)
return ret;
*val = 1 << FIELD_GET(SX9360_REG_PROX_CTRL0_GAIN_MASK, regval);
return IIO_VAL_INT;
}
static int sx9360_read_samp_freq(struct sx_common_data *data,
int *val, int *val2)
{
int ret, divisor;
__be16 buf;
ret = regmap_bulk_read(data->regmap, SX9360_REG_GNRL_CTRL1,
&buf, sizeof(buf));
if (ret < 0)
return ret;
divisor = be16_to_cpu(buf);
if (divisor == 0) {
*val = 0;
return IIO_VAL_INT;
}
*val = SX9360_FOSC_HZ;
*val2 = divisor * 8192;
return IIO_VAL_FRACTIONAL;
}
static int sx9360_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *val, int *val2, long mask)
{
struct sx_common_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = sx_common_read_proximity(data, chan, val);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_HARDWAREGAIN:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = sx9360_read_gain(data, chan, val);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
return sx9360_read_samp_freq(data, val, val2);
default:
return -EINVAL;
}
}
static const char *sx9360_channel_labels[SX9360_NUM_CHANNELS] = {
"reference", "main",
};
static int sx9360_read_label(struct iio_dev *iio_dev, const struct iio_chan_spec *chan,
char *label)
{
return sysfs_emit(label, "%s\n", sx9360_channel_labels[chan->channel]);
}
static const int sx9360_gain_vals[] = { 1, 2, 4, 8 };
static int sx9360_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(sx9360_gain_vals);
*vals = sx9360_gain_vals;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*type = IIO_VAL_INT_PLUS_MICRO;
*length = ARRAY_SIZE(sx9360_samp_freq_interval) * 2;
*vals = (int *)sx9360_samp_freq_interval;
return IIO_AVAIL_RANGE;
default:
return -EINVAL;
}
}
static int sx9360_set_samp_freq(struct sx_common_data *data,
int val, int val2)
{
int ret, reg;
__be16 buf;
reg = val * 8192 / SX9360_FOSC_HZ + val2 * 8192 / (SX9360_FOSC_MHZ);
buf = cpu_to_be16(reg);
mutex_lock(&data->mutex);
ret = regmap_bulk_write(data->regmap, SX9360_REG_GNRL_CTRL1, &buf,
sizeof(buf));
mutex_unlock(&data->mutex);
return ret;
}
static int sx9360_read_thresh(struct sx_common_data *data, int *val)
{
unsigned int regval;
int ret;
ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL5, &regval);
if (ret)
return ret;
if (regval <= 1)
*val = regval;
else
*val = (regval * regval) / 2;
return IIO_VAL_INT;
}
static int sx9360_read_hysteresis(struct sx_common_data *data, int *val)
{
unsigned int regval, pthresh;
int ret;
ret = sx9360_read_thresh(data, &pthresh);
if (ret < 0)
return ret;
ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL4, &regval);
if (ret)
return ret;
regval = FIELD_GET(SX9360_REG_PROX_CTRL4_HYST_MASK, regval);
if (!regval)
*val = 0;
else
*val = pthresh >> (5 - regval);
return IIO_VAL_INT;
}
static int sx9360_read_far_debounce(struct sx_common_data *data, int *val)
{
unsigned int regval;
int ret;
ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL4, &regval);
if (ret)
return ret;
regval = FIELD_GET(SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK, regval);
if (regval)
*val = 1 << regval;
else
*val = 0;
return IIO_VAL_INT;
}
static int sx9360_read_close_debounce(struct sx_common_data *data, int *val)
{
unsigned int regval;
int ret;
ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL4, &regval);
if (ret)
return ret;
regval = FIELD_GET(SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK, regval);
if (regval)
*val = 1 << regval;
else
*val = 0;
return IIO_VAL_INT;
}
static int sx9360_read_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct sx_common_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
return sx9360_read_thresh(data, val);
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
return sx9360_read_far_debounce(data, val);
case IIO_EV_DIR_FALLING:
return sx9360_read_close_debounce(data, val);
default:
return -EINVAL;
}
case IIO_EV_INFO_HYSTERESIS:
return sx9360_read_hysteresis(data, val);
default:
return -EINVAL;
}
}
static int sx9360_write_thresh(struct sx_common_data *data, int _val)
{
unsigned int val = _val;
int ret;
if (val >= 1)
val = int_sqrt(2 * val);
if (val > 0xff)
return -EINVAL;
mutex_lock(&data->mutex);
ret = regmap_write(data->regmap, SX9360_REG_PROX_CTRL5, val);
mutex_unlock(&data->mutex);
return ret;
}
static int sx9360_write_hysteresis(struct sx_common_data *data, int _val)
{
unsigned int hyst, val = _val;
int ret, pthresh;
ret = sx9360_read_thresh(data, &pthresh);
if (ret < 0)
return ret;
if (val == 0)
hyst = 0;
else if (val >= pthresh >> 2)
hyst = 3;
else if (val >= pthresh >> 3)
hyst = 2;
else if (val >= pthresh >> 4)
hyst = 1;
else
return -EINVAL;
hyst = FIELD_PREP(SX9360_REG_PROX_CTRL4_HYST_MASK, hyst);
mutex_lock(&data->mutex);
ret = regmap_update_bits(data->regmap, SX9360_REG_PROX_CTRL4,
SX9360_REG_PROX_CTRL4_HYST_MASK, hyst);
mutex_unlock(&data->mutex);
return ret;
}
static int sx9360_write_far_debounce(struct sx_common_data *data, int _val)
{
unsigned int regval, val = _val;
int ret;
if (val > 0)
val = ilog2(val);
if (!FIELD_FIT(SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK, val))
return -EINVAL;
regval = FIELD_PREP(SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK, val);
mutex_lock(&data->mutex);
ret = regmap_update_bits(data->regmap, SX9360_REG_PROX_CTRL4,
SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK,
regval);
mutex_unlock(&data->mutex);
return ret;
}
static int sx9360_write_close_debounce(struct sx_common_data *data, int _val)
{
unsigned int regval, val = _val;
int ret;
if (val > 0)
val = ilog2(val);
if (!FIELD_FIT(SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK, val))
return -EINVAL;
regval = FIELD_PREP(SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK, val);
mutex_lock(&data->mutex);
ret = regmap_update_bits(data->regmap, SX9360_REG_PROX_CTRL4,
SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK,
regval);
mutex_unlock(&data->mutex);
return ret;
}
static int sx9360_write_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct sx_common_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
return sx9360_write_thresh(data, val);
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
return sx9360_write_far_debounce(data, val);
case IIO_EV_DIR_FALLING:
return sx9360_write_close_debounce(data, val);
default:
return -EINVAL;
}
case IIO_EV_INFO_HYSTERESIS:
return sx9360_write_hysteresis(data, val);
default:
return -EINVAL;
}
}
static int sx9360_write_gain(struct sx_common_data *data,
const struct iio_chan_spec *chan, int val)
{
unsigned int gain, reg;
int ret;
gain = ilog2(val);
reg = SX9360_REG_PROX_CTRL0_PHR + chan->channel;
gain = FIELD_PREP(SX9360_REG_PROX_CTRL0_GAIN_MASK, gain);
mutex_lock(&data->mutex);
ret = regmap_update_bits(data->regmap, reg,
SX9360_REG_PROX_CTRL0_GAIN_MASK,
gain);
mutex_unlock(&data->mutex);
return ret;
}
static int sx9360_write_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int val, int val2,
long mask)
{
struct sx_common_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return sx9360_set_samp_freq(data, val, val2);
case IIO_CHAN_INFO_HARDWAREGAIN:
return sx9360_write_gain(data, chan, val);
default:
return -EINVAL;
}
}
static const struct sx_common_reg_default sx9360_default_regs[] = {
{ SX9360_REG_IRQ_MSK, 0x00 },
{ SX9360_REG_IRQ_CFG, 0x00 },
/*
* The lower 2 bits should not be set as it enable sensors measurements.
* Turning the detection on before the configuration values are set to
* good values can cause the device to return erroneous readings.
*/
{ SX9360_REG_GNRL_CTRL0, 0x00 },
{ SX9360_REG_GNRL_CTRL1, 0x00 },
{ SX9360_REG_GNRL_CTRL2, SX9360_REG_GNRL_CTRL2_PERIOD_102MS },
{ SX9360_REG_AFE_CTRL1, SX9360_REG_AFE_CTRL1_RESFILTIN_0OHMS },
{ SX9360_REG_AFE_PARAM0_PHR, SX9360_REG_AFE_PARAM0_RSVD |
SX9360_REG_AFE_PARAM0_RESOLUTION_128 },
{ SX9360_REG_AFE_PARAM1_PHR, SX9360_REG_AFE_PARAM1_AGAIN_PHM_6PF |
SX9360_REG_AFE_PARAM1_FREQ_83_33HZ },
{ SX9360_REG_AFE_PARAM0_PHM, SX9360_REG_AFE_PARAM0_RSVD |
SX9360_REG_AFE_PARAM0_RESOLUTION_128 },
{ SX9360_REG_AFE_PARAM1_PHM, SX9360_REG_AFE_PARAM1_AGAIN_PHM_6PF |
SX9360_REG_AFE_PARAM1_FREQ_83_33HZ },
{ SX9360_REG_PROX_CTRL0_PHR, SX9360_REG_PROX_CTRL0_GAIN_1 |
SX9360_REG_PROX_CTRL0_RAWFILT_1P50 },
{ SX9360_REG_PROX_CTRL0_PHM, SX9360_REG_PROX_CTRL0_GAIN_1 |
SX9360_REG_PROX_CTRL0_RAWFILT_1P50 },
{ SX9360_REG_PROX_CTRL1, SX9360_REG_PROX_CTRL1_AVGNEG_THRESH_16K },
{ SX9360_REG_PROX_CTRL2, SX9360_REG_PROX_CTRL2_AVGDEB_2SAMPLES |
SX9360_REG_PROX_CTRL2_AVGPOS_THRESH_16K },
{ SX9360_REG_PROX_CTRL3, SX9360_REG_PROX_CTRL3_AVGNEG_FILT_2 |
SX9360_REG_PROX_CTRL3_AVGPOS_FILT_256 },
{ SX9360_REG_PROX_CTRL4, 0x00 },
{ SX9360_REG_PROX_CTRL5, SX9360_REG_PROX_CTRL5_PROXTHRESH_32 },
};
/* Activate all channels and perform an initial compensation. */
static int sx9360_init_compensation(struct iio_dev *indio_dev)
{
struct sx_common_data *data = iio_priv(indio_dev);
unsigned int val;
int ret;
/* run the compensation phase on all channels */
ret = regmap_update_bits(data->regmap, SX9360_REG_STAT,
SX9360_REG_STAT_COMPSTAT_MASK,
SX9360_REG_STAT_COMPSTAT_MASK);
if (ret)
return ret;
return regmap_read_poll_timeout(data->regmap, SX9360_REG_STAT, val,
!(val & SX9360_REG_STAT_COMPSTAT_MASK),
20000, 2000000);
}
static const struct sx_common_reg_default *
sx9360_get_default_reg(struct device *dev, int idx,
struct sx_common_reg_default *reg_def)
{
u32 raw = 0, pos = 0;
int ret;
memcpy(reg_def, &sx9360_default_regs[idx], sizeof(*reg_def));
switch (reg_def->reg) {
case SX9360_REG_AFE_CTRL1:
ret = device_property_read_u32(dev,
"semtech,input-precharge-resistor-ohms",
&raw);
if (ret)
break;
reg_def->def &= ~SX9360_REG_AFE_CTRL1_RESFILTIN_MASK;
reg_def->def |= FIELD_PREP(SX9360_REG_AFE_CTRL1_RESFILTIN_MASK,
raw / 2000);
break;
case SX9360_REG_AFE_PARAM0_PHR:
case SX9360_REG_AFE_PARAM0_PHM:
ret = device_property_read_u32(dev, "semtech,resolution", &raw);
if (ret)
break;
raw = ilog2(raw) - 3;
reg_def->def &= ~SX9360_REG_AFE_PARAM0_RESOLUTION_MASK;
reg_def->def |= FIELD_PREP(SX9360_REG_AFE_PARAM0_RESOLUTION_MASK, raw);
break;
case SX9360_REG_PROX_CTRL0_PHR:
case SX9360_REG_PROX_CTRL0_PHM:
ret = device_property_read_u32(dev, "semtech,proxraw-strength", &raw);
if (ret)
break;
reg_def->def &= ~SX9360_REG_PROX_CTRL0_RAWFILT_MASK;
reg_def->def |= FIELD_PREP(SX9360_REG_PROX_CTRL0_RAWFILT_MASK, raw);
break;
case SX9360_REG_PROX_CTRL3:
ret = device_property_read_u32(dev, "semtech,avg-pos-strength",
&pos);
if (ret)
break;
/* Powers of 2, except for a gap between 16 and 64 */
raw = clamp(ilog2(pos), 3, 11) - (pos >= 32 ? 4 : 3);
reg_def->def &= ~SX9360_REG_PROX_CTRL3_AVGPOS_FILT_MASK;
reg_def->def |= FIELD_PREP(SX9360_REG_PROX_CTRL3_AVGPOS_FILT_MASK, raw);
break;
}
return reg_def;
}
static int sx9360_check_whoami(struct device *dev, struct iio_dev *indio_dev)
{
/*
* Only one sensor for this driver. Assuming the device tree
* is correct, just set the sensor name.
*/
indio_dev->name = "sx9360";
return 0;
}
static const struct sx_common_chip_info sx9360_chip_info = {
.reg_stat = SX9360_REG_STAT,
.reg_irq_msk = SX9360_REG_IRQ_MSK,
.reg_enable_chan = SX9360_REG_GNRL_CTRL0,
.reg_reset = SX9360_REG_RESET,
.mask_enable_chan = SX9360_REG_GNRL_CTRL0_PHEN_MASK,
.stat_offset = 2,
.num_channels = SX9360_NUM_CHANNELS,
.num_default_regs = ARRAY_SIZE(sx9360_default_regs),
.ops = {
.read_prox_data = sx9360_read_prox_data,
.check_whoami = sx9360_check_whoami,
.init_compensation = sx9360_init_compensation,
.wait_for_sample = sx9360_wait_for_sample,
.get_default_reg = sx9360_get_default_reg,
},
.iio_channels = sx9360_channels,
.num_iio_channels = ARRAY_SIZE(sx9360_channels),
.iio_info = {
.read_raw = sx9360_read_raw,
.read_avail = sx9360_read_avail,
.read_label = sx9360_read_label,
.read_event_value = sx9360_read_event_val,
.write_event_value = sx9360_write_event_val,
.write_raw = sx9360_write_raw,
.read_event_config = sx_common_read_event_config,
.write_event_config = sx_common_write_event_config,
},
};
static int sx9360_probe(struct i2c_client *client)
{
return sx_common_probe(client, &sx9360_chip_info, &sx9360_regmap_config);
}
static int sx9360_suspend(struct device *dev)
{
struct sx_common_data *data = iio_priv(dev_get_drvdata(dev));
unsigned int regval;
int ret;
disable_irq_nosync(data->client->irq);
mutex_lock(&data->mutex);
ret = regmap_read(data->regmap, SX9360_REG_GNRL_CTRL0, &regval);
data->suspend_ctrl =
FIELD_GET(SX9360_REG_GNRL_CTRL0_PHEN_MASK, regval);
if (ret < 0)
goto out;
/* Disable all phases, send the device to sleep. */
ret = regmap_write(data->regmap, SX9360_REG_GNRL_CTRL0, 0);
out:
mutex_unlock(&data->mutex);
return ret;
}
static int sx9360_resume(struct device *dev)
{
struct sx_common_data *data = iio_priv(dev_get_drvdata(dev));
int ret;
mutex_lock(&data->mutex);
ret = regmap_update_bits(data->regmap, SX9360_REG_GNRL_CTRL0,
SX9360_REG_GNRL_CTRL0_PHEN_MASK,
data->suspend_ctrl);
mutex_unlock(&data->mutex);
if (ret)
return ret;
enable_irq(data->client->irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(sx9360_pm_ops, sx9360_suspend, sx9360_resume);
static const struct acpi_device_id sx9360_acpi_match[] = {
{ "STH9360", SX9360_WHOAMI_VALUE },
{ "SAMM0208", SX9360_WHOAMI_VALUE },
{ }
};
MODULE_DEVICE_TABLE(acpi, sx9360_acpi_match);
static const struct of_device_id sx9360_of_match[] = {
{ .compatible = "semtech,sx9360", (void *)SX9360_WHOAMI_VALUE },
{ }
};
MODULE_DEVICE_TABLE(of, sx9360_of_match);
static const struct i2c_device_id sx9360_id[] = {
{"sx9360", SX9360_WHOAMI_VALUE },
{ }
};
MODULE_DEVICE_TABLE(i2c, sx9360_id);
static struct i2c_driver sx9360_driver = {
.driver = {
.name = "sx9360",
.acpi_match_table = sx9360_acpi_match,
.of_match_table = sx9360_of_match,
.pm = pm_sleep_ptr(&sx9360_pm_ops),
/*
* Lots of i2c transfers in probe + over 200 ms waiting in
* sx9360_init_compensation() mean a slow probe; prefer async
* so we don't delay boot if we're builtin to the kernel.
*/
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe_new = sx9360_probe,
.id_table = sx9360_id,
};
module_i2c_driver(sx9360_driver);
MODULE_AUTHOR("Gwendal Grignou <gwendal@chromium.org>");
MODULE_DESCRIPTION("Driver for Semtech SX9360 proximity sensor");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(SEMTECH_PROX);