| /* |
| * QLogic Fibre Channel HBA Driver |
| * Copyright (c) 2003-2008 QLogic Corporation |
| * |
| * See LICENSE.qla2xxx for copyright and licensing details. |
| */ |
| #include "qla_def.h" |
| |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <asm/uaccess.h> |
| |
| /* |
| * NVRAM support routines |
| */ |
| |
| /** |
| * qla2x00_lock_nvram_access() - |
| * @ha: HA context |
| */ |
| static void |
| qla2x00_lock_nvram_access(struct qla_hw_data *ha) |
| { |
| uint16_t data; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { |
| data = RD_REG_WORD(®->nvram); |
| while (data & NVR_BUSY) { |
| udelay(100); |
| data = RD_REG_WORD(®->nvram); |
| } |
| |
| /* Lock resource */ |
| WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); |
| RD_REG_WORD(®->u.isp2300.host_semaphore); |
| udelay(5); |
| data = RD_REG_WORD(®->u.isp2300.host_semaphore); |
| while ((data & BIT_0) == 0) { |
| /* Lock failed */ |
| udelay(100); |
| WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); |
| RD_REG_WORD(®->u.isp2300.host_semaphore); |
| udelay(5); |
| data = RD_REG_WORD(®->u.isp2300.host_semaphore); |
| } |
| } |
| } |
| |
| /** |
| * qla2x00_unlock_nvram_access() - |
| * @ha: HA context |
| */ |
| static void |
| qla2x00_unlock_nvram_access(struct qla_hw_data *ha) |
| { |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { |
| WRT_REG_WORD(®->u.isp2300.host_semaphore, 0); |
| RD_REG_WORD(®->u.isp2300.host_semaphore); |
| } |
| } |
| |
| /** |
| * qla2x00_nv_write() - Prepare for NVRAM read/write operation. |
| * @ha: HA context |
| * @data: Serial interface selector |
| */ |
| static void |
| qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data) |
| { |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| NVRAM_DELAY(); |
| WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_CLOCK | |
| NVR_WRT_ENABLE); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| NVRAM_DELAY(); |
| WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| NVRAM_DELAY(); |
| } |
| |
| /** |
| * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from |
| * NVRAM. |
| * @ha: HA context |
| * @nv_cmd: NVRAM command |
| * |
| * Bit definitions for NVRAM command: |
| * |
| * Bit 26 = start bit |
| * Bit 25, 24 = opcode |
| * Bit 23-16 = address |
| * Bit 15-0 = write data |
| * |
| * Returns the word read from nvram @addr. |
| */ |
| static uint16_t |
| qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd) |
| { |
| uint8_t cnt; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| uint16_t data = 0; |
| uint16_t reg_data; |
| |
| /* Send command to NVRAM. */ |
| nv_cmd <<= 5; |
| for (cnt = 0; cnt < 11; cnt++) { |
| if (nv_cmd & BIT_31) |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| else |
| qla2x00_nv_write(ha, 0); |
| nv_cmd <<= 1; |
| } |
| |
| /* Read data from NVRAM. */ |
| for (cnt = 0; cnt < 16; cnt++) { |
| WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| NVRAM_DELAY(); |
| data <<= 1; |
| reg_data = RD_REG_WORD(®->nvram); |
| if (reg_data & NVR_DATA_IN) |
| data |= BIT_0; |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| NVRAM_DELAY(); |
| } |
| |
| /* Deselect chip. */ |
| WRT_REG_WORD(®->nvram, NVR_DESELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| NVRAM_DELAY(); |
| |
| return data; |
| } |
| |
| |
| /** |
| * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the |
| * request routine to get the word from NVRAM. |
| * @ha: HA context |
| * @addr: Address in NVRAM to read |
| * |
| * Returns the word read from nvram @addr. |
| */ |
| static uint16_t |
| qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr) |
| { |
| uint16_t data; |
| uint32_t nv_cmd; |
| |
| nv_cmd = addr << 16; |
| nv_cmd |= NV_READ_OP; |
| data = qla2x00_nvram_request(ha, nv_cmd); |
| |
| return (data); |
| } |
| |
| /** |
| * qla2x00_nv_deselect() - Deselect NVRAM operations. |
| * @ha: HA context |
| */ |
| static void |
| qla2x00_nv_deselect(struct qla_hw_data *ha) |
| { |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| WRT_REG_WORD(®->nvram, NVR_DESELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| NVRAM_DELAY(); |
| } |
| |
| /** |
| * qla2x00_write_nvram_word() - Write NVRAM data. |
| * @ha: HA context |
| * @addr: Address in NVRAM to write |
| * @data: word to program |
| */ |
| static void |
| qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data) |
| { |
| int count; |
| uint16_t word; |
| uint32_t nv_cmd, wait_cnt; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| qla2x00_nv_write(ha, 0); |
| qla2x00_nv_write(ha, 0); |
| |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Write data */ |
| nv_cmd = (addr << 16) | NV_WRITE_OP; |
| nv_cmd |= data; |
| nv_cmd <<= 5; |
| for (count = 0; count < 27; count++) { |
| if (nv_cmd & BIT_31) |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| else |
| qla2x00_nv_write(ha, 0); |
| |
| nv_cmd <<= 1; |
| } |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Wait for NVRAM to become ready */ |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| wait_cnt = NVR_WAIT_CNT; |
| do { |
| if (!--wait_cnt) { |
| DEBUG9_10(qla_printk(KERN_WARNING, ha, |
| "NVRAM didn't go ready...\n")); |
| break; |
| } |
| NVRAM_DELAY(); |
| word = RD_REG_WORD(®->nvram); |
| } while ((word & NVR_DATA_IN) == 0); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Disable writes */ |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| for (count = 0; count < 10; count++) |
| qla2x00_nv_write(ha, 0); |
| |
| qla2x00_nv_deselect(ha); |
| } |
| |
| static int |
| qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr, |
| uint16_t data, uint32_t tmo) |
| { |
| int ret, count; |
| uint16_t word; |
| uint32_t nv_cmd; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| ret = QLA_SUCCESS; |
| |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| qla2x00_nv_write(ha, 0); |
| qla2x00_nv_write(ha, 0); |
| |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Write data */ |
| nv_cmd = (addr << 16) | NV_WRITE_OP; |
| nv_cmd |= data; |
| nv_cmd <<= 5; |
| for (count = 0; count < 27; count++) { |
| if (nv_cmd & BIT_31) |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| else |
| qla2x00_nv_write(ha, 0); |
| |
| nv_cmd <<= 1; |
| } |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Wait for NVRAM to become ready */ |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| do { |
| NVRAM_DELAY(); |
| word = RD_REG_WORD(®->nvram); |
| if (!--tmo) { |
| ret = QLA_FUNCTION_FAILED; |
| break; |
| } |
| } while ((word & NVR_DATA_IN) == 0); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Disable writes */ |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| for (count = 0; count < 10; count++) |
| qla2x00_nv_write(ha, 0); |
| |
| qla2x00_nv_deselect(ha); |
| |
| return ret; |
| } |
| |
| /** |
| * qla2x00_clear_nvram_protection() - |
| * @ha: HA context |
| */ |
| static int |
| qla2x00_clear_nvram_protection(struct qla_hw_data *ha) |
| { |
| int ret, stat; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| uint32_t word, wait_cnt; |
| uint16_t wprot, wprot_old; |
| |
| /* Clear NVRAM write protection. */ |
| ret = QLA_FUNCTION_FAILED; |
| |
| wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); |
| stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base, |
| __constant_cpu_to_le16(0x1234), 100000); |
| wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); |
| if (stat != QLA_SUCCESS || wprot != 0x1234) { |
| /* Write enable. */ |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| qla2x00_nv_write(ha, 0); |
| qla2x00_nv_write(ha, 0); |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Enable protection register. */ |
| qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE); |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Clear protection register (ffff is cleared). */ |
| qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Wait for NVRAM to become ready. */ |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| wait_cnt = NVR_WAIT_CNT; |
| do { |
| if (!--wait_cnt) { |
| DEBUG9_10(qla_printk(KERN_WARNING, ha, |
| "NVRAM didn't go ready...\n")); |
| break; |
| } |
| NVRAM_DELAY(); |
| word = RD_REG_WORD(®->nvram); |
| } while ((word & NVR_DATA_IN) == 0); |
| |
| if (wait_cnt) |
| ret = QLA_SUCCESS; |
| } else |
| qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old); |
| |
| return ret; |
| } |
| |
| static void |
| qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat) |
| { |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| uint32_t word, wait_cnt; |
| |
| if (stat != QLA_SUCCESS) |
| return; |
| |
| /* Set NVRAM write protection. */ |
| /* Write enable. */ |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| qla2x00_nv_write(ha, 0); |
| qla2x00_nv_write(ha, 0); |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_DATA_OUT); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Enable protection register. */ |
| qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE); |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Enable protection register. */ |
| qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE); |
| qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); |
| for (word = 0; word < 8; word++) |
| qla2x00_nv_write(ha, NVR_PR_ENABLE); |
| |
| qla2x00_nv_deselect(ha); |
| |
| /* Wait for NVRAM to become ready. */ |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| wait_cnt = NVR_WAIT_CNT; |
| do { |
| if (!--wait_cnt) { |
| DEBUG9_10(qla_printk(KERN_WARNING, ha, |
| "NVRAM didn't go ready...\n")); |
| break; |
| } |
| NVRAM_DELAY(); |
| word = RD_REG_WORD(®->nvram); |
| } while ((word & NVR_DATA_IN) == 0); |
| } |
| |
| |
| /*****************************************************************************/ |
| /* Flash Manipulation Routines */ |
| /*****************************************************************************/ |
| |
| #define OPTROM_BURST_SIZE 0x1000 |
| #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4) |
| |
| static inline uint32_t |
| flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr) |
| { |
| return ha->flash_conf_off | faddr; |
| } |
| |
| static inline uint32_t |
| flash_data_addr(struct qla_hw_data *ha, uint32_t faddr) |
| { |
| return ha->flash_data_off | faddr; |
| } |
| |
| static inline uint32_t |
| nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr) |
| { |
| return ha->nvram_conf_off | naddr; |
| } |
| |
| static inline uint32_t |
| nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr) |
| { |
| return ha->nvram_data_off | naddr; |
| } |
| |
| static uint32_t |
| qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr) |
| { |
| int rval; |
| uint32_t cnt, data; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG); |
| /* Wait for READ cycle to complete. */ |
| rval = QLA_SUCCESS; |
| for (cnt = 3000; |
| (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(10); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| cond_resched(); |
| } |
| |
| /* TODO: What happens if we time out? */ |
| data = 0xDEADDEAD; |
| if (rval == QLA_SUCCESS) |
| data = RD_REG_DWORD(®->flash_data); |
| |
| return data; |
| } |
| |
| uint32_t * |
| qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, |
| uint32_t dwords) |
| { |
| uint32_t i; |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Dword reads to flash. */ |
| for (i = 0; i < dwords; i++, faddr++) |
| dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, |
| flash_data_addr(ha, faddr))); |
| |
| return dwptr; |
| } |
| |
| static int |
| qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data) |
| { |
| int rval; |
| uint32_t cnt; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| WRT_REG_DWORD(®->flash_data, data); |
| RD_REG_DWORD(®->flash_data); /* PCI Posting. */ |
| WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG); |
| /* Wait for Write cycle to complete. */ |
| rval = QLA_SUCCESS; |
| for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(10); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| cond_resched(); |
| } |
| return rval; |
| } |
| |
| static void |
| qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, |
| uint8_t *flash_id) |
| { |
| uint32_t ids; |
| |
| ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab)); |
| *man_id = LSB(ids); |
| *flash_id = MSB(ids); |
| |
| /* Check if man_id and flash_id are valid. */ |
| if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) { |
| /* Read information using 0x9f opcode |
| * Device ID, Mfg ID would be read in the format: |
| * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID> |
| * Example: ATMEL 0x00 01 45 1F |
| * Extract MFG and Dev ID from last two bytes. |
| */ |
| ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f)); |
| *man_id = LSB(ids); |
| *flash_id = MSB(ids); |
| } |
| } |
| |
| static int |
| qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start) |
| { |
| const char *loc, *locations[] = { "DEF", "PCI" }; |
| uint32_t pcihdr, pcids; |
| uint32_t *dcode; |
| uint8_t *buf, *bcode, last_image; |
| uint16_t cnt, chksum, *wptr; |
| struct qla_flt_location *fltl; |
| struct qla_hw_data *ha = vha->hw; |
| struct req_que *req = ha->req_q_map[0]; |
| |
| /* |
| * FLT-location structure resides after the last PCI region. |
| */ |
| |
| /* Begin with sane defaults. */ |
| loc = locations[0]; |
| *start = 0; |
| if (IS_QLA24XX_TYPE(ha)) |
| *start = FA_FLASH_LAYOUT_ADDR_24; |
| else if (IS_QLA25XX(ha)) |
| *start = FA_FLASH_LAYOUT_ADDR; |
| else if (IS_QLA81XX(ha)) |
| *start = FA_FLASH_LAYOUT_ADDR_81; |
| /* Begin with first PCI expansion ROM header. */ |
| buf = (uint8_t *)req->ring; |
| dcode = (uint32_t *)req->ring; |
| pcihdr = 0; |
| last_image = 1; |
| do { |
| /* Verify PCI expansion ROM header. */ |
| qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); |
| bcode = buf + (pcihdr % 4); |
| if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) |
| goto end; |
| |
| /* Locate PCI data structure. */ |
| pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); |
| qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); |
| bcode = buf + (pcihdr % 4); |
| |
| /* Validate signature of PCI data structure. */ |
| if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || |
| bcode[0x2] != 'I' || bcode[0x3] != 'R') |
| goto end; |
| |
| last_image = bcode[0x15] & BIT_7; |
| |
| /* Locate next PCI expansion ROM. */ |
| pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; |
| } while (!last_image); |
| |
| /* Now verify FLT-location structure. */ |
| fltl = (struct qla_flt_location *)req->ring; |
| qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, |
| sizeof(struct qla_flt_location) >> 2); |
| if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' || |
| fltl->sig[2] != 'L' || fltl->sig[3] != 'T') |
| goto end; |
| |
| wptr = (uint16_t *)req->ring; |
| cnt = sizeof(struct qla_flt_location) >> 1; |
| for (chksum = 0; cnt; cnt--) |
| chksum += le16_to_cpu(*wptr++); |
| if (chksum) { |
| qla_printk(KERN_ERR, ha, |
| "Inconsistent FLTL detected: checksum=0x%x.\n", chksum); |
| qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location)); |
| return QLA_FUNCTION_FAILED; |
| } |
| |
| /* Good data. Use specified location. */ |
| loc = locations[1]; |
| *start = (le16_to_cpu(fltl->start_hi) << 16 | |
| le16_to_cpu(fltl->start_lo)) >> 2; |
| end: |
| DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start)); |
| return QLA_SUCCESS; |
| } |
| |
| static void |
| qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr) |
| { |
| const char *loc, *locations[] = { "DEF", "FLT" }; |
| const uint32_t def_fw[] = |
| { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 }; |
| const uint32_t def_boot[] = |
| { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 }; |
| const uint32_t def_vpd_nvram[] = |
| { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 }; |
| const uint32_t def_vpd0[] = |
| { 0, 0, FA_VPD0_ADDR_81 }; |
| const uint32_t def_vpd1[] = |
| { 0, 0, FA_VPD1_ADDR_81 }; |
| const uint32_t def_nvram0[] = |
| { 0, 0, FA_NVRAM0_ADDR_81 }; |
| const uint32_t def_nvram1[] = |
| { 0, 0, FA_NVRAM1_ADDR_81 }; |
| const uint32_t def_fdt[] = |
| { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR, |
| FA_FLASH_DESCR_ADDR_81 }; |
| const uint32_t def_npiv_conf0[] = |
| { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR, |
| FA_NPIV_CONF0_ADDR_81 }; |
| const uint32_t def_npiv_conf1[] = |
| { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR, |
| FA_NPIV_CONF1_ADDR_81 }; |
| const uint32_t fcp_prio_cfg0[] = |
| { FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25, |
| 0 }; |
| const uint32_t fcp_prio_cfg1[] = |
| { FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25, |
| 0 }; |
| uint32_t def; |
| uint16_t *wptr; |
| uint16_t cnt, chksum; |
| uint32_t start; |
| struct qla_flt_header *flt; |
| struct qla_flt_region *region; |
| struct qla_hw_data *ha = vha->hw; |
| struct req_que *req = ha->req_q_map[0]; |
| |
| ha->flt_region_flt = flt_addr; |
| wptr = (uint16_t *)req->ring; |
| flt = (struct qla_flt_header *)req->ring; |
| region = (struct qla_flt_region *)&flt[1]; |
| ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, |
| flt_addr << 2, OPTROM_BURST_SIZE); |
| if (*wptr == __constant_cpu_to_le16(0xffff)) |
| goto no_flash_data; |
| if (flt->version != __constant_cpu_to_le16(1)) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: " |
| "version=0x%x length=0x%x checksum=0x%x.\n", |
| le16_to_cpu(flt->version), le16_to_cpu(flt->length), |
| le16_to_cpu(flt->checksum))); |
| goto no_flash_data; |
| } |
| |
| cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1; |
| for (chksum = 0; cnt; cnt--) |
| chksum += le16_to_cpu(*wptr++); |
| if (chksum) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: " |
| "version=0x%x length=0x%x checksum=0x%x.\n", |
| le16_to_cpu(flt->version), le16_to_cpu(flt->length), |
| chksum)); |
| goto no_flash_data; |
| } |
| |
| loc = locations[1]; |
| cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region); |
| for ( ; cnt; cnt--, region++) { |
| /* Store addresses as DWORD offsets. */ |
| start = le32_to_cpu(region->start) >> 2; |
| |
| DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x " |
| "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start, |
| le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size))); |
| |
| switch (le32_to_cpu(region->code) & 0xff) { |
| case FLT_REG_FW: |
| ha->flt_region_fw = start; |
| break; |
| case FLT_REG_BOOT_CODE: |
| ha->flt_region_boot = start; |
| break; |
| case FLT_REG_VPD_0: |
| ha->flt_region_vpd_nvram = start; |
| if (ha->flags.port0) |
| ha->flt_region_vpd = start; |
| break; |
| case FLT_REG_VPD_1: |
| if (!ha->flags.port0) |
| ha->flt_region_vpd = start; |
| break; |
| case FLT_REG_NVRAM_0: |
| if (ha->flags.port0) |
| ha->flt_region_nvram = start; |
| break; |
| case FLT_REG_NVRAM_1: |
| if (!ha->flags.port0) |
| ha->flt_region_nvram = start; |
| break; |
| case FLT_REG_FDT: |
| ha->flt_region_fdt = start; |
| break; |
| case FLT_REG_NPIV_CONF_0: |
| if (ha->flags.port0) |
| ha->flt_region_npiv_conf = start; |
| break; |
| case FLT_REG_NPIV_CONF_1: |
| if (!ha->flags.port0) |
| ha->flt_region_npiv_conf = start; |
| break; |
| case FLT_REG_GOLD_FW: |
| ha->flt_region_gold_fw = start; |
| break; |
| case FLT_REG_FCP_PRIO_0: |
| if (!(PCI_FUNC(ha->pdev->devfn) & 1)) |
| ha->flt_region_fcp_prio = start; |
| break; |
| case FLT_REG_FCP_PRIO_1: |
| if (PCI_FUNC(ha->pdev->devfn) & 1) |
| ha->flt_region_fcp_prio = start; |
| break; |
| } |
| } |
| goto done; |
| |
| no_flash_data: |
| /* Use hardcoded defaults. */ |
| loc = locations[0]; |
| def = 0; |
| if (IS_QLA24XX_TYPE(ha)) |
| def = 0; |
| else if (IS_QLA25XX(ha)) |
| def = 1; |
| else if (IS_QLA81XX(ha)) |
| def = 2; |
| ha->flt_region_fw = def_fw[def]; |
| ha->flt_region_boot = def_boot[def]; |
| ha->flt_region_vpd_nvram = def_vpd_nvram[def]; |
| ha->flt_region_vpd = ha->flags.port0 ? |
| def_vpd0[def] : def_vpd1[def]; |
| ha->flt_region_nvram = ha->flags.port0 ? |
| def_nvram0[def] : def_nvram1[def]; |
| ha->flt_region_fdt = def_fdt[def]; |
| ha->flt_region_npiv_conf = ha->flags.port0 ? |
| def_npiv_conf0[def] : def_npiv_conf1[def]; |
| ha->flt_region_fcp_prio = ha->flags.port0 ? |
| fcp_prio_cfg0[def] : fcp_prio_cfg1[def]; |
| done: |
| DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x " |
| "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x " |
| "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw, |
| ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram, |
| ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf)); |
| } |
| |
| static void |
| qla2xxx_get_fdt_info(scsi_qla_host_t *vha) |
| { |
| #define FLASH_BLK_SIZE_4K 0x1000 |
| #define FLASH_BLK_SIZE_32K 0x8000 |
| #define FLASH_BLK_SIZE_64K 0x10000 |
| const char *loc, *locations[] = { "MID", "FDT" }; |
| uint16_t cnt, chksum; |
| uint16_t *wptr; |
| struct qla_fdt_layout *fdt; |
| uint8_t man_id, flash_id; |
| uint16_t mid, fid; |
| struct qla_hw_data *ha = vha->hw; |
| struct req_que *req = ha->req_q_map[0]; |
| |
| wptr = (uint16_t *)req->ring; |
| fdt = (struct qla_fdt_layout *)req->ring; |
| ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, |
| ha->flt_region_fdt << 2, OPTROM_BURST_SIZE); |
| if (*wptr == __constant_cpu_to_le16(0xffff)) |
| goto no_flash_data; |
| if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' || |
| fdt->sig[3] != 'D') |
| goto no_flash_data; |
| |
| for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1; |
| cnt++) |
| chksum += le16_to_cpu(*wptr++); |
| if (chksum) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: " |
| "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0], |
| le16_to_cpu(fdt->version))); |
| DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt))); |
| goto no_flash_data; |
| } |
| |
| loc = locations[1]; |
| mid = le16_to_cpu(fdt->man_id); |
| fid = le16_to_cpu(fdt->id); |
| ha->fdt_wrt_disable = fdt->wrt_disable_bits; |
| ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd); |
| ha->fdt_block_size = le32_to_cpu(fdt->block_size); |
| if (fdt->unprotect_sec_cmd) { |
| ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 | |
| fdt->unprotect_sec_cmd); |
| ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ? |
| flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd): |
| flash_conf_addr(ha, 0x0336); |
| } |
| goto done; |
| no_flash_data: |
| loc = locations[0]; |
| qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id); |
| mid = man_id; |
| fid = flash_id; |
| ha->fdt_wrt_disable = 0x9c; |
| ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8); |
| switch (man_id) { |
| case 0xbf: /* STT flash. */ |
| if (flash_id == 0x8e) |
| ha->fdt_block_size = FLASH_BLK_SIZE_64K; |
| else |
| ha->fdt_block_size = FLASH_BLK_SIZE_32K; |
| |
| if (flash_id == 0x80) |
| ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352); |
| break; |
| case 0x13: /* ST M25P80. */ |
| ha->fdt_block_size = FLASH_BLK_SIZE_64K; |
| break; |
| case 0x1f: /* Atmel 26DF081A. */ |
| ha->fdt_block_size = FLASH_BLK_SIZE_4K; |
| ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320); |
| ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339); |
| ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336); |
| break; |
| default: |
| /* Default to 64 kb sector size. */ |
| ha->fdt_block_size = FLASH_BLK_SIZE_64K; |
| break; |
| } |
| done: |
| DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x " |
| "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid, |
| ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd, |
| ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable, |
| ha->fdt_block_size)); |
| } |
| |
| int |
| qla2xxx_get_flash_info(scsi_qla_host_t *vha) |
| { |
| int ret; |
| uint32_t flt_addr; |
| struct qla_hw_data *ha = vha->hw; |
| |
| if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha)) |
| return QLA_SUCCESS; |
| |
| ret = qla2xxx_find_flt_start(vha, &flt_addr); |
| if (ret != QLA_SUCCESS) |
| return ret; |
| |
| qla2xxx_get_flt_info(vha, flt_addr); |
| qla2xxx_get_fdt_info(vha); |
| |
| return QLA_SUCCESS; |
| } |
| |
| void |
| qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha) |
| { |
| #define NPIV_CONFIG_SIZE (16*1024) |
| void *data; |
| uint16_t *wptr; |
| uint16_t cnt, chksum; |
| int i; |
| struct qla_npiv_header hdr; |
| struct qla_npiv_entry *entry; |
| struct qla_hw_data *ha = vha->hw; |
| |
| if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha)) |
| return; |
| |
| ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr, |
| ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header)); |
| if (hdr.version == __constant_cpu_to_le16(0xffff)) |
| return; |
| if (hdr.version != __constant_cpu_to_le16(1)) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config " |
| "detected: version=0x%x entries=0x%x checksum=0x%x.\n", |
| le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), |
| le16_to_cpu(hdr.checksum))); |
| return; |
| } |
| |
| data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL); |
| if (!data) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to " |
| "allocate memory.\n")); |
| return; |
| } |
| |
| ha->isp_ops->read_optrom(vha, (uint8_t *)data, |
| ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE); |
| |
| cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) * |
| sizeof(struct qla_npiv_entry)) >> 1; |
| for (wptr = data, chksum = 0; cnt; cnt--) |
| chksum += le16_to_cpu(*wptr++); |
| if (chksum) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config " |
| "detected: version=0x%x entries=0x%x checksum=0x%x.\n", |
| le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), |
| chksum)); |
| goto done; |
| } |
| |
| entry = data + sizeof(struct qla_npiv_header); |
| cnt = le16_to_cpu(hdr.entries); |
| for (i = 0; cnt; cnt--, entry++, i++) { |
| uint16_t flags; |
| struct fc_vport_identifiers vid; |
| struct fc_vport *vport; |
| |
| memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry)); |
| |
| flags = le16_to_cpu(entry->flags); |
| if (flags == 0xffff) |
| continue; |
| if ((flags & BIT_0) == 0) |
| continue; |
| |
| memset(&vid, 0, sizeof(vid)); |
| vid.roles = FC_PORT_ROLE_FCP_INITIATOR; |
| vid.vport_type = FC_PORTTYPE_NPIV; |
| vid.disable = false; |
| vid.port_name = wwn_to_u64(entry->port_name); |
| vid.node_name = wwn_to_u64(entry->node_name); |
| |
| DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx " |
| "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt, |
| (unsigned long long)vid.port_name, |
| (unsigned long long)vid.node_name, |
| le16_to_cpu(entry->vf_id), |
| entry->q_qos, entry->f_qos)); |
| |
| if (i < QLA_PRECONFIG_VPORTS) { |
| vport = fc_vport_create(vha->host, 0, &vid); |
| if (!vport) |
| qla_printk(KERN_INFO, ha, |
| "NPIV-Config: Failed to create vport [%02x]: " |
| "wwpn=%llx wwnn=%llx.\n", cnt, |
| (unsigned long long)vid.port_name, |
| (unsigned long long)vid.node_name); |
| } |
| } |
| done: |
| kfree(data); |
| } |
| |
| static int |
| qla24xx_unprotect_flash(scsi_qla_host_t *vha) |
| { |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| if (ha->flags.fac_supported) |
| return qla81xx_fac_do_write_enable(vha, 1); |
| |
| /* Enable flash write. */ |
| WRT_REG_DWORD(®->ctrl_status, |
| RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); |
| RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ |
| |
| if (!ha->fdt_wrt_disable) |
| goto done; |
| |
| /* Disable flash write-protection, first clear SR protection bit */ |
| qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); |
| /* Then write zero again to clear remaining SR bits.*/ |
| qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); |
| done: |
| return QLA_SUCCESS; |
| } |
| |
| static int |
| qla24xx_protect_flash(scsi_qla_host_t *vha) |
| { |
| uint32_t cnt; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| if (ha->flags.fac_supported) |
| return qla81xx_fac_do_write_enable(vha, 0); |
| |
| if (!ha->fdt_wrt_disable) |
| goto skip_wrt_protect; |
| |
| /* Enable flash write-protection and wait for completion. */ |
| qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), |
| ha->fdt_wrt_disable); |
| for (cnt = 300; cnt && |
| qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0; |
| cnt--) { |
| udelay(10); |
| } |
| |
| skip_wrt_protect: |
| /* Disable flash write. */ |
| WRT_REG_DWORD(®->ctrl_status, |
| RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); |
| RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ |
| |
| return QLA_SUCCESS; |
| } |
| |
| static int |
| qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata) |
| { |
| struct qla_hw_data *ha = vha->hw; |
| uint32_t start, finish; |
| |
| if (ha->flags.fac_supported) { |
| start = fdata >> 2; |
| finish = start + (ha->fdt_block_size >> 2) - 1; |
| return qla81xx_fac_erase_sector(vha, flash_data_addr(ha, |
| start), flash_data_addr(ha, finish)); |
| } |
| |
| return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd, |
| (fdata & 0xff00) | ((fdata << 16) & 0xff0000) | |
| ((fdata >> 16) & 0xff)); |
| } |
| |
| static int |
| qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, |
| uint32_t dwords) |
| { |
| int ret; |
| uint32_t liter; |
| uint32_t sec_mask, rest_addr; |
| uint32_t fdata; |
| dma_addr_t optrom_dma; |
| void *optrom = NULL; |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Prepare burst-capable write on supported ISPs. */ |
| if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) && |
| dwords > OPTROM_BURST_DWORDS) { |
| optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, |
| &optrom_dma, GFP_KERNEL); |
| if (!optrom) { |
| qla_printk(KERN_DEBUG, ha, |
| "Unable to allocate memory for optrom burst write " |
| "(%x KB).\n", OPTROM_BURST_SIZE / 1024); |
| } |
| } |
| |
| rest_addr = (ha->fdt_block_size >> 2) - 1; |
| sec_mask = ~rest_addr; |
| |
| ret = qla24xx_unprotect_flash(vha); |
| if (ret != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to unprotect flash for update.\n"); |
| goto done; |
| } |
| |
| for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) { |
| fdata = (faddr & sec_mask) << 2; |
| |
| /* Are we at the beginning of a sector? */ |
| if ((faddr & rest_addr) == 0) { |
| /* Do sector unprotect. */ |
| if (ha->fdt_unprotect_sec_cmd) |
| qla24xx_write_flash_dword(ha, |
| ha->fdt_unprotect_sec_cmd, |
| (fdata & 0xff00) | ((fdata << 16) & |
| 0xff0000) | ((fdata >> 16) & 0xff)); |
| ret = qla24xx_erase_sector(vha, fdata); |
| if (ret != QLA_SUCCESS) { |
| DEBUG9(qla_printk(KERN_WARNING, ha, |
| "Unable to erase sector: address=%x.\n", |
| faddr)); |
| break; |
| } |
| } |
| |
| /* Go with burst-write. */ |
| if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) { |
| /* Copy data to DMA'ble buffer. */ |
| memcpy(optrom, dwptr, OPTROM_BURST_SIZE); |
| |
| ret = qla2x00_load_ram(vha, optrom_dma, |
| flash_data_addr(ha, faddr), |
| OPTROM_BURST_DWORDS); |
| if (ret != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to burst-write optrom segment " |
| "(%x/%x/%llx).\n", ret, |
| flash_data_addr(ha, faddr), |
| (unsigned long long)optrom_dma); |
| qla_printk(KERN_WARNING, ha, |
| "Reverting to slow-write.\n"); |
| |
| dma_free_coherent(&ha->pdev->dev, |
| OPTROM_BURST_SIZE, optrom, optrom_dma); |
| optrom = NULL; |
| } else { |
| liter += OPTROM_BURST_DWORDS - 1; |
| faddr += OPTROM_BURST_DWORDS - 1; |
| dwptr += OPTROM_BURST_DWORDS - 1; |
| continue; |
| } |
| } |
| |
| ret = qla24xx_write_flash_dword(ha, |
| flash_data_addr(ha, faddr), cpu_to_le32(*dwptr)); |
| if (ret != QLA_SUCCESS) { |
| DEBUG9(printk("%s(%ld) Unable to program flash " |
| "address=%x data=%x.\n", __func__, |
| vha->host_no, faddr, *dwptr)); |
| break; |
| } |
| |
| /* Do sector protect. */ |
| if (ha->fdt_unprotect_sec_cmd && |
| ((faddr & rest_addr) == rest_addr)) |
| qla24xx_write_flash_dword(ha, |
| ha->fdt_protect_sec_cmd, |
| (fdata & 0xff00) | ((fdata << 16) & |
| 0xff0000) | ((fdata >> 16) & 0xff)); |
| } |
| |
| ret = qla24xx_protect_flash(vha); |
| if (ret != QLA_SUCCESS) |
| qla_printk(KERN_WARNING, ha, |
| "Unable to protect flash after update.\n"); |
| done: |
| if (optrom) |
| dma_free_coherent(&ha->pdev->dev, |
| OPTROM_BURST_SIZE, optrom, optrom_dma); |
| |
| return ret; |
| } |
| |
| uint8_t * |
| qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, |
| uint32_t bytes) |
| { |
| uint32_t i; |
| uint16_t *wptr; |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Word reads to NVRAM via registers. */ |
| wptr = (uint16_t *)buf; |
| qla2x00_lock_nvram_access(ha); |
| for (i = 0; i < bytes >> 1; i++, naddr++) |
| wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha, |
| naddr)); |
| qla2x00_unlock_nvram_access(ha); |
| |
| return buf; |
| } |
| |
| uint8_t * |
| qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, |
| uint32_t bytes) |
| { |
| uint32_t i; |
| uint32_t *dwptr; |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Dword reads to flash. */ |
| dwptr = (uint32_t *)buf; |
| for (i = 0; i < bytes >> 2; i++, naddr++) |
| dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, |
| nvram_data_addr(ha, naddr))); |
| |
| return buf; |
| } |
| |
| int |
| qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, |
| uint32_t bytes) |
| { |
| int ret, stat; |
| uint32_t i; |
| uint16_t *wptr; |
| unsigned long flags; |
| struct qla_hw_data *ha = vha->hw; |
| |
| ret = QLA_SUCCESS; |
| |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| qla2x00_lock_nvram_access(ha); |
| |
| /* Disable NVRAM write-protection. */ |
| stat = qla2x00_clear_nvram_protection(ha); |
| |
| wptr = (uint16_t *)buf; |
| for (i = 0; i < bytes >> 1; i++, naddr++) { |
| qla2x00_write_nvram_word(ha, naddr, |
| cpu_to_le16(*wptr)); |
| wptr++; |
| } |
| |
| /* Enable NVRAM write-protection. */ |
| qla2x00_set_nvram_protection(ha, stat); |
| |
| qla2x00_unlock_nvram_access(ha); |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| |
| return ret; |
| } |
| |
| int |
| qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, |
| uint32_t bytes) |
| { |
| int ret; |
| uint32_t i; |
| uint32_t *dwptr; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| ret = QLA_SUCCESS; |
| |
| /* Enable flash write. */ |
| WRT_REG_DWORD(®->ctrl_status, |
| RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); |
| RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ |
| |
| /* Disable NVRAM write-protection. */ |
| qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); |
| qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); |
| |
| /* Dword writes to flash. */ |
| dwptr = (uint32_t *)buf; |
| for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) { |
| ret = qla24xx_write_flash_dword(ha, |
| nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr)); |
| if (ret != QLA_SUCCESS) { |
| DEBUG9(qla_printk(KERN_WARNING, ha, |
| "Unable to program nvram address=%x data=%x.\n", |
| naddr, *dwptr)); |
| break; |
| } |
| } |
| |
| /* Enable NVRAM write-protection. */ |
| qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c); |
| |
| /* Disable flash write. */ |
| WRT_REG_DWORD(®->ctrl_status, |
| RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); |
| RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ |
| |
| return ret; |
| } |
| |
| uint8_t * |
| qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, |
| uint32_t bytes) |
| { |
| uint32_t i; |
| uint32_t *dwptr; |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Dword reads to flash. */ |
| dwptr = (uint32_t *)buf; |
| for (i = 0; i < bytes >> 2; i++, naddr++) |
| dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, |
| flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr))); |
| |
| return buf; |
| } |
| |
| int |
| qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, |
| uint32_t bytes) |
| { |
| struct qla_hw_data *ha = vha->hw; |
| #define RMW_BUFFER_SIZE (64 * 1024) |
| uint8_t *dbuf; |
| |
| dbuf = vmalloc(RMW_BUFFER_SIZE); |
| if (!dbuf) |
| return QLA_MEMORY_ALLOC_FAILED; |
| ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, |
| RMW_BUFFER_SIZE); |
| memcpy(dbuf + (naddr << 2), buf, bytes); |
| ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, |
| RMW_BUFFER_SIZE); |
| vfree(dbuf); |
| |
| return QLA_SUCCESS; |
| } |
| |
| static inline void |
| qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) |
| { |
| if (IS_QLA2322(ha)) { |
| /* Flip all colors. */ |
| if (ha->beacon_color_state == QLA_LED_ALL_ON) { |
| /* Turn off. */ |
| ha->beacon_color_state = 0; |
| *pflags = GPIO_LED_ALL_OFF; |
| } else { |
| /* Turn on. */ |
| ha->beacon_color_state = QLA_LED_ALL_ON; |
| *pflags = GPIO_LED_RGA_ON; |
| } |
| } else { |
| /* Flip green led only. */ |
| if (ha->beacon_color_state == QLA_LED_GRN_ON) { |
| /* Turn off. */ |
| ha->beacon_color_state = 0; |
| *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF; |
| } else { |
| /* Turn on. */ |
| ha->beacon_color_state = QLA_LED_GRN_ON; |
| *pflags = GPIO_LED_GREEN_ON_AMBER_OFF; |
| } |
| } |
| } |
| |
| #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r)) |
| |
| void |
| qla2x00_beacon_blink(struct scsi_qla_host *vha) |
| { |
| uint16_t gpio_enable; |
| uint16_t gpio_data; |
| uint16_t led_color = 0; |
| unsigned long flags; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| |
| /* Save the Original GPIOE. */ |
| if (ha->pio_address) { |
| gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); |
| gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); |
| } else { |
| gpio_enable = RD_REG_WORD(®->gpioe); |
| gpio_data = RD_REG_WORD(®->gpiod); |
| } |
| |
| /* Set the modified gpio_enable values */ |
| gpio_enable |= GPIO_LED_MASK; |
| |
| if (ha->pio_address) { |
| WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); |
| } else { |
| WRT_REG_WORD(®->gpioe, gpio_enable); |
| RD_REG_WORD(®->gpioe); |
| } |
| |
| qla2x00_flip_colors(ha, &led_color); |
| |
| /* Clear out any previously set LED color. */ |
| gpio_data &= ~GPIO_LED_MASK; |
| |
| /* Set the new input LED color to GPIOD. */ |
| gpio_data |= led_color; |
| |
| /* Set the modified gpio_data values */ |
| if (ha->pio_address) { |
| WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); |
| } else { |
| WRT_REG_WORD(®->gpiod, gpio_data); |
| RD_REG_WORD(®->gpiod); |
| } |
| |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| } |
| |
| int |
| qla2x00_beacon_on(struct scsi_qla_host *vha) |
| { |
| uint16_t gpio_enable; |
| uint16_t gpio_data; |
| unsigned long flags; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; |
| ha->fw_options[1] |= FO1_DISABLE_GPIO6_7; |
| |
| if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to update fw options (beacon on).\n"); |
| return QLA_FUNCTION_FAILED; |
| } |
| |
| /* Turn off LEDs. */ |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| if (ha->pio_address) { |
| gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); |
| gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); |
| } else { |
| gpio_enable = RD_REG_WORD(®->gpioe); |
| gpio_data = RD_REG_WORD(®->gpiod); |
| } |
| gpio_enable |= GPIO_LED_MASK; |
| |
| /* Set the modified gpio_enable values. */ |
| if (ha->pio_address) { |
| WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); |
| } else { |
| WRT_REG_WORD(®->gpioe, gpio_enable); |
| RD_REG_WORD(®->gpioe); |
| } |
| |
| /* Clear out previously set LED colour. */ |
| gpio_data &= ~GPIO_LED_MASK; |
| if (ha->pio_address) { |
| WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); |
| } else { |
| WRT_REG_WORD(®->gpiod, gpio_data); |
| RD_REG_WORD(®->gpiod); |
| } |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| |
| /* |
| * Let the per HBA timer kick off the blinking process based on |
| * the following flags. No need to do anything else now. |
| */ |
| ha->beacon_blink_led = 1; |
| ha->beacon_color_state = 0; |
| |
| return QLA_SUCCESS; |
| } |
| |
| int |
| qla2x00_beacon_off(struct scsi_qla_host *vha) |
| { |
| int rval = QLA_SUCCESS; |
| struct qla_hw_data *ha = vha->hw; |
| |
| ha->beacon_blink_led = 0; |
| |
| /* Set the on flag so when it gets flipped it will be off. */ |
| if (IS_QLA2322(ha)) |
| ha->beacon_color_state = QLA_LED_ALL_ON; |
| else |
| ha->beacon_color_state = QLA_LED_GRN_ON; |
| |
| ha->isp_ops->beacon_blink(vha); /* This turns green LED off */ |
| |
| ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; |
| ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7; |
| |
| rval = qla2x00_set_fw_options(vha, ha->fw_options); |
| if (rval != QLA_SUCCESS) |
| qla_printk(KERN_WARNING, ha, |
| "Unable to update fw options (beacon off).\n"); |
| return rval; |
| } |
| |
| |
| static inline void |
| qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) |
| { |
| /* Flip all colors. */ |
| if (ha->beacon_color_state == QLA_LED_ALL_ON) { |
| /* Turn off. */ |
| ha->beacon_color_state = 0; |
| *pflags = 0; |
| } else { |
| /* Turn on. */ |
| ha->beacon_color_state = QLA_LED_ALL_ON; |
| *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON; |
| } |
| } |
| |
| void |
| qla24xx_beacon_blink(struct scsi_qla_host *vha) |
| { |
| uint16_t led_color = 0; |
| uint32_t gpio_data; |
| unsigned long flags; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| /* Save the Original GPIOD. */ |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| gpio_data = RD_REG_DWORD(®->gpiod); |
| |
| /* Enable the gpio_data reg for update. */ |
| gpio_data |= GPDX_LED_UPDATE_MASK; |
| |
| WRT_REG_DWORD(®->gpiod, gpio_data); |
| gpio_data = RD_REG_DWORD(®->gpiod); |
| |
| /* Set the color bits. */ |
| qla24xx_flip_colors(ha, &led_color); |
| |
| /* Clear out any previously set LED color. */ |
| gpio_data &= ~GPDX_LED_COLOR_MASK; |
| |
| /* Set the new input LED color to GPIOD. */ |
| gpio_data |= led_color; |
| |
| /* Set the modified gpio_data values. */ |
| WRT_REG_DWORD(®->gpiod, gpio_data); |
| gpio_data = RD_REG_DWORD(®->gpiod); |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| } |
| |
| int |
| qla24xx_beacon_on(struct scsi_qla_host *vha) |
| { |
| uint32_t gpio_data; |
| unsigned long flags; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| if (ha->beacon_blink_led == 0) { |
| /* Enable firmware for update */ |
| ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL; |
| |
| if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) |
| return QLA_FUNCTION_FAILED; |
| |
| if (qla2x00_get_fw_options(vha, ha->fw_options) != |
| QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to update fw options (beacon on).\n"); |
| return QLA_FUNCTION_FAILED; |
| } |
| |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| gpio_data = RD_REG_DWORD(®->gpiod); |
| |
| /* Enable the gpio_data reg for update. */ |
| gpio_data |= GPDX_LED_UPDATE_MASK; |
| WRT_REG_DWORD(®->gpiod, gpio_data); |
| RD_REG_DWORD(®->gpiod); |
| |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| } |
| |
| /* So all colors blink together. */ |
| ha->beacon_color_state = 0; |
| |
| /* Let the per HBA timer kick off the blinking process. */ |
| ha->beacon_blink_led = 1; |
| |
| return QLA_SUCCESS; |
| } |
| |
| int |
| qla24xx_beacon_off(struct scsi_qla_host *vha) |
| { |
| uint32_t gpio_data; |
| unsigned long flags; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| |
| ha->beacon_blink_led = 0; |
| ha->beacon_color_state = QLA_LED_ALL_ON; |
| |
| ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */ |
| |
| /* Give control back to firmware. */ |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| gpio_data = RD_REG_DWORD(®->gpiod); |
| |
| /* Disable the gpio_data reg for update. */ |
| gpio_data &= ~GPDX_LED_UPDATE_MASK; |
| WRT_REG_DWORD(®->gpiod, gpio_data); |
| RD_REG_DWORD(®->gpiod); |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| |
| ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL; |
| |
| if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to update fw options (beacon off).\n"); |
| return QLA_FUNCTION_FAILED; |
| } |
| |
| if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to get fw options (beacon off).\n"); |
| return QLA_FUNCTION_FAILED; |
| } |
| |
| return QLA_SUCCESS; |
| } |
| |
| |
| /* |
| * Flash support routines |
| */ |
| |
| /** |
| * qla2x00_flash_enable() - Setup flash for reading and writing. |
| * @ha: HA context |
| */ |
| static void |
| qla2x00_flash_enable(struct qla_hw_data *ha) |
| { |
| uint16_t data; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| data = RD_REG_WORD(®->ctrl_status); |
| data |= CSR_FLASH_ENABLE; |
| WRT_REG_WORD(®->ctrl_status, data); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| } |
| |
| /** |
| * qla2x00_flash_disable() - Disable flash and allow RISC to run. |
| * @ha: HA context |
| */ |
| static void |
| qla2x00_flash_disable(struct qla_hw_data *ha) |
| { |
| uint16_t data; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| data = RD_REG_WORD(®->ctrl_status); |
| data &= ~(CSR_FLASH_ENABLE); |
| WRT_REG_WORD(®->ctrl_status, data); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| } |
| |
| /** |
| * qla2x00_read_flash_byte() - Reads a byte from flash |
| * @ha: HA context |
| * @addr: Address in flash to read |
| * |
| * A word is read from the chip, but, only the lower byte is valid. |
| * |
| * Returns the byte read from flash @addr. |
| */ |
| static uint8_t |
| qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr) |
| { |
| uint16_t data; |
| uint16_t bank_select; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| bank_select = RD_REG_WORD(®->ctrl_status); |
| |
| if (IS_QLA2322(ha) || IS_QLA6322(ha)) { |
| /* Specify 64K address range: */ |
| /* clear out Module Select and Flash Address bits [19:16]. */ |
| bank_select &= ~0xf8; |
| bank_select |= addr >> 12 & 0xf0; |
| bank_select |= CSR_FLASH_64K_BANK; |
| WRT_REG_WORD(®->ctrl_status, bank_select); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| |
| WRT_REG_WORD(®->flash_address, (uint16_t)addr); |
| data = RD_REG_WORD(®->flash_data); |
| |
| return (uint8_t)data; |
| } |
| |
| /* Setup bit 16 of flash address. */ |
| if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { |
| bank_select |= CSR_FLASH_64K_BANK; |
| WRT_REG_WORD(®->ctrl_status, bank_select); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| } else if (((addr & BIT_16) == 0) && |
| (bank_select & CSR_FLASH_64K_BANK)) { |
| bank_select &= ~(CSR_FLASH_64K_BANK); |
| WRT_REG_WORD(®->ctrl_status, bank_select); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| } |
| |
| /* Always perform IO mapped accesses to the FLASH registers. */ |
| if (ha->pio_address) { |
| uint16_t data2; |
| |
| WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); |
| do { |
| data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); |
| barrier(); |
| cpu_relax(); |
| data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); |
| } while (data != data2); |
| } else { |
| WRT_REG_WORD(®->flash_address, (uint16_t)addr); |
| data = qla2x00_debounce_register(®->flash_data); |
| } |
| |
| return (uint8_t)data; |
| } |
| |
| /** |
| * qla2x00_write_flash_byte() - Write a byte to flash |
| * @ha: HA context |
| * @addr: Address in flash to write |
| * @data: Data to write |
| */ |
| static void |
| qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data) |
| { |
| uint16_t bank_select; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| bank_select = RD_REG_WORD(®->ctrl_status); |
| if (IS_QLA2322(ha) || IS_QLA6322(ha)) { |
| /* Specify 64K address range: */ |
| /* clear out Module Select and Flash Address bits [19:16]. */ |
| bank_select &= ~0xf8; |
| bank_select |= addr >> 12 & 0xf0; |
| bank_select |= CSR_FLASH_64K_BANK; |
| WRT_REG_WORD(®->ctrl_status, bank_select); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| |
| WRT_REG_WORD(®->flash_address, (uint16_t)addr); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| WRT_REG_WORD(®->flash_data, (uint16_t)data); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| |
| return; |
| } |
| |
| /* Setup bit 16 of flash address. */ |
| if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { |
| bank_select |= CSR_FLASH_64K_BANK; |
| WRT_REG_WORD(®->ctrl_status, bank_select); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| } else if (((addr & BIT_16) == 0) && |
| (bank_select & CSR_FLASH_64K_BANK)) { |
| bank_select &= ~(CSR_FLASH_64K_BANK); |
| WRT_REG_WORD(®->ctrl_status, bank_select); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| } |
| |
| /* Always perform IO mapped accesses to the FLASH registers. */ |
| if (ha->pio_address) { |
| WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); |
| WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data); |
| } else { |
| WRT_REG_WORD(®->flash_address, (uint16_t)addr); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| WRT_REG_WORD(®->flash_data, (uint16_t)data); |
| RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ |
| } |
| } |
| |
| /** |
| * qla2x00_poll_flash() - Polls flash for completion. |
| * @ha: HA context |
| * @addr: Address in flash to poll |
| * @poll_data: Data to be polled |
| * @man_id: Flash manufacturer ID |
| * @flash_id: Flash ID |
| * |
| * This function polls the device until bit 7 of what is read matches data |
| * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed |
| * out (a fatal error). The flash book recommeds reading bit 7 again after |
| * reading bit 5 as a 1. |
| * |
| * Returns 0 on success, else non-zero. |
| */ |
| static int |
| qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data, |
| uint8_t man_id, uint8_t flash_id) |
| { |
| int status; |
| uint8_t flash_data; |
| uint32_t cnt; |
| |
| status = 1; |
| |
| /* Wait for 30 seconds for command to finish. */ |
| poll_data &= BIT_7; |
| for (cnt = 3000000; cnt; cnt--) { |
| flash_data = qla2x00_read_flash_byte(ha, addr); |
| if ((flash_data & BIT_7) == poll_data) { |
| status = 0; |
| break; |
| } |
| |
| if (man_id != 0x40 && man_id != 0xda) { |
| if ((flash_data & BIT_5) && cnt > 2) |
| cnt = 2; |
| } |
| udelay(10); |
| barrier(); |
| cond_resched(); |
| } |
| return status; |
| } |
| |
| /** |
| * qla2x00_program_flash_address() - Programs a flash address |
| * @ha: HA context |
| * @addr: Address in flash to program |
| * @data: Data to be written in flash |
| * @man_id: Flash manufacturer ID |
| * @flash_id: Flash ID |
| * |
| * Returns 0 on success, else non-zero. |
| */ |
| static int |
| qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr, |
| uint8_t data, uint8_t man_id, uint8_t flash_id) |
| { |
| /* Write Program Command Sequence. */ |
| if (IS_OEM_001(ha)) { |
| qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x555, 0x55); |
| qla2x00_write_flash_byte(ha, 0xaaa, 0xa0); |
| qla2x00_write_flash_byte(ha, addr, data); |
| } else { |
| if (man_id == 0xda && flash_id == 0xc1) { |
| qla2x00_write_flash_byte(ha, addr, data); |
| if (addr & 0x7e) |
| return 0; |
| } else { |
| qla2x00_write_flash_byte(ha, 0x5555, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); |
| qla2x00_write_flash_byte(ha, 0x5555, 0xa0); |
| qla2x00_write_flash_byte(ha, addr, data); |
| } |
| } |
| |
| udelay(150); |
| |
| /* Wait for write to complete. */ |
| return qla2x00_poll_flash(ha, addr, data, man_id, flash_id); |
| } |
| |
| /** |
| * qla2x00_erase_flash() - Erase the flash. |
| * @ha: HA context |
| * @man_id: Flash manufacturer ID |
| * @flash_id: Flash ID |
| * |
| * Returns 0 on success, else non-zero. |
| */ |
| static int |
| qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id) |
| { |
| /* Individual Sector Erase Command Sequence */ |
| if (IS_OEM_001(ha)) { |
| qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x555, 0x55); |
| qla2x00_write_flash_byte(ha, 0xaaa, 0x80); |
| qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x555, 0x55); |
| qla2x00_write_flash_byte(ha, 0xaaa, 0x10); |
| } else { |
| qla2x00_write_flash_byte(ha, 0x5555, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); |
| qla2x00_write_flash_byte(ha, 0x5555, 0x80); |
| qla2x00_write_flash_byte(ha, 0x5555, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); |
| qla2x00_write_flash_byte(ha, 0x5555, 0x10); |
| } |
| |
| udelay(150); |
| |
| /* Wait for erase to complete. */ |
| return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id); |
| } |
| |
| /** |
| * qla2x00_erase_flash_sector() - Erase a flash sector. |
| * @ha: HA context |
| * @addr: Flash sector to erase |
| * @sec_mask: Sector address mask |
| * @man_id: Flash manufacturer ID |
| * @flash_id: Flash ID |
| * |
| * Returns 0 on success, else non-zero. |
| */ |
| static int |
| qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr, |
| uint32_t sec_mask, uint8_t man_id, uint8_t flash_id) |
| { |
| /* Individual Sector Erase Command Sequence */ |
| qla2x00_write_flash_byte(ha, 0x5555, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); |
| qla2x00_write_flash_byte(ha, 0x5555, 0x80); |
| qla2x00_write_flash_byte(ha, 0x5555, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); |
| if (man_id == 0x1f && flash_id == 0x13) |
| qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10); |
| else |
| qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30); |
| |
| udelay(150); |
| |
| /* Wait for erase to complete. */ |
| return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id); |
| } |
| |
| /** |
| * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip. |
| * @man_id: Flash manufacturer ID |
| * @flash_id: Flash ID |
| */ |
| static void |
| qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, |
| uint8_t *flash_id) |
| { |
| qla2x00_write_flash_byte(ha, 0x5555, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); |
| qla2x00_write_flash_byte(ha, 0x5555, 0x90); |
| *man_id = qla2x00_read_flash_byte(ha, 0x0000); |
| *flash_id = qla2x00_read_flash_byte(ha, 0x0001); |
| qla2x00_write_flash_byte(ha, 0x5555, 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); |
| qla2x00_write_flash_byte(ha, 0x5555, 0xf0); |
| } |
| |
| static void |
| qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf, |
| uint32_t saddr, uint32_t length) |
| { |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| uint32_t midpoint, ilength; |
| uint8_t data; |
| |
| midpoint = length / 2; |
| |
| WRT_REG_WORD(®->nvram, 0); |
| RD_REG_WORD(®->nvram); |
| for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) { |
| if (ilength == midpoint) { |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); |
| } |
| data = qla2x00_read_flash_byte(ha, saddr); |
| if (saddr % 100) |
| udelay(10); |
| *tmp_buf = data; |
| cond_resched(); |
| } |
| } |
| |
| static inline void |
| qla2x00_suspend_hba(struct scsi_qla_host *vha) |
| { |
| int cnt; |
| unsigned long flags; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| /* Suspend HBA. */ |
| scsi_block_requests(vha->host); |
| ha->isp_ops->disable_intrs(ha); |
| set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); |
| |
| /* Pause RISC. */ |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); |
| RD_REG_WORD(®->hccr); |
| if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { |
| for (cnt = 0; cnt < 30000; cnt++) { |
| if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) |
| break; |
| udelay(100); |
| } |
| } else { |
| udelay(10); |
| } |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| } |
| |
| static inline void |
| qla2x00_resume_hba(struct scsi_qla_host *vha) |
| { |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Resume HBA. */ |
| clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); |
| set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags); |
| qla2xxx_wake_dpc(vha); |
| qla2x00_wait_for_chip_reset(vha); |
| scsi_unblock_requests(vha->host); |
| } |
| |
| uint8_t * |
| qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, |
| uint32_t offset, uint32_t length) |
| { |
| uint32_t addr, midpoint; |
| uint8_t *data; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| /* Suspend HBA. */ |
| qla2x00_suspend_hba(vha); |
| |
| /* Go with read. */ |
| midpoint = ha->optrom_size / 2; |
| |
| qla2x00_flash_enable(ha); |
| WRT_REG_WORD(®->nvram, 0); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| for (addr = offset, data = buf; addr < length; addr++, data++) { |
| if (addr == midpoint) { |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); /* PCI Posting. */ |
| } |
| |
| *data = qla2x00_read_flash_byte(ha, addr); |
| } |
| qla2x00_flash_disable(ha); |
| |
| /* Resume HBA. */ |
| qla2x00_resume_hba(vha); |
| |
| return buf; |
| } |
| |
| int |
| qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, |
| uint32_t offset, uint32_t length) |
| { |
| |
| int rval; |
| uint8_t man_id, flash_id, sec_number, data; |
| uint16_t wd; |
| uint32_t addr, liter, sec_mask, rest_addr; |
| struct qla_hw_data *ha = vha->hw; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| /* Suspend HBA. */ |
| qla2x00_suspend_hba(vha); |
| |
| rval = QLA_SUCCESS; |
| sec_number = 0; |
| |
| /* Reset ISP chip. */ |
| WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); |
| pci_read_config_word(ha->pdev, PCI_COMMAND, &wd); |
| |
| /* Go with write. */ |
| qla2x00_flash_enable(ha); |
| do { /* Loop once to provide quick error exit */ |
| /* Structure of flash memory based on manufacturer */ |
| if (IS_OEM_001(ha)) { |
| /* OEM variant with special flash part. */ |
| man_id = flash_id = 0; |
| rest_addr = 0xffff; |
| sec_mask = 0x10000; |
| goto update_flash; |
| } |
| qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id); |
| switch (man_id) { |
| case 0x20: /* ST flash. */ |
| if (flash_id == 0xd2 || flash_id == 0xe3) { |
| /* |
| * ST m29w008at part - 64kb sector size with |
| * 32kb,8kb,8kb,16kb sectors at memory address |
| * 0xf0000. |
| */ |
| rest_addr = 0xffff; |
| sec_mask = 0x10000; |
| break; |
| } |
| /* |
| * ST m29w010b part - 16kb sector size |
| * Default to 16kb sectors |
| */ |
| rest_addr = 0x3fff; |
| sec_mask = 0x1c000; |
| break; |
| case 0x40: /* Mostel flash. */ |
| /* Mostel v29c51001 part - 512 byte sector size. */ |
| rest_addr = 0x1ff; |
| sec_mask = 0x1fe00; |
| break; |
| case 0xbf: /* SST flash. */ |
| /* SST39sf10 part - 4kb sector size. */ |
| rest_addr = 0xfff; |
| sec_mask = 0x1f000; |
| break; |
| case 0xda: /* Winbond flash. */ |
| /* Winbond W29EE011 part - 256 byte sector size. */ |
| rest_addr = 0x7f; |
| sec_mask = 0x1ff80; |
| break; |
| case 0xc2: /* Macronix flash. */ |
| /* 64k sector size. */ |
| if (flash_id == 0x38 || flash_id == 0x4f) { |
| rest_addr = 0xffff; |
| sec_mask = 0x10000; |
| break; |
| } |
| /* Fall through... */ |
| |
| case 0x1f: /* Atmel flash. */ |
| /* 512k sector size. */ |
| if (flash_id == 0x13) { |
| rest_addr = 0x7fffffff; |
| sec_mask = 0x80000000; |
| break; |
| } |
| /* Fall through... */ |
| |
| case 0x01: /* AMD flash. */ |
| if (flash_id == 0x38 || flash_id == 0x40 || |
| flash_id == 0x4f) { |
| /* Am29LV081 part - 64kb sector size. */ |
| /* Am29LV002BT part - 64kb sector size. */ |
| rest_addr = 0xffff; |
| sec_mask = 0x10000; |
| break; |
| } else if (flash_id == 0x3e) { |
| /* |
| * Am29LV008b part - 64kb sector size with |
| * 32kb,8kb,8kb,16kb sector at memory address |
| * h0xf0000. |
| */ |
| rest_addr = 0xffff; |
| sec_mask = 0x10000; |
| break; |
| } else if (flash_id == 0x20 || flash_id == 0x6e) { |
| /* |
| * Am29LV010 part or AM29f010 - 16kb sector |
| * size. |
| */ |
| rest_addr = 0x3fff; |
| sec_mask = 0x1c000; |
| break; |
| } else if (flash_id == 0x6d) { |
| /* Am29LV001 part - 8kb sector size. */ |
| rest_addr = 0x1fff; |
| sec_mask = 0x1e000; |
| break; |
| } |
| default: |
| /* Default to 16 kb sector size. */ |
| rest_addr = 0x3fff; |
| sec_mask = 0x1c000; |
| break; |
| } |
| |
| update_flash: |
| if (IS_QLA2322(ha) || IS_QLA6322(ha)) { |
| if (qla2x00_erase_flash(ha, man_id, flash_id)) { |
| rval = QLA_FUNCTION_FAILED; |
| break; |
| } |
| } |
| |
| for (addr = offset, liter = 0; liter < length; liter++, |
| addr++) { |
| data = buf[liter]; |
| /* Are we at the beginning of a sector? */ |
| if ((addr & rest_addr) == 0) { |
| if (IS_QLA2322(ha) || IS_QLA6322(ha)) { |
| if (addr >= 0x10000UL) { |
| if (((addr >> 12) & 0xf0) && |
| ((man_id == 0x01 && |
| flash_id == 0x3e) || |
| (man_id == 0x20 && |
| flash_id == 0xd2))) { |
| sec_number++; |
| if (sec_number == 1) { |
| rest_addr = |
| 0x7fff; |
| sec_mask = |
| 0x18000; |
| } else if ( |
| sec_number == 2 || |
| sec_number == 3) { |
| rest_addr = |
| 0x1fff; |
| sec_mask = |
| 0x1e000; |
| } else if ( |
| sec_number == 4) { |
| rest_addr = |
| 0x3fff; |
| sec_mask = |
| 0x1c000; |
| } |
| } |
| } |
| } else if (addr == ha->optrom_size / 2) { |
| WRT_REG_WORD(®->nvram, NVR_SELECT); |
| RD_REG_WORD(®->nvram); |
| } |
| |
| if (flash_id == 0xda && man_id == 0xc1) { |
| qla2x00_write_flash_byte(ha, 0x5555, |
| 0xaa); |
| qla2x00_write_flash_byte(ha, 0x2aaa, |
| 0x55); |
| qla2x00_write_flash_byte(ha, 0x5555, |
| 0xa0); |
| } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) { |
| /* Then erase it */ |
| if (qla2x00_erase_flash_sector(ha, |
| addr, sec_mask, man_id, |
| flash_id)) { |
| rval = QLA_FUNCTION_FAILED; |
| break; |
| } |
| if (man_id == 0x01 && flash_id == 0x6d) |
| sec_number++; |
| } |
| } |
| |
| if (man_id == 0x01 && flash_id == 0x6d) { |
| if (sec_number == 1 && |
| addr == (rest_addr - 1)) { |
| rest_addr = 0x0fff; |
| sec_mask = 0x1f000; |
| } else if (sec_number == 3 && (addr & 0x7ffe)) { |
| rest_addr = 0x3fff; |
| sec_mask = 0x1c000; |
| } |
| } |
| |
| if (qla2x00_program_flash_address(ha, addr, data, |
| man_id, flash_id)) { |
| rval = QLA_FUNCTION_FAILED; |
| break; |
| } |
| cond_resched(); |
| } |
| } while (0); |
| qla2x00_flash_disable(ha); |
| |
| /* Resume HBA. */ |
| qla2x00_resume_hba(vha); |
| |
| return rval; |
| } |
| |
| uint8_t * |
| qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, |
| uint32_t offset, uint32_t length) |
| { |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Suspend HBA. */ |
| scsi_block_requests(vha->host); |
| set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); |
| |
| /* Go with read. */ |
| qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2); |
| |
| /* Resume HBA. */ |
| clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); |
| scsi_unblock_requests(vha->host); |
| |
| return buf; |
| } |
| |
| int |
| qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, |
| uint32_t offset, uint32_t length) |
| { |
| int rval; |
| struct qla_hw_data *ha = vha->hw; |
| |
| /* Suspend HBA. */ |
| scsi_block_requests(vha->host); |
| set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); |
| |
| /* Go with write. */ |
| rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2, |
| length >> 2); |
| |
| clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); |
| scsi_unblock_requests(vha->host); |
| |
| return rval; |
| } |
| |
| uint8_t * |
| qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, |
| uint32_t offset, uint32_t length) |
| { |
| int rval; |
| dma_addr_t optrom_dma; |
| void *optrom; |
| uint8_t *pbuf; |
| uint32_t faddr, left, burst; |
| struct qla_hw_data *ha = vha->hw; |
| |
| if (IS_QLA25XX(ha) || IS_QLA81XX(ha)) |
| goto try_fast; |
| if (offset & 0xfff) |
| goto slow_read; |
| if (length < OPTROM_BURST_SIZE) |
| goto slow_read; |
| |
| try_fast: |
| optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, |
| &optrom_dma, GFP_KERNEL); |
| if (!optrom) { |
| qla_printk(KERN_DEBUG, ha, |
| "Unable to allocate memory for optrom burst read " |
| "(%x KB).\n", OPTROM_BURST_SIZE / 1024); |
| |
| goto slow_read; |
| } |
| |
| pbuf = buf; |
| faddr = offset >> 2; |
| left = length >> 2; |
| burst = OPTROM_BURST_DWORDS; |
| while (left != 0) { |
| if (burst > left) |
| burst = left; |
| |
| rval = qla2x00_dump_ram(vha, optrom_dma, |
| flash_data_addr(ha, faddr), burst); |
| if (rval) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to burst-read optrom segment " |
| "(%x/%x/%llx).\n", rval, |
| flash_data_addr(ha, faddr), |
| (unsigned long long)optrom_dma); |
| qla_printk(KERN_WARNING, ha, |
| "Reverting to slow-read.\n"); |
| |
| dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, |
| optrom, optrom_dma); |
| goto slow_read; |
| } |
| |
| memcpy(pbuf, optrom, burst * 4); |
| |
| left -= burst; |
| faddr += burst; |
| pbuf += burst * 4; |
| } |
| |
| dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom, |
| optrom_dma); |
| |
| return buf; |
| |
| slow_read: |
| return qla24xx_read_optrom_data(vha, buf, offset, length); |
| } |
| |
| /** |
| * qla2x00_get_fcode_version() - Determine an FCODE image's version. |
| * @ha: HA context |
| * @pcids: Pointer to the FCODE PCI data structure |
| * |
| * The process of retrieving the FCODE version information is at best |
| * described as interesting. |
| * |
| * Within the first 100h bytes of the image an ASCII string is present |
| * which contains several pieces of information including the FCODE |
| * version. Unfortunately it seems the only reliable way to retrieve |
| * the version is by scanning for another sentinel within the string, |
| * the FCODE build date: |
| * |
| * ... 2.00.02 10/17/02 ... |
| * |
| * Returns QLA_SUCCESS on successful retrieval of version. |
| */ |
| static void |
| qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids) |
| { |
| int ret = QLA_FUNCTION_FAILED; |
| uint32_t istart, iend, iter, vend; |
| uint8_t do_next, rbyte, *vbyte; |
| |
| memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); |
| |
| /* Skip the PCI data structure. */ |
| istart = pcids + |
| ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) | |
| qla2x00_read_flash_byte(ha, pcids + 0x0A)); |
| iend = istart + 0x100; |
| do { |
| /* Scan for the sentinel date string...eeewww. */ |
| do_next = 0; |
| iter = istart; |
| while ((iter < iend) && !do_next) { |
| iter++; |
| if (qla2x00_read_flash_byte(ha, iter) == '/') { |
| if (qla2x00_read_flash_byte(ha, iter + 2) == |
| '/') |
| do_next++; |
| else if (qla2x00_read_flash_byte(ha, |
| iter + 3) == '/') |
| do_next++; |
| } |
| } |
| if (!do_next) |
| break; |
| |
| /* Backtrack to previous ' ' (space). */ |
| do_next = 0; |
| while ((iter > istart) && !do_next) { |
| iter--; |
| if (qla2x00_read_flash_byte(ha, iter) == ' ') |
| do_next++; |
| } |
| if (!do_next) |
| break; |
| |
| /* |
| * Mark end of version tag, and find previous ' ' (space) or |
| * string length (recent FCODE images -- major hack ahead!!!). |
| */ |
| vend = iter - 1; |
| do_next = 0; |
| while ((iter > istart) && !do_next) { |
| iter--; |
| rbyte = qla2x00_read_flash_byte(ha, iter); |
| if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10) |
| do_next++; |
| } |
| if (!do_next) |
| break; |
| |
| /* Mark beginning of version tag, and copy data. */ |
| iter++; |
| if ((vend - iter) && |
| ((vend - iter) < sizeof(ha->fcode_revision))) { |
| vbyte = ha->fcode_revision; |
| while (iter <= vend) { |
| *vbyte++ = qla2x00_read_flash_byte(ha, iter); |
| iter++; |
| } |
| ret = QLA_SUCCESS; |
| } |
| } while (0); |
| |
| if (ret != QLA_SUCCESS) |
| memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); |
| } |
| |
| int |
| qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf) |
| { |
| int ret = QLA_SUCCESS; |
| uint8_t code_type, last_image; |
| uint32_t pcihdr, pcids; |
| uint8_t *dbyte; |
| uint16_t *dcode; |
| struct qla_hw_data *ha = vha->hw; |
| |
| if (!ha->pio_address || !mbuf) |
| return QLA_FUNCTION_FAILED; |
| |
| memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); |
| memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); |
| memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); |
| memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); |
| |
| qla2x00_flash_enable(ha); |
| |
| /* Begin with first PCI expansion ROM header. */ |
| pcihdr = 0; |
| last_image = 1; |
| do { |
| /* Verify PCI expansion ROM header. */ |
| if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 || |
| qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) { |
| /* No signature */ |
| DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM " |
| "signature.\n")); |
| ret = QLA_FUNCTION_FAILED; |
| break; |
| } |
| |
| /* Locate PCI data structure. */ |
| pcids = pcihdr + |
| ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) | |
| qla2x00_read_flash_byte(ha, pcihdr + 0x18)); |
| |
| /* Validate signature of PCI data structure. */ |
| if (qla2x00_read_flash_byte(ha, pcids) != 'P' || |
| qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' || |
| qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' || |
| qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') { |
| /* Incorrect header. */ |
| DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not " |
| "found pcir_adr=%x.\n", pcids)); |
| ret = QLA_FUNCTION_FAILED; |
| break; |
| } |
| |
| /* Read version */ |
| code_type = qla2x00_read_flash_byte(ha, pcids + 0x14); |
| switch (code_type) { |
| case ROM_CODE_TYPE_BIOS: |
| /* Intel x86, PC-AT compatible. */ |
| ha->bios_revision[0] = |
| qla2x00_read_flash_byte(ha, pcids + 0x12); |
| ha->bios_revision[1] = |
| qla2x00_read_flash_byte(ha, pcids + 0x13); |
| DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n", |
| ha->bios_revision[1], ha->bios_revision[0])); |
| break; |
| case ROM_CODE_TYPE_FCODE: |
| /* Open Firmware standard for PCI (FCode). */ |
| /* Eeeewww... */ |
| qla2x00_get_fcode_version(ha, pcids); |
| break; |
| case ROM_CODE_TYPE_EFI: |
| /* Extensible Firmware Interface (EFI). */ |
| ha->efi_revision[0] = |
| qla2x00_read_flash_byte(ha, pcids + 0x12); |
| ha->efi_revision[1] = |
| qla2x00_read_flash_byte(ha, pcids + 0x13); |
| DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n", |
| ha->efi_revision[1], ha->efi_revision[0])); |
| break; |
| default: |
| DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code " |
| "type %x at pcids %x.\n", code_type, pcids)); |
| break; |
| } |
| |
| last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7; |
| |
| /* Locate next PCI expansion ROM. */ |
| pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) | |
| qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512; |
| } while (!last_image); |
| |
| if (IS_QLA2322(ha)) { |
| /* Read firmware image information. */ |
| memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); |
| dbyte = mbuf; |
| memset(dbyte, 0, 8); |
| dcode = (uint16_t *)dbyte; |
| |
| qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10, |
| 8); |
| DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from " |
| "flash:\n")); |
| DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8)); |
| |
| if ((dcode[0] == 0xffff && dcode[1] == 0xffff && |
| dcode[2] == 0xffff && dcode[3] == 0xffff) || |
| (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && |
| dcode[3] == 0)) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw " |
| "revision at %x.\n", ha->flt_region_fw * 4)); |
| } else { |
| /* values are in big endian */ |
| ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1]; |
| ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3]; |
| ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5]; |
| } |
| } |
| |
| qla2x00_flash_disable(ha); |
| |
| return ret; |
| } |
| |
| int |
| qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf) |
| { |
| int ret = QLA_SUCCESS; |
| uint32_t pcihdr, pcids; |
| uint32_t *dcode; |
| uint8_t *bcode; |
| uint8_t code_type, last_image; |
| int i; |
| struct qla_hw_data *ha = vha->hw; |
| |
| if (!mbuf) |
| return QLA_FUNCTION_FAILED; |
| |
| memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); |
| memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); |
| memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); |
| memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); |
| |
| dcode = mbuf; |
| |
| /* Begin with first PCI expansion ROM header. */ |
| pcihdr = ha->flt_region_boot << 2; |
| last_image = 1; |
| do { |
| /* Verify PCI expansion ROM header. */ |
| qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); |
| bcode = mbuf + (pcihdr % 4); |
| if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) { |
| /* No signature */ |
| DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM " |
| "signature.\n")); |
| ret = QLA_FUNCTION_FAILED; |
| break; |
| } |
| |
| /* Locate PCI data structure. */ |
| pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); |
| |
| qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); |
| bcode = mbuf + (pcihdr % 4); |
| |
| /* Validate signature of PCI data structure. */ |
| if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || |
| bcode[0x2] != 'I' || bcode[0x3] != 'R') { |
| /* Incorrect header. */ |
| DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not " |
| "found pcir_adr=%x.\n", pcids)); |
| ret = QLA_FUNCTION_FAILED; |
| break; |
| } |
| |
| /* Read version */ |
| code_type = bcode[0x14]; |
| switch (code_type) { |
| case ROM_CODE_TYPE_BIOS: |
| /* Intel x86, PC-AT compatible. */ |
| ha->bios_revision[0] = bcode[0x12]; |
| ha->bios_revision[1] = bcode[0x13]; |
| DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n", |
| ha->bios_revision[1], ha->bios_revision[0])); |
| break; |
| case ROM_CODE_TYPE_FCODE: |
| /* Open Firmware standard for PCI (FCode). */ |
| ha->fcode_revision[0] = bcode[0x12]; |
| ha->fcode_revision[1] = bcode[0x13]; |
| DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n", |
| ha->fcode_revision[1], ha->fcode_revision[0])); |
| break; |
| case ROM_CODE_TYPE_EFI: |
| /* Extensible Firmware Interface (EFI). */ |
| ha->efi_revision[0] = bcode[0x12]; |
| ha->efi_revision[1] = bcode[0x13]; |
| DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n", |
| ha->efi_revision[1], ha->efi_revision[0])); |
| break; |
| default: |
| DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code " |
| "type %x at pcids %x.\n", code_type, pcids)); |
| break; |
| } |
| |
| last_image = bcode[0x15] & BIT_7; |
| |
| /* Locate next PCI expansion ROM. */ |
| pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; |
| } while (!last_image); |
| |
| /* Read firmware image information. */ |
| memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); |
| dcode = mbuf; |
| |
| qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4); |
| for (i = 0; i < 4; i++) |
| dcode[i] = be32_to_cpu(dcode[i]); |
| |
| if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && |
| dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || |
| (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && |
| dcode[3] == 0)) { |
| DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw " |
| "revision at %x.\n", ha->flt_region_fw * 4)); |
| } else { |
| ha->fw_revision[0] = dcode[0]; |
| ha->fw_revision[1] = dcode[1]; |
| ha->fw_revision[2] = dcode[2]; |
| ha->fw_revision[3] = dcode[3]; |
| } |
| |
| return ret; |
| } |
| |
| static int |
| qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end) |
| { |
| if (pos >= end || *pos != 0x82) |
| return 0; |
| |
| pos += 3 + pos[1]; |
| if (pos >= end || *pos != 0x90) |
| return 0; |
| |
| pos += 3 + pos[1]; |
| if (pos >= end || *pos != 0x78) |
| return 0; |
| |
| return 1; |
| } |
| |
| int |
| qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size) |
| { |
| struct qla_hw_data *ha = vha->hw; |
| uint8_t *pos = ha->vpd; |
| uint8_t *end = pos + ha->vpd_size; |
| int len = 0; |
| |
| if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end)) |
| return 0; |
| |
| while (pos < end && *pos != 0x78) { |
| len = (*pos == 0x82) ? pos[1] : pos[2]; |
| |
| if (!strncmp(pos, key, strlen(key))) |
| break; |
| |
| if (*pos != 0x90 && *pos != 0x91) |
| pos += len; |
| |
| pos += 3; |
| } |
| |
| if (pos < end - len && *pos != 0x78) |
| return snprintf(str, size, "%.*s", len, pos + 3); |
| |
| return 0; |
| } |
| |
| int |
| qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha) |
| { |
| int len, max_len; |
| uint32_t fcp_prio_addr; |
| struct qla_hw_data *ha = vha->hw; |
| |
| if (!ha->fcp_prio_cfg) { |
| ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE); |
| if (!ha->fcp_prio_cfg) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to allocate memory for fcp priority data " |
| "(%x).\n", FCP_PRIO_CFG_SIZE); |
| return QLA_FUNCTION_FAILED; |
| } |
| } |
| memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE); |
| |
| fcp_prio_addr = ha->flt_region_fcp_prio; |
| |
| /* first read the fcp priority data header from flash */ |
| ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg, |
| fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE); |
| |
| if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 0)) |
| goto fail; |
| |
| /* read remaining FCP CMD config data from flash */ |
| fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2); |
| len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE; |
| max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE; |
| |
| ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0], |
| fcp_prio_addr << 2, (len < max_len ? len : max_len)); |
| |
| /* revalidate the entire FCP priority config data, including entries */ |
| if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 1)) |
| goto fail; |
| |
| ha->flags.fcp_prio_enabled = 1; |
| return QLA_SUCCESS; |
| fail: |
| vfree(ha->fcp_prio_cfg); |
| ha->fcp_prio_cfg = NULL; |
| return QLA_FUNCTION_FAILED; |
| } |