| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Process number limiting controller for cgroups. |
| * |
| * Used to allow a cgroup hierarchy to stop any new processes from fork()ing |
| * after a certain limit is reached. |
| * |
| * Since it is trivial to hit the task limit without hitting any kmemcg limits |
| * in place, PIDs are a fundamental resource. As such, PID exhaustion must be |
| * preventable in the scope of a cgroup hierarchy by allowing resource limiting |
| * of the number of tasks in a cgroup. |
| * |
| * In order to use the `pids` controller, set the maximum number of tasks in |
| * pids.max (this is not available in the root cgroup for obvious reasons). The |
| * number of processes currently in the cgroup is given by pids.current. |
| * Organisational operations are not blocked by cgroup policies, so it is |
| * possible to have pids.current > pids.max. However, it is not possible to |
| * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking |
| * would cause a cgroup policy to be violated. |
| * |
| * To set a cgroup to have no limit, set pids.max to "max". This is the default |
| * for all new cgroups (N.B. that PID limits are hierarchical, so the most |
| * stringent limit in the hierarchy is followed). |
| * |
| * pids.current tracks all child cgroup hierarchies, so parent/pids.current is |
| * a superset of parent/child/pids.current. |
| * |
| * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/threads.h> |
| #include <linux/atomic.h> |
| #include <linux/cgroup.h> |
| #include <linux/slab.h> |
| #include <linux/sched/task.h> |
| |
| #define PIDS_MAX (PID_MAX_LIMIT + 1ULL) |
| #define PIDS_MAX_STR "max" |
| |
| struct pids_cgroup { |
| struct cgroup_subsys_state css; |
| |
| /* |
| * Use 64-bit types so that we can safely represent "max" as |
| * %PIDS_MAX = (%PID_MAX_LIMIT + 1). |
| */ |
| atomic64_t counter; |
| atomic64_t limit; |
| int64_t watermark; |
| |
| /* Handle for "pids.events" */ |
| struct cgroup_file events_file; |
| |
| /* Number of times fork failed because limit was hit. */ |
| atomic64_t events_limit; |
| }; |
| |
| static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css) |
| { |
| return container_of(css, struct pids_cgroup, css); |
| } |
| |
| static struct pids_cgroup *parent_pids(struct pids_cgroup *pids) |
| { |
| return css_pids(pids->css.parent); |
| } |
| |
| static struct cgroup_subsys_state * |
| pids_css_alloc(struct cgroup_subsys_state *parent) |
| { |
| struct pids_cgroup *pids; |
| |
| pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL); |
| if (!pids) |
| return ERR_PTR(-ENOMEM); |
| |
| atomic64_set(&pids->counter, 0); |
| atomic64_set(&pids->limit, PIDS_MAX); |
| atomic64_set(&pids->events_limit, 0); |
| return &pids->css; |
| } |
| |
| static void pids_css_free(struct cgroup_subsys_state *css) |
| { |
| kfree(css_pids(css)); |
| } |
| |
| static void pids_update_watermark(struct pids_cgroup *p, int64_t nr_pids) |
| { |
| /* |
| * This is racy, but we don't need perfectly accurate tallying of |
| * the watermark, and this lets us avoid extra atomic overhead. |
| */ |
| if (nr_pids > READ_ONCE(p->watermark)) |
| WRITE_ONCE(p->watermark, nr_pids); |
| } |
| |
| /** |
| * pids_cancel - uncharge the local pid count |
| * @pids: the pid cgroup state |
| * @num: the number of pids to cancel |
| * |
| * This function will WARN if the pid count goes under 0, because such a case is |
| * a bug in the pids controller proper. |
| */ |
| static void pids_cancel(struct pids_cgroup *pids, int num) |
| { |
| /* |
| * A negative count (or overflow for that matter) is invalid, |
| * and indicates a bug in the `pids` controller proper. |
| */ |
| WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter)); |
| } |
| |
| /** |
| * pids_uncharge - hierarchically uncharge the pid count |
| * @pids: the pid cgroup state |
| * @num: the number of pids to uncharge |
| */ |
| static void pids_uncharge(struct pids_cgroup *pids, int num) |
| { |
| struct pids_cgroup *p; |
| |
| for (p = pids; parent_pids(p); p = parent_pids(p)) |
| pids_cancel(p, num); |
| } |
| |
| /** |
| * pids_charge - hierarchically charge the pid count |
| * @pids: the pid cgroup state |
| * @num: the number of pids to charge |
| * |
| * This function does *not* follow the pid limit set. It cannot fail and the new |
| * pid count may exceed the limit. This is only used for reverting failed |
| * attaches, where there is no other way out than violating the limit. |
| */ |
| static void pids_charge(struct pids_cgroup *pids, int num) |
| { |
| struct pids_cgroup *p; |
| |
| for (p = pids; parent_pids(p); p = parent_pids(p)) { |
| int64_t new = atomic64_add_return(num, &p->counter); |
| |
| pids_update_watermark(p, new); |
| } |
| } |
| |
| /** |
| * pids_try_charge - hierarchically try to charge the pid count |
| * @pids: the pid cgroup state |
| * @num: the number of pids to charge |
| * |
| * This function follows the set limit. It will fail if the charge would cause |
| * the new value to exceed the hierarchical limit. Returns 0 if the charge |
| * succeeded, otherwise -EAGAIN. |
| */ |
| static int pids_try_charge(struct pids_cgroup *pids, int num) |
| { |
| struct pids_cgroup *p, *q; |
| |
| for (p = pids; parent_pids(p); p = parent_pids(p)) { |
| int64_t new = atomic64_add_return(num, &p->counter); |
| int64_t limit = atomic64_read(&p->limit); |
| |
| /* |
| * Since new is capped to the maximum number of pid_t, if |
| * p->limit is %PIDS_MAX then we know that this test will never |
| * fail. |
| */ |
| if (new > limit) |
| goto revert; |
| |
| /* |
| * Not technically accurate if we go over limit somewhere up |
| * the hierarchy, but that's tolerable for the watermark. |
| */ |
| pids_update_watermark(p, new); |
| } |
| |
| return 0; |
| |
| revert: |
| for (q = pids; q != p; q = parent_pids(q)) |
| pids_cancel(q, num); |
| pids_cancel(p, num); |
| |
| return -EAGAIN; |
| } |
| |
| static int pids_can_attach(struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| struct cgroup_subsys_state *dst_css; |
| |
| cgroup_taskset_for_each(task, dst_css, tset) { |
| struct pids_cgroup *pids = css_pids(dst_css); |
| struct cgroup_subsys_state *old_css; |
| struct pids_cgroup *old_pids; |
| |
| /* |
| * No need to pin @old_css between here and cancel_attach() |
| * because cgroup core protects it from being freed before |
| * the migration completes or fails. |
| */ |
| old_css = task_css(task, pids_cgrp_id); |
| old_pids = css_pids(old_css); |
| |
| pids_charge(pids, 1); |
| pids_uncharge(old_pids, 1); |
| } |
| |
| return 0; |
| } |
| |
| static void pids_cancel_attach(struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| struct cgroup_subsys_state *dst_css; |
| |
| cgroup_taskset_for_each(task, dst_css, tset) { |
| struct pids_cgroup *pids = css_pids(dst_css); |
| struct cgroup_subsys_state *old_css; |
| struct pids_cgroup *old_pids; |
| |
| old_css = task_css(task, pids_cgrp_id); |
| old_pids = css_pids(old_css); |
| |
| pids_charge(old_pids, 1); |
| pids_uncharge(pids, 1); |
| } |
| } |
| |
| /* |
| * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies |
| * on cgroup_threadgroup_change_begin() held by the copy_process(). |
| */ |
| static int pids_can_fork(struct task_struct *task, struct css_set *cset) |
| { |
| struct cgroup_subsys_state *css; |
| struct pids_cgroup *pids; |
| int err; |
| |
| if (cset) |
| css = cset->subsys[pids_cgrp_id]; |
| else |
| css = task_css_check(current, pids_cgrp_id, true); |
| pids = css_pids(css); |
| err = pids_try_charge(pids, 1); |
| if (err) { |
| /* Only log the first time events_limit is incremented. */ |
| if (atomic64_inc_return(&pids->events_limit) == 1) { |
| pr_info("cgroup: fork rejected by pids controller in "); |
| pr_cont_cgroup_path(css->cgroup); |
| pr_cont("\n"); |
| } |
| cgroup_file_notify(&pids->events_file); |
| } |
| return err; |
| } |
| |
| static void pids_cancel_fork(struct task_struct *task, struct css_set *cset) |
| { |
| struct cgroup_subsys_state *css; |
| struct pids_cgroup *pids; |
| |
| if (cset) |
| css = cset->subsys[pids_cgrp_id]; |
| else |
| css = task_css_check(current, pids_cgrp_id, true); |
| pids = css_pids(css); |
| pids_uncharge(pids, 1); |
| } |
| |
| static void pids_release(struct task_struct *task) |
| { |
| struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id)); |
| |
| pids_uncharge(pids, 1); |
| } |
| |
| static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf, |
| size_t nbytes, loff_t off) |
| { |
| struct cgroup_subsys_state *css = of_css(of); |
| struct pids_cgroup *pids = css_pids(css); |
| int64_t limit; |
| int err; |
| |
| buf = strstrip(buf); |
| if (!strcmp(buf, PIDS_MAX_STR)) { |
| limit = PIDS_MAX; |
| goto set_limit; |
| } |
| |
| err = kstrtoll(buf, 0, &limit); |
| if (err) |
| return err; |
| |
| if (limit < 0 || limit >= PIDS_MAX) |
| return -EINVAL; |
| |
| set_limit: |
| /* |
| * Limit updates don't need to be mutex'd, since it isn't |
| * critical that any racing fork()s follow the new limit. |
| */ |
| atomic64_set(&pids->limit, limit); |
| return nbytes; |
| } |
| |
| static int pids_max_show(struct seq_file *sf, void *v) |
| { |
| struct cgroup_subsys_state *css = seq_css(sf); |
| struct pids_cgroup *pids = css_pids(css); |
| int64_t limit = atomic64_read(&pids->limit); |
| |
| if (limit >= PIDS_MAX) |
| seq_printf(sf, "%s\n", PIDS_MAX_STR); |
| else |
| seq_printf(sf, "%lld\n", limit); |
| |
| return 0; |
| } |
| |
| static s64 pids_current_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| struct pids_cgroup *pids = css_pids(css); |
| |
| return atomic64_read(&pids->counter); |
| } |
| |
| static s64 pids_peak_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| struct pids_cgroup *pids = css_pids(css); |
| |
| return READ_ONCE(pids->watermark); |
| } |
| |
| static int pids_events_show(struct seq_file *sf, void *v) |
| { |
| struct pids_cgroup *pids = css_pids(seq_css(sf)); |
| |
| seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit)); |
| return 0; |
| } |
| |
| static struct cftype pids_files[] = { |
| { |
| .name = "max", |
| .write = pids_max_write, |
| .seq_show = pids_max_show, |
| .flags = CFTYPE_NOT_ON_ROOT, |
| }, |
| { |
| .name = "current", |
| .read_s64 = pids_current_read, |
| .flags = CFTYPE_NOT_ON_ROOT, |
| }, |
| { |
| .name = "peak", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .read_s64 = pids_peak_read, |
| }, |
| { |
| .name = "events", |
| .seq_show = pids_events_show, |
| .file_offset = offsetof(struct pids_cgroup, events_file), |
| .flags = CFTYPE_NOT_ON_ROOT, |
| }, |
| { } /* terminate */ |
| }; |
| |
| struct cgroup_subsys pids_cgrp_subsys = { |
| .css_alloc = pids_css_alloc, |
| .css_free = pids_css_free, |
| .can_attach = pids_can_attach, |
| .cancel_attach = pids_cancel_attach, |
| .can_fork = pids_can_fork, |
| .cancel_fork = pids_cancel_fork, |
| .release = pids_release, |
| .legacy_cftypes = pids_files, |
| .dfl_cftypes = pids_files, |
| .threaded = true, |
| }; |