| /* |
| * Contains common pci routines for ALL ppc platform |
| * (based on pci_32.c and pci_64.c) |
| * |
| * Port for PPC64 David Engebretsen, IBM Corp. |
| * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. |
| * |
| * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM |
| * Rework, based on alpha PCI code. |
| * |
| * Common pmac/prep/chrp pci routines. -- Cort |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mm.h> |
| #include <linux/list.h> |
| #include <linux/syscalls.h> |
| #include <linux/irq.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/processor.h> |
| #include <asm/io.h> |
| #include <asm/prom.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/byteorder.h> |
| #include <asm/machdep.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/firmware.h> |
| |
| #ifdef DEBUG |
| #include <asm/udbg.h> |
| #define DBG(fmt...) printk(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| static DEFINE_SPINLOCK(hose_spinlock); |
| |
| /* XXX kill that some day ... */ |
| static int global_phb_number; /* Global phb counter */ |
| |
| /* ISA Memory physical address */ |
| resource_size_t isa_mem_base; |
| |
| /* Default PCI flags is 0 */ |
| unsigned int ppc_pci_flags; |
| |
| static struct dma_mapping_ops *pci_dma_ops; |
| |
| void set_pci_dma_ops(struct dma_mapping_ops *dma_ops) |
| { |
| pci_dma_ops = dma_ops; |
| } |
| |
| struct dma_mapping_ops *get_pci_dma_ops(void) |
| { |
| return pci_dma_ops; |
| } |
| EXPORT_SYMBOL(get_pci_dma_ops); |
| |
| int pci_set_dma_mask(struct pci_dev *dev, u64 mask) |
| { |
| return dma_set_mask(&dev->dev, mask); |
| } |
| |
| int pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) |
| { |
| int rc; |
| |
| rc = dma_set_mask(&dev->dev, mask); |
| dev->dev.coherent_dma_mask = dev->dma_mask; |
| |
| return rc; |
| } |
| |
| struct pci_controller *pcibios_alloc_controller(struct device_node *dev) |
| { |
| struct pci_controller *phb; |
| |
| phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); |
| if (phb == NULL) |
| return NULL; |
| spin_lock(&hose_spinlock); |
| phb->global_number = global_phb_number++; |
| list_add_tail(&phb->list_node, &hose_list); |
| spin_unlock(&hose_spinlock); |
| phb->dn = dev; |
| phb->is_dynamic = mem_init_done; |
| #ifdef CONFIG_PPC64 |
| if (dev) { |
| int nid = of_node_to_nid(dev); |
| |
| if (nid < 0 || !node_online(nid)) |
| nid = -1; |
| |
| PHB_SET_NODE(phb, nid); |
| } |
| #endif |
| return phb; |
| } |
| |
| void pcibios_free_controller(struct pci_controller *phb) |
| { |
| spin_lock(&hose_spinlock); |
| list_del(&phb->list_node); |
| spin_unlock(&hose_spinlock); |
| |
| if (phb->is_dynamic) |
| kfree(phb); |
| } |
| |
| int pcibios_vaddr_is_ioport(void __iomem *address) |
| { |
| int ret = 0; |
| struct pci_controller *hose; |
| unsigned long size; |
| |
| spin_lock(&hose_spinlock); |
| list_for_each_entry(hose, &hose_list, list_node) { |
| #ifdef CONFIG_PPC64 |
| size = hose->pci_io_size; |
| #else |
| size = hose->io_resource.end - hose->io_resource.start + 1; |
| #endif |
| if (address >= hose->io_base_virt && |
| address < (hose->io_base_virt + size)) { |
| ret = 1; |
| break; |
| } |
| } |
| spin_unlock(&hose_spinlock); |
| return ret; |
| } |
| |
| /* |
| * Return the domain number for this bus. |
| */ |
| int pci_domain_nr(struct pci_bus *bus) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| |
| return hose->global_number; |
| } |
| EXPORT_SYMBOL(pci_domain_nr); |
| |
| #ifdef CONFIG_PPC_OF |
| |
| /* This routine is meant to be used early during boot, when the |
| * PCI bus numbers have not yet been assigned, and you need to |
| * issue PCI config cycles to an OF device. |
| * It could also be used to "fix" RTAS config cycles if you want |
| * to set pci_assign_all_buses to 1 and still use RTAS for PCI |
| * config cycles. |
| */ |
| struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) |
| { |
| if (!have_of) |
| return NULL; |
| while(node) { |
| struct pci_controller *hose, *tmp; |
| list_for_each_entry_safe(hose, tmp, &hose_list, list_node) |
| if (hose->dn == node) |
| return hose; |
| node = node->parent; |
| } |
| return NULL; |
| } |
| |
| static ssize_t pci_show_devspec(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct pci_dev *pdev; |
| struct device_node *np; |
| |
| pdev = to_pci_dev (dev); |
| np = pci_device_to_OF_node(pdev); |
| if (np == NULL || np->full_name == NULL) |
| return 0; |
| return sprintf(buf, "%s", np->full_name); |
| } |
| static DEVICE_ATTR(devspec, S_IRUGO, pci_show_devspec, NULL); |
| #endif /* CONFIG_PPC_OF */ |
| |
| /* Add sysfs properties */ |
| int pcibios_add_platform_entries(struct pci_dev *pdev) |
| { |
| #ifdef CONFIG_PPC_OF |
| return device_create_file(&pdev->dev, &dev_attr_devspec); |
| #else |
| return 0; |
| #endif /* CONFIG_PPC_OF */ |
| |
| } |
| |
| char __devinit *pcibios_setup(char *str) |
| { |
| return str; |
| } |
| |
| void __devinit pcibios_setup_new_device(struct pci_dev *dev) |
| { |
| struct dev_archdata *sd = &dev->dev.archdata; |
| |
| sd->of_node = pci_device_to_OF_node(dev); |
| |
| DBG("PCI: device %s OF node: %s\n", pci_name(dev), |
| sd->of_node ? sd->of_node->full_name : "<none>"); |
| |
| sd->dma_ops = pci_dma_ops; |
| #ifdef CONFIG_PPC32 |
| sd->dma_data = (void *)PCI_DRAM_OFFSET; |
| #endif |
| set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); |
| |
| if (ppc_md.pci_dma_dev_setup) |
| ppc_md.pci_dma_dev_setup(dev); |
| } |
| EXPORT_SYMBOL(pcibios_setup_new_device); |
| |
| /* |
| * Reads the interrupt pin to determine if interrupt is use by card. |
| * If the interrupt is used, then gets the interrupt line from the |
| * openfirmware and sets it in the pci_dev and pci_config line. |
| */ |
| int pci_read_irq_line(struct pci_dev *pci_dev) |
| { |
| struct of_irq oirq; |
| unsigned int virq; |
| |
| /* The current device-tree that iSeries generates from the HV |
| * PCI informations doesn't contain proper interrupt routing, |
| * and all the fallback would do is print out crap, so we |
| * don't attempt to resolve the interrupts here at all, some |
| * iSeries specific fixup does it. |
| * |
| * In the long run, we will hopefully fix the generated device-tree |
| * instead. |
| */ |
| #ifdef CONFIG_PPC_ISERIES |
| if (firmware_has_feature(FW_FEATURE_ISERIES)) |
| return -1; |
| #endif |
| |
| DBG("Try to map irq for %s...\n", pci_name(pci_dev)); |
| |
| #ifdef DEBUG |
| memset(&oirq, 0xff, sizeof(oirq)); |
| #endif |
| /* Try to get a mapping from the device-tree */ |
| if (of_irq_map_pci(pci_dev, &oirq)) { |
| u8 line, pin; |
| |
| /* If that fails, lets fallback to what is in the config |
| * space and map that through the default controller. We |
| * also set the type to level low since that's what PCI |
| * interrupts are. If your platform does differently, then |
| * either provide a proper interrupt tree or don't use this |
| * function. |
| */ |
| if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) |
| return -1; |
| if (pin == 0) |
| return -1; |
| if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || |
| line == 0xff || line == 0) { |
| return -1; |
| } |
| DBG(" -> no map ! Using line %d (pin %d) from PCI config\n", |
| line, pin); |
| |
| virq = irq_create_mapping(NULL, line); |
| if (virq != NO_IRQ) |
| set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); |
| } else { |
| DBG(" -> got one, spec %d cells (0x%08x 0x%08x...) on %s\n", |
| oirq.size, oirq.specifier[0], oirq.specifier[1], |
| oirq.controller->full_name); |
| |
| virq = irq_create_of_mapping(oirq.controller, oirq.specifier, |
| oirq.size); |
| } |
| if(virq == NO_IRQ) { |
| DBG(" -> failed to map !\n"); |
| return -1; |
| } |
| |
| DBG(" -> mapped to linux irq %d\n", virq); |
| |
| pci_dev->irq = virq; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(pci_read_irq_line); |
| |
| /* |
| * Platform support for /proc/bus/pci/X/Y mmap()s, |
| * modelled on the sparc64 implementation by Dave Miller. |
| * -- paulus. |
| */ |
| |
| /* |
| * Adjust vm_pgoff of VMA such that it is the physical page offset |
| * corresponding to the 32-bit pci bus offset for DEV requested by the user. |
| * |
| * Basically, the user finds the base address for his device which he wishes |
| * to mmap. They read the 32-bit value from the config space base register, |
| * add whatever PAGE_SIZE multiple offset they wish, and feed this into the |
| * offset parameter of mmap on /proc/bus/pci/XXX for that device. |
| * |
| * Returns negative error code on failure, zero on success. |
| */ |
| static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, |
| resource_size_t *offset, |
| enum pci_mmap_state mmap_state) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| unsigned long io_offset = 0; |
| int i, res_bit; |
| |
| if (hose == 0) |
| return NULL; /* should never happen */ |
| |
| /* If memory, add on the PCI bridge address offset */ |
| if (mmap_state == pci_mmap_mem) { |
| #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ |
| *offset += hose->pci_mem_offset; |
| #endif |
| res_bit = IORESOURCE_MEM; |
| } else { |
| io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| *offset += io_offset; |
| res_bit = IORESOURCE_IO; |
| } |
| |
| /* |
| * Check that the offset requested corresponds to one of the |
| * resources of the device. |
| */ |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| struct resource *rp = &dev->resource[i]; |
| int flags = rp->flags; |
| |
| /* treat ROM as memory (should be already) */ |
| if (i == PCI_ROM_RESOURCE) |
| flags |= IORESOURCE_MEM; |
| |
| /* Active and same type? */ |
| if ((flags & res_bit) == 0) |
| continue; |
| |
| /* In the range of this resource? */ |
| if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) |
| continue; |
| |
| /* found it! construct the final physical address */ |
| if (mmap_state == pci_mmap_io) |
| *offset += hose->io_base_phys - io_offset; |
| return rp; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci |
| * device mapping. |
| */ |
| static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp, |
| pgprot_t protection, |
| enum pci_mmap_state mmap_state, |
| int write_combine) |
| { |
| unsigned long prot = pgprot_val(protection); |
| |
| /* Write combine is always 0 on non-memory space mappings. On |
| * memory space, if the user didn't pass 1, we check for a |
| * "prefetchable" resource. This is a bit hackish, but we use |
| * this to workaround the inability of /sysfs to provide a write |
| * combine bit |
| */ |
| if (mmap_state != pci_mmap_mem) |
| write_combine = 0; |
| else if (write_combine == 0) { |
| if (rp->flags & IORESOURCE_PREFETCH) |
| write_combine = 1; |
| } |
| |
| /* XXX would be nice to have a way to ask for write-through */ |
| prot |= _PAGE_NO_CACHE; |
| if (write_combine) |
| prot &= ~_PAGE_GUARDED; |
| else |
| prot |= _PAGE_GUARDED; |
| |
| return __pgprot(prot); |
| } |
| |
| /* |
| * This one is used by /dev/mem and fbdev who have no clue about the |
| * PCI device, it tries to find the PCI device first and calls the |
| * above routine |
| */ |
| pgprot_t pci_phys_mem_access_prot(struct file *file, |
| unsigned long pfn, |
| unsigned long size, |
| pgprot_t protection) |
| { |
| struct pci_dev *pdev = NULL; |
| struct resource *found = NULL; |
| unsigned long prot = pgprot_val(protection); |
| resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; |
| int i; |
| |
| if (page_is_ram(pfn)) |
| return __pgprot(prot); |
| |
| prot |= _PAGE_NO_CACHE | _PAGE_GUARDED; |
| |
| for_each_pci_dev(pdev) { |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| struct resource *rp = &pdev->resource[i]; |
| int flags = rp->flags; |
| |
| /* Active and same type? */ |
| if ((flags & IORESOURCE_MEM) == 0) |
| continue; |
| /* In the range of this resource? */ |
| if (offset < (rp->start & PAGE_MASK) || |
| offset > rp->end) |
| continue; |
| found = rp; |
| break; |
| } |
| if (found) |
| break; |
| } |
| if (found) { |
| if (found->flags & IORESOURCE_PREFETCH) |
| prot &= ~_PAGE_GUARDED; |
| pci_dev_put(pdev); |
| } |
| |
| DBG("non-PCI map for %llx, prot: %lx\n", |
| (unsigned long long)offset, prot); |
| |
| return __pgprot(prot); |
| } |
| |
| |
| /* |
| * Perform the actual remap of the pages for a PCI device mapping, as |
| * appropriate for this architecture. The region in the process to map |
| * is described by vm_start and vm_end members of VMA, the base physical |
| * address is found in vm_pgoff. |
| * The pci device structure is provided so that architectures may make mapping |
| * decisions on a per-device or per-bus basis. |
| * |
| * Returns a negative error code on failure, zero on success. |
| */ |
| int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state, int write_combine) |
| { |
| resource_size_t offset = |
| ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; |
| struct resource *rp; |
| int ret; |
| |
| rp = __pci_mmap_make_offset(dev, &offset, mmap_state); |
| if (rp == NULL) |
| return -EINVAL; |
| |
| vma->vm_pgoff = offset >> PAGE_SHIFT; |
| vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp, |
| vma->vm_page_prot, |
| mmap_state, write_combine); |
| |
| ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, vma->vm_page_prot); |
| |
| return ret; |
| } |
| |
| /* This provides legacy IO read access on a bus */ |
| int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) |
| { |
| unsigned long offset; |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| struct resource *rp = &hose->io_resource; |
| void __iomem *addr; |
| |
| /* Check if port can be supported by that bus. We only check |
| * the ranges of the PHB though, not the bus itself as the rules |
| * for forwarding legacy cycles down bridges are not our problem |
| * here. So if the host bridge supports it, we do it. |
| */ |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| offset += port; |
| |
| if (!(rp->flags & IORESOURCE_IO)) |
| return -ENXIO; |
| if (offset < rp->start || (offset + size) > rp->end) |
| return -ENXIO; |
| addr = hose->io_base_virt + port; |
| |
| switch(size) { |
| case 1: |
| *((u8 *)val) = in_8(addr); |
| return 1; |
| case 2: |
| if (port & 1) |
| return -EINVAL; |
| *((u16 *)val) = in_le16(addr); |
| return 2; |
| case 4: |
| if (port & 3) |
| return -EINVAL; |
| *((u32 *)val) = in_le32(addr); |
| return 4; |
| } |
| return -EINVAL; |
| } |
| |
| /* This provides legacy IO write access on a bus */ |
| int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) |
| { |
| unsigned long offset; |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| struct resource *rp = &hose->io_resource; |
| void __iomem *addr; |
| |
| /* Check if port can be supported by that bus. We only check |
| * the ranges of the PHB though, not the bus itself as the rules |
| * for forwarding legacy cycles down bridges are not our problem |
| * here. So if the host bridge supports it, we do it. |
| */ |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| offset += port; |
| |
| if (!(rp->flags & IORESOURCE_IO)) |
| return -ENXIO; |
| if (offset < rp->start || (offset + size) > rp->end) |
| return -ENXIO; |
| addr = hose->io_base_virt + port; |
| |
| /* WARNING: The generic code is idiotic. It gets passed a pointer |
| * to what can be a 1, 2 or 4 byte quantity and always reads that |
| * as a u32, which means that we have to correct the location of |
| * the data read within those 32 bits for size 1 and 2 |
| */ |
| switch(size) { |
| case 1: |
| out_8(addr, val >> 24); |
| return 1; |
| case 2: |
| if (port & 1) |
| return -EINVAL; |
| out_le16(addr, val >> 16); |
| return 2; |
| case 4: |
| if (port & 3) |
| return -EINVAL; |
| out_le32(addr, val); |
| return 4; |
| } |
| return -EINVAL; |
| } |
| |
| /* This provides legacy IO or memory mmap access on a bus */ |
| int pci_mmap_legacy_page_range(struct pci_bus *bus, |
| struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| resource_size_t offset = |
| ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; |
| resource_size_t size = vma->vm_end - vma->vm_start; |
| struct resource *rp; |
| |
| pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", |
| pci_domain_nr(bus), bus->number, |
| mmap_state == pci_mmap_mem ? "MEM" : "IO", |
| (unsigned long long)offset, |
| (unsigned long long)(offset + size - 1)); |
| |
| if (mmap_state == pci_mmap_mem) { |
| if ((offset + size) > hose->isa_mem_size) |
| return -ENXIO; |
| offset += hose->isa_mem_phys; |
| } else { |
| unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| unsigned long roffset = offset + io_offset; |
| rp = &hose->io_resource; |
| if (!(rp->flags & IORESOURCE_IO)) |
| return -ENXIO; |
| if (roffset < rp->start || (roffset + size) > rp->end) |
| return -ENXIO; |
| offset += hose->io_base_phys; |
| } |
| pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); |
| |
| vma->vm_pgoff = offset >> PAGE_SHIFT; |
| vma->vm_page_prot |= _PAGE_NO_CACHE | _PAGE_GUARDED; |
| return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| } |
| |
| void pci_resource_to_user(const struct pci_dev *dev, int bar, |
| const struct resource *rsrc, |
| resource_size_t *start, resource_size_t *end) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| resource_size_t offset = 0; |
| |
| if (hose == NULL) |
| return; |
| |
| if (rsrc->flags & IORESOURCE_IO) |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| |
| /* We pass a fully fixed up address to userland for MMIO instead of |
| * a BAR value because X is lame and expects to be able to use that |
| * to pass to /dev/mem ! |
| * |
| * That means that we'll have potentially 64 bits values where some |
| * userland apps only expect 32 (like X itself since it thinks only |
| * Sparc has 64 bits MMIO) but if we don't do that, we break it on |
| * 32 bits CHRPs :-( |
| * |
| * Hopefully, the sysfs insterface is immune to that gunk. Once X |
| * has been fixed (and the fix spread enough), we can re-enable the |
| * 2 lines below and pass down a BAR value to userland. In that case |
| * we'll also have to re-enable the matching code in |
| * __pci_mmap_make_offset(). |
| * |
| * BenH. |
| */ |
| #if 0 |
| else if (rsrc->flags & IORESOURCE_MEM) |
| offset = hose->pci_mem_offset; |
| #endif |
| |
| *start = rsrc->start - offset; |
| *end = rsrc->end - offset; |
| } |
| |
| /** |
| * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree |
| * @hose: newly allocated pci_controller to be setup |
| * @dev: device node of the host bridge |
| * @primary: set if primary bus (32 bits only, soon to be deprecated) |
| * |
| * This function will parse the "ranges" property of a PCI host bridge device |
| * node and setup the resource mapping of a pci controller based on its |
| * content. |
| * |
| * Life would be boring if it wasn't for a few issues that we have to deal |
| * with here: |
| * |
| * - We can only cope with one IO space range and up to 3 Memory space |
| * ranges. However, some machines (thanks Apple !) tend to split their |
| * space into lots of small contiguous ranges. So we have to coalesce. |
| * |
| * - We can only cope with all memory ranges having the same offset |
| * between CPU addresses and PCI addresses. Unfortunately, some bridges |
| * are setup for a large 1:1 mapping along with a small "window" which |
| * maps PCI address 0 to some arbitrary high address of the CPU space in |
| * order to give access to the ISA memory hole. |
| * The way out of here that I've chosen for now is to always set the |
| * offset based on the first resource found, then override it if we |
| * have a different offset and the previous was set by an ISA hole. |
| * |
| * - Some busses have IO space not starting at 0, which causes trouble with |
| * the way we do our IO resource renumbering. The code somewhat deals with |
| * it for 64 bits but I would expect problems on 32 bits. |
| * |
| * - Some 32 bits platforms such as 4xx can have physical space larger than |
| * 32 bits so we need to use 64 bits values for the parsing |
| */ |
| void __devinit pci_process_bridge_OF_ranges(struct pci_controller *hose, |
| struct device_node *dev, |
| int primary) |
| { |
| const u32 *ranges; |
| int rlen; |
| int pna = of_n_addr_cells(dev); |
| int np = pna + 5; |
| int memno = 0, isa_hole = -1; |
| u32 pci_space; |
| unsigned long long pci_addr, cpu_addr, pci_next, cpu_next, size; |
| unsigned long long isa_mb = 0; |
| struct resource *res; |
| |
| printk(KERN_INFO "PCI host bridge %s %s ranges:\n", |
| dev->full_name, primary ? "(primary)" : ""); |
| |
| /* Get ranges property */ |
| ranges = of_get_property(dev, "ranges", &rlen); |
| if (ranges == NULL) |
| return; |
| |
| /* Parse it */ |
| while ((rlen -= np * 4) >= 0) { |
| /* Read next ranges element */ |
| pci_space = ranges[0]; |
| pci_addr = of_read_number(ranges + 1, 2); |
| cpu_addr = of_translate_address(dev, ranges + 3); |
| size = of_read_number(ranges + pna + 3, 2); |
| ranges += np; |
| |
| /* If we failed translation or got a zero-sized region |
| * (some FW try to feed us with non sensical zero sized regions |
| * such as power3 which look like some kind of attempt at exposing |
| * the VGA memory hole) |
| */ |
| if (cpu_addr == OF_BAD_ADDR || size == 0) |
| continue; |
| |
| /* Now consume following elements while they are contiguous */ |
| for (; rlen >= np * sizeof(u32); |
| ranges += np, rlen -= np * 4) { |
| if (ranges[0] != pci_space) |
| break; |
| pci_next = of_read_number(ranges + 1, 2); |
| cpu_next = of_translate_address(dev, ranges + 3); |
| if (pci_next != pci_addr + size || |
| cpu_next != cpu_addr + size) |
| break; |
| size += of_read_number(ranges + pna + 3, 2); |
| } |
| |
| /* Act based on address space type */ |
| res = NULL; |
| switch ((pci_space >> 24) & 0x3) { |
| case 1: /* PCI IO space */ |
| printk(KERN_INFO |
| " IO 0x%016llx..0x%016llx -> 0x%016llx\n", |
| cpu_addr, cpu_addr + size - 1, pci_addr); |
| |
| /* We support only one IO range */ |
| if (hose->pci_io_size) { |
| printk(KERN_INFO |
| " \\--> Skipped (too many) !\n"); |
| continue; |
| } |
| #ifdef CONFIG_PPC32 |
| /* On 32 bits, limit I/O space to 16MB */ |
| if (size > 0x01000000) |
| size = 0x01000000; |
| |
| /* 32 bits needs to map IOs here */ |
| hose->io_base_virt = ioremap(cpu_addr, size); |
| |
| /* Expect trouble if pci_addr is not 0 */ |
| if (primary) |
| isa_io_base = |
| (unsigned long)hose->io_base_virt; |
| #endif /* CONFIG_PPC32 */ |
| /* pci_io_size and io_base_phys always represent IO |
| * space starting at 0 so we factor in pci_addr |
| */ |
| hose->pci_io_size = pci_addr + size; |
| hose->io_base_phys = cpu_addr - pci_addr; |
| |
| /* Build resource */ |
| res = &hose->io_resource; |
| res->flags = IORESOURCE_IO; |
| res->start = pci_addr; |
| break; |
| case 2: /* PCI Memory space */ |
| case 3: /* PCI 64 bits Memory space */ |
| printk(KERN_INFO |
| " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", |
| cpu_addr, cpu_addr + size - 1, pci_addr, |
| (pci_space & 0x40000000) ? "Prefetch" : ""); |
| |
| /* We support only 3 memory ranges */ |
| if (memno >= 3) { |
| printk(KERN_INFO |
| " \\--> Skipped (too many) !\n"); |
| continue; |
| } |
| /* Handles ISA memory hole space here */ |
| if (pci_addr == 0) { |
| isa_mb = cpu_addr; |
| isa_hole = memno; |
| if (primary || isa_mem_base == 0) |
| isa_mem_base = cpu_addr; |
| hose->isa_mem_phys = cpu_addr; |
| hose->isa_mem_size = size; |
| } |
| |
| /* We get the PCI/Mem offset from the first range or |
| * the, current one if the offset came from an ISA |
| * hole. If they don't match, bugger. |
| */ |
| if (memno == 0 || |
| (isa_hole >= 0 && pci_addr != 0 && |
| hose->pci_mem_offset == isa_mb)) |
| hose->pci_mem_offset = cpu_addr - pci_addr; |
| else if (pci_addr != 0 && |
| hose->pci_mem_offset != cpu_addr - pci_addr) { |
| printk(KERN_INFO |
| " \\--> Skipped (offset mismatch) !\n"); |
| continue; |
| } |
| |
| /* Build resource */ |
| res = &hose->mem_resources[memno++]; |
| res->flags = IORESOURCE_MEM; |
| if (pci_space & 0x40000000) |
| res->flags |= IORESOURCE_PREFETCH; |
| res->start = cpu_addr; |
| break; |
| } |
| if (res != NULL) { |
| res->name = dev->full_name; |
| res->end = res->start + size - 1; |
| res->parent = NULL; |
| res->sibling = NULL; |
| res->child = NULL; |
| } |
| } |
| |
| /* If there's an ISA hole and the pci_mem_offset is -not- matching |
| * the ISA hole offset, then we need to remove the ISA hole from |
| * the resource list for that brige |
| */ |
| if (isa_hole >= 0 && hose->pci_mem_offset != isa_mb) { |
| unsigned int next = isa_hole + 1; |
| printk(KERN_INFO " Removing ISA hole at 0x%016llx\n", isa_mb); |
| if (next < memno) |
| memmove(&hose->mem_resources[isa_hole], |
| &hose->mem_resources[next], |
| sizeof(struct resource) * (memno - next)); |
| hose->mem_resources[--memno].flags = 0; |
| } |
| } |
| |
| /* Decide whether to display the domain number in /proc */ |
| int pci_proc_domain(struct pci_bus *bus) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| #ifdef CONFIG_PPC64 |
| return hose->buid != 0; |
| #else |
| if (!(ppc_pci_flags & PPC_PCI_ENABLE_PROC_DOMAINS)) |
| return 0; |
| if (ppc_pci_flags & PPC_PCI_COMPAT_DOMAIN_0) |
| return hose->global_number != 0; |
| return 1; |
| #endif |
| } |
| |
| void pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region, |
| struct resource *res) |
| { |
| resource_size_t offset = 0, mask = (resource_size_t)-1; |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| |
| if (!hose) |
| return; |
| if (res->flags & IORESOURCE_IO) { |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| mask = 0xffffffffu; |
| } else if (res->flags & IORESOURCE_MEM) |
| offset = hose->pci_mem_offset; |
| |
| region->start = (res->start - offset) & mask; |
| region->end = (res->end - offset) & mask; |
| } |
| EXPORT_SYMBOL(pcibios_resource_to_bus); |
| |
| void pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res, |
| struct pci_bus_region *region) |
| { |
| resource_size_t offset = 0, mask = (resource_size_t)-1; |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| |
| if (!hose) |
| return; |
| if (res->flags & IORESOURCE_IO) { |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| mask = 0xffffffffu; |
| } else if (res->flags & IORESOURCE_MEM) |
| offset = hose->pci_mem_offset; |
| res->start = (region->start + offset) & mask; |
| res->end = (region->end + offset) & mask; |
| } |
| EXPORT_SYMBOL(pcibios_bus_to_resource); |
| |
| /* Fixup a bus resource into a linux resource */ |
| static void __devinit fixup_resource(struct resource *res, struct pci_dev *dev) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| resource_size_t offset = 0, mask = (resource_size_t)-1; |
| |
| if (res->flags & IORESOURCE_IO) { |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| mask = 0xffffffffu; |
| } else if (res->flags & IORESOURCE_MEM) |
| offset = hose->pci_mem_offset; |
| |
| res->start = (res->start + offset) & mask; |
| res->end = (res->end + offset) & mask; |
| } |
| |
| |
| /* This header fixup will do the resource fixup for all devices as they are |
| * probed, but not for bridge ranges |
| */ |
| static void __devinit pcibios_fixup_resources(struct pci_dev *dev) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| int i; |
| |
| if (!hose) { |
| printk(KERN_ERR "No host bridge for PCI dev %s !\n", |
| pci_name(dev)); |
| return; |
| } |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| struct resource *res = dev->resource + i; |
| if (!res->flags) |
| continue; |
| /* On platforms that have PPC_PCI_PROBE_ONLY set, we don't |
| * consider 0 as an unassigned BAR value. It's technically |
| * a valid value, but linux doesn't like it... so when we can |
| * re-assign things, we do so, but if we can't, we keep it |
| * around and hope for the best... |
| */ |
| if (res->start == 0 && !(ppc_pci_flags & PPC_PCI_PROBE_ONLY)) { |
| pr_debug("PCI:%s Resource %d %016llx-%016llx [%x] is unassigned\n", |
| pci_name(dev), i, |
| (unsigned long long)res->start, |
| (unsigned long long)res->end, |
| (unsigned int)res->flags); |
| res->end -= res->start; |
| res->start = 0; |
| res->flags |= IORESOURCE_UNSET; |
| continue; |
| } |
| |
| pr_debug("PCI:%s Resource %d %016llx-%016llx [%x] fixup...\n", |
| pci_name(dev), i, |
| (unsigned long long)res->start,\ |
| (unsigned long long)res->end, |
| (unsigned int)res->flags); |
| |
| fixup_resource(res, dev); |
| |
| pr_debug("PCI:%s %016llx-%016llx\n", |
| pci_name(dev), |
| (unsigned long long)res->start, |
| (unsigned long long)res->end); |
| } |
| |
| /* Call machine specific resource fixup */ |
| if (ppc_md.pcibios_fixup_resources) |
| ppc_md.pcibios_fixup_resources(dev); |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); |
| |
| /* This function tries to figure out if a bridge resource has been initialized |
| * by the firmware or not. It doesn't have to be absolutely bullet proof, but |
| * things go more smoothly when it gets it right. It should covers cases such |
| * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges |
| */ |
| static int __devinit pcibios_uninitialized_bridge_resource(struct pci_bus *bus, |
| struct resource *res) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| struct pci_dev *dev = bus->self; |
| resource_size_t offset; |
| u16 command; |
| int i; |
| |
| /* We don't do anything if PCI_PROBE_ONLY is set */ |
| if (ppc_pci_flags & PPC_PCI_PROBE_ONLY) |
| return 0; |
| |
| /* Job is a bit different between memory and IO */ |
| if (res->flags & IORESOURCE_MEM) { |
| /* If the BAR is non-0 (res != pci_mem_offset) then it's probably been |
| * initialized by somebody |
| */ |
| if (res->start != hose->pci_mem_offset) |
| return 0; |
| |
| /* The BAR is 0, let's check if memory decoding is enabled on |
| * the bridge. If not, we consider it unassigned |
| */ |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| if ((command & PCI_COMMAND_MEMORY) == 0) |
| return 1; |
| |
| /* Memory decoding is enabled and the BAR is 0. If any of the bridge |
| * resources covers that starting address (0 then it's good enough for |
| * us for memory |
| */ |
| for (i = 0; i < 3; i++) { |
| if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && |
| hose->mem_resources[i].start == hose->pci_mem_offset) |
| return 0; |
| } |
| |
| /* Well, it starts at 0 and we know it will collide so we may as |
| * well consider it as unassigned. That covers the Apple case. |
| */ |
| return 1; |
| } else { |
| /* If the BAR is non-0, then we consider it assigned */ |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| if (((res->start - offset) & 0xfffffffful) != 0) |
| return 0; |
| |
| /* Here, we are a bit different than memory as typically IO space |
| * starting at low addresses -is- valid. What we do instead if that |
| * we consider as unassigned anything that doesn't have IO enabled |
| * in the PCI command register, and that's it. |
| */ |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| if (command & PCI_COMMAND_IO) |
| return 0; |
| |
| /* It's starting at 0 and IO is disabled in the bridge, consider |
| * it unassigned |
| */ |
| return 1; |
| } |
| } |
| |
| /* Fixup resources of a PCI<->PCI bridge */ |
| static void __devinit pcibios_fixup_bridge(struct pci_bus *bus) |
| { |
| struct resource *res; |
| int i; |
| |
| struct pci_dev *dev = bus->self; |
| |
| for (i = 0; i < PCI_BUS_NUM_RESOURCES; ++i) { |
| if ((res = bus->resource[i]) == NULL) |
| continue; |
| if (!res->flags) |
| continue; |
| if (i >= 3 && bus->self->transparent) |
| continue; |
| |
| pr_debug("PCI:%s Bus rsrc %d %016llx-%016llx [%x] fixup...\n", |
| pci_name(dev), i, |
| (unsigned long long)res->start,\ |
| (unsigned long long)res->end, |
| (unsigned int)res->flags); |
| |
| /* Perform fixup */ |
| fixup_resource(res, dev); |
| |
| /* Try to detect uninitialized P2P bridge resources, |
| * and clear them out so they get re-assigned later |
| */ |
| if (pcibios_uninitialized_bridge_resource(bus, res)) { |
| res->flags = 0; |
| pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); |
| } else { |
| |
| pr_debug("PCI:%s %016llx-%016llx\n", |
| pci_name(dev), |
| (unsigned long long)res->start, |
| (unsigned long long)res->end); |
| } |
| } |
| } |
| |
| static void __devinit __pcibios_fixup_bus(struct pci_bus *bus) |
| { |
| struct pci_dev *dev = bus->self; |
| |
| pr_debug("PCI: Fixup bus %d (%s)\n", bus->number, dev ? pci_name(dev) : "PHB"); |
| |
| /* Fixup PCI<->PCI bridges. Host bridges are handled separately, for |
| * now differently between 32 and 64 bits. |
| */ |
| if (dev != NULL) |
| pcibios_fixup_bridge(bus); |
| |
| /* Additional setup that is different between 32 and 64 bits for now */ |
| pcibios_do_bus_setup(bus); |
| |
| /* Platform specific bus fixups */ |
| if (ppc_md.pcibios_fixup_bus) |
| ppc_md.pcibios_fixup_bus(bus); |
| |
| /* Read default IRQs and fixup if necessary */ |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| pci_read_irq_line(dev); |
| if (ppc_md.pci_irq_fixup) |
| ppc_md.pci_irq_fixup(dev); |
| } |
| } |
| |
| void __devinit pcibios_fixup_bus(struct pci_bus *bus) |
| { |
| /* When called from the generic PCI probe, read PCI<->PCI bridge |
| * bases before proceeding |
| */ |
| if (bus->self != NULL) |
| pci_read_bridge_bases(bus); |
| __pcibios_fixup_bus(bus); |
| } |
| EXPORT_SYMBOL(pcibios_fixup_bus); |
| |
| /* When building a bus from the OF tree rather than probing, we need a |
| * slightly different version of the fixup which doesn't read the |
| * bridge bases using config space accesses |
| */ |
| void __devinit pcibios_fixup_of_probed_bus(struct pci_bus *bus) |
| { |
| __pcibios_fixup_bus(bus); |
| } |
| |
| static int skip_isa_ioresource_align(struct pci_dev *dev) |
| { |
| if ((ppc_pci_flags & PPC_PCI_CAN_SKIP_ISA_ALIGN) && |
| !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * We need to avoid collisions with `mirrored' VGA ports |
| * and other strange ISA hardware, so we always want the |
| * addresses to be allocated in the 0x000-0x0ff region |
| * modulo 0x400. |
| * |
| * Why? Because some silly external IO cards only decode |
| * the low 10 bits of the IO address. The 0x00-0xff region |
| * is reserved for motherboard devices that decode all 16 |
| * bits, so it's ok to allocate at, say, 0x2800-0x28ff, |
| * but we want to try to avoid allocating at 0x2900-0x2bff |
| * which might have be mirrored at 0x0100-0x03ff.. |
| */ |
| void pcibios_align_resource(void *data, struct resource *res, |
| resource_size_t size, resource_size_t align) |
| { |
| struct pci_dev *dev = data; |
| |
| if (res->flags & IORESOURCE_IO) { |
| resource_size_t start = res->start; |
| |
| if (skip_isa_ioresource_align(dev)) |
| return; |
| if (start & 0x300) { |
| start = (start + 0x3ff) & ~0x3ff; |
| res->start = start; |
| } |
| } |
| } |
| EXPORT_SYMBOL(pcibios_align_resource); |
| |
| /* |
| * Reparent resource children of pr that conflict with res |
| * under res, and make res replace those children. |
| */ |
| static int __init reparent_resources(struct resource *parent, |
| struct resource *res) |
| { |
| struct resource *p, **pp; |
| struct resource **firstpp = NULL; |
| |
| for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { |
| if (p->end < res->start) |
| continue; |
| if (res->end < p->start) |
| break; |
| if (p->start < res->start || p->end > res->end) |
| return -1; /* not completely contained */ |
| if (firstpp == NULL) |
| firstpp = pp; |
| } |
| if (firstpp == NULL) |
| return -1; /* didn't find any conflicting entries? */ |
| res->parent = parent; |
| res->child = *firstpp; |
| res->sibling = *pp; |
| *firstpp = res; |
| *pp = NULL; |
| for (p = res->child; p != NULL; p = p->sibling) { |
| p->parent = res; |
| DBG(KERN_INFO "PCI: reparented %s [%llx..%llx] under %s\n", |
| p->name, |
| (unsigned long long)p->start, |
| (unsigned long long)p->end, res->name); |
| } |
| return 0; |
| } |
| |
| /* |
| * Handle resources of PCI devices. If the world were perfect, we could |
| * just allocate all the resource regions and do nothing more. It isn't. |
| * On the other hand, we cannot just re-allocate all devices, as it would |
| * require us to know lots of host bridge internals. So we attempt to |
| * keep as much of the original configuration as possible, but tweak it |
| * when it's found to be wrong. |
| * |
| * Known BIOS problems we have to work around: |
| * - I/O or memory regions not configured |
| * - regions configured, but not enabled in the command register |
| * - bogus I/O addresses above 64K used |
| * - expansion ROMs left enabled (this may sound harmless, but given |
| * the fact the PCI specs explicitly allow address decoders to be |
| * shared between expansion ROMs and other resource regions, it's |
| * at least dangerous) |
| * |
| * Our solution: |
| * (1) Allocate resources for all buses behind PCI-to-PCI bridges. |
| * This gives us fixed barriers on where we can allocate. |
| * (2) Allocate resources for all enabled devices. If there is |
| * a collision, just mark the resource as unallocated. Also |
| * disable expansion ROMs during this step. |
| * (3) Try to allocate resources for disabled devices. If the |
| * resources were assigned correctly, everything goes well, |
| * if they weren't, they won't disturb allocation of other |
| * resources. |
| * (4) Assign new addresses to resources which were either |
| * not configured at all or misconfigured. If explicitly |
| * requested by the user, configure expansion ROM address |
| * as well. |
| */ |
| |
| static void __init pcibios_allocate_bus_resources(struct list_head *bus_list) |
| { |
| struct pci_bus *bus; |
| int i; |
| struct resource *res, *pr; |
| |
| /* Depth-First Search on bus tree */ |
| list_for_each_entry(bus, bus_list, node) { |
| for (i = 0; i < PCI_BUS_NUM_RESOURCES; ++i) { |
| if ((res = bus->resource[i]) == NULL || !res->flags |
| || res->start > res->end) |
| continue; |
| if (bus->parent == NULL) |
| pr = (res->flags & IORESOURCE_IO) ? |
| &ioport_resource : &iomem_resource; |
| else { |
| /* Don't bother with non-root busses when |
| * re-assigning all resources. We clear the |
| * resource flags as if they were colliding |
| * and as such ensure proper re-allocation |
| * later. |
| */ |
| if (ppc_pci_flags & PPC_PCI_REASSIGN_ALL_RSRC) |
| goto clear_resource; |
| pr = pci_find_parent_resource(bus->self, res); |
| if (pr == res) { |
| /* this happens when the generic PCI |
| * code (wrongly) decides that this |
| * bridge is transparent -- paulus |
| */ |
| continue; |
| } |
| } |
| |
| DBG("PCI: %s (bus %d) bridge rsrc %d: %016llx-%016llx " |
| "[0x%x], parent %p (%s)\n", |
| bus->self ? pci_name(bus->self) : "PHB", |
| bus->number, i, |
| (unsigned long long)res->start, |
| (unsigned long long)res->end, |
| (unsigned int)res->flags, |
| pr, (pr && pr->name) ? pr->name : "nil"); |
| |
| if (pr && !(pr->flags & IORESOURCE_UNSET)) { |
| if (request_resource(pr, res) == 0) |
| continue; |
| /* |
| * Must be a conflict with an existing entry. |
| * Move that entry (or entries) under the |
| * bridge resource and try again. |
| */ |
| if (reparent_resources(pr, res) == 0) |
| continue; |
| } |
| printk(KERN_WARNING |
| "PCI: Cannot allocate resource region " |
| "%d of PCI bridge %d, will remap\n", |
| i, bus->number); |
| clear_resource: |
| res->flags = 0; |
| } |
| pcibios_allocate_bus_resources(&bus->children); |
| } |
| } |
| |
| static inline void __devinit alloc_resource(struct pci_dev *dev, int idx) |
| { |
| struct resource *pr, *r = &dev->resource[idx]; |
| |
| DBG("PCI: Allocating %s: Resource %d: %016llx..%016llx [%x]\n", |
| pci_name(dev), idx, |
| (unsigned long long)r->start, |
| (unsigned long long)r->end, |
| (unsigned int)r->flags); |
| |
| pr = pci_find_parent_resource(dev, r); |
| if (!pr || (pr->flags & IORESOURCE_UNSET) || |
| request_resource(pr, r) < 0) { |
| printk(KERN_WARNING "PCI: Cannot allocate resource region %d" |
| " of device %s, will remap\n", idx, pci_name(dev)); |
| if (pr) |
| DBG("PCI: parent is %p: %016llx-%016llx [%x]\n", pr, |
| (unsigned long long)pr->start, |
| (unsigned long long)pr->end, |
| (unsigned int)pr->flags); |
| /* We'll assign a new address later */ |
| r->flags |= IORESOURCE_UNSET; |
| r->end -= r->start; |
| r->start = 0; |
| } |
| } |
| |
| static void __init pcibios_allocate_resources(int pass) |
| { |
| struct pci_dev *dev = NULL; |
| int idx, disabled; |
| u16 command; |
| struct resource *r; |
| |
| for_each_pci_dev(dev) { |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| for (idx = 0; idx < 6; idx++) { |
| r = &dev->resource[idx]; |
| if (r->parent) /* Already allocated */ |
| continue; |
| if (!r->flags || (r->flags & IORESOURCE_UNSET)) |
| continue; /* Not assigned at all */ |
| if (r->flags & IORESOURCE_IO) |
| disabled = !(command & PCI_COMMAND_IO); |
| else |
| disabled = !(command & PCI_COMMAND_MEMORY); |
| if (pass == disabled) |
| alloc_resource(dev, idx); |
| } |
| if (pass) |
| continue; |
| r = &dev->resource[PCI_ROM_RESOURCE]; |
| if (r->flags & IORESOURCE_ROM_ENABLE) { |
| /* Turn the ROM off, leave the resource region, |
| * but keep it unregistered. |
| */ |
| u32 reg; |
| DBG("PCI: Switching off ROM of %s\n", pci_name(dev)); |
| r->flags &= ~IORESOURCE_ROM_ENABLE; |
| pci_read_config_dword(dev, dev->rom_base_reg, ®); |
| pci_write_config_dword(dev, dev->rom_base_reg, |
| reg & ~PCI_ROM_ADDRESS_ENABLE); |
| } |
| } |
| } |
| |
| void __init pcibios_resource_survey(void) |
| { |
| /* Allocate and assign resources. If we re-assign everything, then |
| * we skip the allocate phase |
| */ |
| pcibios_allocate_bus_resources(&pci_root_buses); |
| |
| if (!(ppc_pci_flags & PPC_PCI_REASSIGN_ALL_RSRC)) { |
| pcibios_allocate_resources(0); |
| pcibios_allocate_resources(1); |
| } |
| |
| if (!(ppc_pci_flags & PPC_PCI_PROBE_ONLY)) { |
| DBG("PCI: Assigning unassigned resouces...\n"); |
| pci_assign_unassigned_resources(); |
| } |
| |
| /* Call machine dependent fixup */ |
| if (ppc_md.pcibios_fixup) |
| ppc_md.pcibios_fixup(); |
| } |
| |
| #ifdef CONFIG_HOTPLUG |
| /* This is used by the pSeries hotplug driver to allocate resource |
| * of newly plugged busses. We can try to consolidate with the |
| * rest of the code later, for now, keep it as-is |
| */ |
| void __devinit pcibios_claim_one_bus(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| struct pci_bus *child_bus; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| int i; |
| |
| for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| struct resource *r = &dev->resource[i]; |
| |
| if (r->parent || !r->start || !r->flags) |
| continue; |
| pci_claim_resource(dev, i); |
| } |
| } |
| |
| list_for_each_entry(child_bus, &bus->children, node) |
| pcibios_claim_one_bus(child_bus); |
| } |
| EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); |
| #endif /* CONFIG_HOTPLUG */ |
| |
| int pcibios_enable_device(struct pci_dev *dev, int mask) |
| { |
| if (ppc_md.pcibios_enable_device_hook) |
| if (ppc_md.pcibios_enable_device_hook(dev)) |
| return -EINVAL; |
| |
| return pci_enable_resources(dev, mask); |
| } |