blob: 8c889caba420dc2d55ec9340d46ab0a92d468514 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
*
*/
#include "iceland_smc.h"
#include "smu7_dyn_defaults.h"
#include "smu7_hwmgr.h"
#include "hardwaremanager.h"
#include "ppatomctrl.h"
#include "pp_debug.h"
#include "cgs_common.h"
#include "atombios.h"
#include "pppcielanes.h"
#include "pp_endian.h"
#include "smu7_ppsmc.h"
#include "smu71_discrete.h"
#include "smu/smu_7_1_1_d.h"
#include "smu/smu_7_1_1_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "processpptables.h"
#include "iceland_smumgr.h"
#define VOLTAGE_SCALE 4
#define POWERTUNE_DEFAULT_SET_MAX 1
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
#define MC_CG_ARB_FREQ_F1 0x0b
#define VDDC_VDDCI_DELTA 200
#define DEVICE_ID_VI_ICELAND_M_6900 0x6900
#define DEVICE_ID_VI_ICELAND_M_6901 0x6901
#define DEVICE_ID_VI_ICELAND_M_6902 0x6902
#define DEVICE_ID_VI_ICELAND_M_6903 0x6903
static const struct iceland_pt_defaults defaults_iceland = {
/*
* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
*/
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
};
/* 35W - XT, XTL */
static const struct iceland_pt_defaults defaults_icelandxt = {
/*
* sviLoadLIneEn, SviLoadLineVddC,
* TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
* TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
* BAPM_TEMP_GRADIENT
*/
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
{ 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0},
{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
};
/* 25W - PRO, LE */
static const struct iceland_pt_defaults defaults_icelandpro = {
/*
* sviLoadLIneEn, SviLoadLineVddC,
* TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
* TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
* BAPM_TEMP_GRADIENT
*/
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
{ 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0},
{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
};
static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
struct cgs_system_info sys_info = {0};
uint32_t dev_id;
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
cgs_query_system_info(hwmgr->device, &sys_info);
dev_id = (uint32_t)sys_info.value;
switch (dev_id) {
case DEVICE_ID_VI_ICELAND_M_6900:
case DEVICE_ID_VI_ICELAND_M_6903:
smu_data->power_tune_defaults = &defaults_icelandxt;
break;
case DEVICE_ID_VI_ICELAND_M_6901:
case DEVICE_ID_VI_ICELAND_M_6902:
smu_data->power_tune_defaults = &defaults_icelandpro;
break;
default:
smu_data->power_tune_defaults = &defaults_iceland;
pr_warning("Unknown V.I. Device ID.\n");
break;
}
return;
}
static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
uint16_t tdc_limit;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
smu_data->power_tune_table.TDC_VDDC_PkgLimit =
CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
defaults->tdc_vddc_throttle_release_limit_perc;
smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
return 0;
}
static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
uint32_t temp;
if (smu7_read_smc_sram_dword(hwmgr->smumgr,
fuse_table_offset +
offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
(uint32_t *)&temp, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
return -EINVAL);
else
smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
return 0;
}
static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
{
int i;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
/* Currently not used. Set all to zero. */
for (i = 0; i < 8; i++)
smu_data->power_tune_table.GnbLPML[i] = 0;
return 0;
}
static int iceland_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
return 0;
}
static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
{
int i;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
"The CAC Leakage table does not exist!", return -EINVAL);
PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
"There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
"CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
}
} else {
PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
}
return 0;
}
static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
{
int i;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
uint8_t *vid = smu_data->power_tune_table.VddCVid;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
"There should never be more than 8 entries for VddcVid!!!",
return -EINVAL);
for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
}
return 0;
}
static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
uint32_t pm_fuse_table_offset;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment)) {
if (smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to get pm_fuse_table_offset Failed!",
return -EINVAL);
/* DW0 - DW3 */
if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate bapm vddc vid Failed!",
return -EINVAL);
/* DW4 - DW5 */
if (iceland_populate_vddc_vid(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate vddc vid Failed!",
return -EINVAL);
/* DW6 */
if (iceland_populate_svi_load_line(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate SviLoadLine Failed!",
return -EINVAL);
/* DW7 */
if (iceland_populate_tdc_limit(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TDCLimit Failed!", return -EINVAL);
/* DW8 */
if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!",
return -EINVAL);
/* DW9-DW12 */
if (0 != iceland_populate_temperature_scaler(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate LPMLTemperatureScaler Failed!",
return -EINVAL);
/* DW13-DW16 */
if (iceland_populate_gnb_lpml(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML Failed!",
return -EINVAL);
/* DW17 */
if (iceland_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML Min and Max Vid Failed!",
return -EINVAL);
/* DW18 */
if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
return -EINVAL);
if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
(uint8_t *)&smu_data->power_tune_table,
sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to download PmFuseTable Failed!",
return -EINVAL);
}
return 0;
}
static int iceland_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
uint32_t clock, uint32_t *vol)
{
uint32_t i = 0;
/* clock - voltage dependency table is empty table */
if (allowed_clock_voltage_table->count == 0)
return -EINVAL;
for (i = 0; i < allowed_clock_voltage_table->count; i++) {
/* find first sclk bigger than request */
if (allowed_clock_voltage_table->entries[i].clk >= clock) {
*vol = allowed_clock_voltage_table->entries[i].v;
return 0;
}
}
/* sclk is bigger than max sclk in the dependence table */
*vol = allowed_clock_voltage_table->entries[i - 1].v;
return 0;
}
static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
uint16_t *lo)
{
uint16_t v_index;
bool vol_found = false;
*hi = tab->value * VOLTAGE_SCALE;
*lo = tab->value * VOLTAGE_SCALE;
/* SCLK/VDDC Dependency Table has to exist. */
PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
"The SCLK/VDDC Dependency Table does not exist.\n",
return -EINVAL);
if (NULL == hwmgr->dyn_state.cac_leakage_table) {
pr_warning("CAC Leakage Table does not exist, using vddc.\n");
return 0;
}
/*
* Since voltage in the sclk/vddc dependency table is not
* necessarily in ascending order because of ELB voltage
* patching, loop through entire list to find exact voltage.
*/
for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
vol_found = true;
if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
} else {
pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
}
break;
}
}
/*
* If voltage is not found in the first pass, loop again to
* find the best match, equal or higher value.
*/
if (!vol_found) {
for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
vol_found = true;
if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
} else {
pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
}
break;
}
}
if (!vol_found)
pr_warning("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
}
return 0;
}
static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
pp_atomctrl_voltage_table_entry *tab,
SMU71_Discrete_VoltageLevel *smc_voltage_tab)
{
int result;
result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
&smc_voltage_tab->StdVoltageHiSidd,
&smc_voltage_tab->StdVoltageLoSidd);
if (0 != result) {
smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
}
smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
return 0;
}
static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
unsigned int count;
int result;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
table->VddcLevelCount = data->vddc_voltage_table.count;
for (count = 0; count < table->VddcLevelCount; count++) {
result = iceland_populate_smc_voltage_table(hwmgr,
&(data->vddc_voltage_table.entries[count]),
&(table->VddcLevel[count]));
PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
/* GPIO voltage control */
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
table->VddcLevel[count].Smio = 0;
}
CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
return 0;
}
static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t count;
int result;
table->VddciLevelCount = data->vddci_voltage_table.count;
for (count = 0; count < table->VddciLevelCount; count++) {
result = iceland_populate_smc_voltage_table(hwmgr,
&(data->vddci_voltage_table.entries[count]),
&(table->VddciLevel[count]));
PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
else
table->VddciLevel[count].Smio |= 0;
}
CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
return 0;
}
static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t count;
int result;
table->MvddLevelCount = data->mvdd_voltage_table.count;
for (count = 0; count < table->VddciLevelCount; count++) {
result = iceland_populate_smc_voltage_table(hwmgr,
&(data->mvdd_voltage_table.entries[count]),
&table->MvddLevel[count]);
PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
else
table->MvddLevel[count].Smio |= 0;
}
CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
return 0;
}
static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
int result;
result = iceland_populate_smc_vddc_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDC voltage table to SMC", return -EINVAL);
result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDCI voltage table to SMC", return -EINVAL);
result = iceland_populate_smc_mvdd_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate MVDD voltage table to SMC", return -EINVAL);
return 0;
}
static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
struct SMU71_Discrete_Ulv *state)
{
uint32_t voltage_response_time, ulv_voltage;
int result;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
if (ulv_voltage == 0) {
data->ulv_supported = false;
return 0;
}
if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
state->VddcOffset = 0;
else
/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
} else {
/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
state->VddcOffsetVid = 0;
else /* used in SVI2 Mode */
state->VddcOffsetVid = (uint8_t)(
(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
* VOLTAGE_VID_OFFSET_SCALE2
/ VOLTAGE_VID_OFFSET_SCALE1);
}
state->VddcPhase = 1;
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
return 0;
}
static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
SMU71_Discrete_Ulv *ulv_level)
{
return iceland_populate_ulv_level(hwmgr, ulv_level);
}
static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
uint32_t i;
/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount =
(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity =
1;
table->LinkLevel[i].SPC =
(uint8_t)(data->pcie_spc_cap & 0xff);
table->LinkLevel[i].DownThreshold =
PP_HOST_TO_SMC_UL(5);
table->LinkLevel[i].UpThreshold =
PP_HOST_TO_SMC_UL(30);
}
smu_data->smc_state_table.LinkLevelCount =
(uint8_t)dpm_table->pcie_speed_table.count;
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
return 0;
}
/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param engine_clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
pp_atomctrl_clock_dividers_vi dividers;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
uint32_t reference_clock;
uint32_t reference_divider;
uint32_t fbdiv;
int result;
/* get the engine clock dividers for this clock value*/
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.", return result);
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
reference_clock = atomctrl_get_reference_clock(hwmgr);
reference_divider = 1 + dividers.uc_pll_ref_div;
/* low 14 bits is fraction and high 12 bits is divider*/
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
/* SPLL_FUNC_CNTL setup*/
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
/* SPLL_FUNC_CNTL_3 setup*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
/* set to use fractional accumulation*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
pp_atomctrl_internal_ss_info ss_info;
uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
/*
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
* ss_info.speed_spectrum_rate -- in unit of khz
*/
/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
/* clkv = 2 * D * fbdiv / NS */
uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
cg_spll_spread_spectrum =
PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
cg_spll_spread_spectrum =
PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
cg_spll_spread_spectrum_2 =
PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
}
}
sclk->SclkFrequency = engine_clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
return 0;
}
static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
const struct phm_phase_shedding_limits_table *pl,
uint32_t sclk, uint32_t *p_shed)
{
unsigned int i;
/* use the minimum phase shedding */
*p_shed = 1;
for (i = 0; i < pl->count; i++) {
if (sclk < pl->entries[i].Sclk) {
*p_shed = i;
break;
}
}
return 0;
}
/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param engine_clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
uint16_t sclk_activity_level_threshold,
SMU71_Discrete_GraphicsLevel *graphic_level)
{
int result;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
/* populate graphics levels*/
result = iceland_get_dependecy_volt_by_clk(hwmgr,
hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
&graphic_level->MinVddc);
PP_ASSERT_WITH_CODE((0 == result),
"can not find VDDC voltage value for VDDC \
engine clock dependency table", return result);
/* SCLK frequency in units of 10KHz*/
graphic_level->SclkFrequency = engine_clock;
graphic_level->MinVddcPhases = 1;
if (data->vddc_phase_shed_control)
iceland_populate_phase_value_based_on_sclk(hwmgr,
hwmgr->dyn_state.vddc_phase_shed_limits_table,
engine_clock,
&graphic_level->MinVddcPhases);
/* Indicates maximum activity level for this performance level. 50% for now*/
graphic_level->ActivityLevel = sclk_activity_level_threshold;
graphic_level->CcPwrDynRm = 0;
graphic_level->CcPwrDynRm1 = 0;
/* this level can be used if activity is high enough.*/
graphic_level->EnabledForActivity = 0;
/* this level can be used for throttling.*/
graphic_level->EnabledForThrottle = 1;
graphic_level->UpHyst = 0;
graphic_level->DownHyst = 100;
graphic_level->VoltageDownHyst = 0;
graphic_level->PowerThrottle = 0;
data->display_timing.min_clock_in_sr =
hwmgr->display_config.min_core_set_clock_in_sr;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep))
graphic_level->DeepSleepDivId =
smu7_get_sleep_divider_id_from_clock(engine_clock,
data->display_timing.min_clock_in_sr);
/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
if (0 == result) {
graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
}
return result;
}
/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param hwmgr the address of the hardware manager
*/
int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
SMU71_MAX_LEVELS_GRAPHICS;
SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
uint32_t i;
uint8_t highest_pcie_level_enabled = 0;
uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
uint8_t count = 0;
int result = 0;
memset(levels, 0x00, level_array_size);
for (i = 0; i < dpm_table->sclk_table.count; i++) {
result = iceland_populate_single_graphic_level(hwmgr,
dpm_table->sclk_table.dpm_levels[i].value,
(uint16_t)smu_data->activity_target[i],
&(smu_data->smc_state_table.GraphicsLevel[i]));
if (result != 0)
return result;
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
if (i > 1)
smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
}
/* Only enable level 0 for now. */
smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
/* set highest level watermark to high */
if (dpm_table->sclk_table.count > 1)
smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
smu_data->smc_state_table.GraphicsDpmLevelCount =
(uint8_t)dpm_table->sclk_table.count;
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (highest_pcie_level_enabled + 1))) != 0) {
highest_pcie_level_enabled++;
}
while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << lowest_pcie_level_enabled)) == 0) {
lowest_pcie_level_enabled++;
}
while ((count < highest_pcie_level_enabled) &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
count++;
}
mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
/* set pcieDpmLevel to highest_pcie_level_enabled*/
for (i = 2; i < dpm_table->sclk_table.count; i++) {
smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
}
/* set pcieDpmLevel to lowest_pcie_level_enabled*/
smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
/* set pcieDpmLevel to mid_pcie_level_enabled*/
smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
/* level count will send to smc once at init smc table and never change*/
result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress,
(uint8_t *)levels, (uint32_t)level_array_size,
SMC_RAM_END);
return result;
}
/**
* Populates the SMC MCLK structure using the provided memory clock
*
* @param hwmgr the address of the hardware manager
* @param memory_clock the memory clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int iceland_calculate_mclk_params(
struct pp_hwmgr *hwmgr,
uint32_t memory_clock,
SMU71_Discrete_MemoryLevel *mclk,
bool strobe_mode,
bool dllStateOn
)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
pp_atomctrl_memory_clock_param mpll_param;
int result;
result = atomctrl_get_memory_pll_dividers_si(hwmgr,
memory_clock, &mpll_param, strobe_mode);
PP_ASSERT_WITH_CODE(0 == result,
"Error retrieving Memory Clock Parameters from VBIOS.", return result);
/* MPLL_FUNC_CNTL setup*/
mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
/* MPLL_FUNC_CNTL_1 setup*/
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
/* MPLL_AD_FUNC_CNTL setup*/
mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
if (data->is_memory_gddr5) {
/* MPLL_DQ_FUNC_CNTL setup*/
mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
/*
************************************
Fref = Reference Frequency
NF = Feedback divider ratio
NR = Reference divider ratio
Fnom = Nominal VCO output frequency = Fref * NF / NR
Fs = Spreading Rate
D = Percentage down-spread / 2
Fint = Reference input frequency to PFD = Fref / NR
NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
CLKS = NS - 1 = ISS_STEP_NUM[11:0]
NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
*************************************
*/
pp_atomctrl_internal_ss_info ss_info;
uint32_t freq_nom;
uint32_t tmp;
uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
/* for GDDR5 for all modes and DDR3 */
if (1 == mpll_param.qdr)
freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
else
freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
tmp = (freq_nom / reference_clock);
tmp = tmp * tmp;
if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
/* ss.Info.speed_spectrum_rate -- in unit of khz */
/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
/* = reference_clock * 5 / speed_spectrum_rate */
uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
/* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
uint32_t clkv =
(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
}
}
/* MCLK_PWRMGT_CNTL setup */
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
/* Save the result data to outpupt memory level structure */
mclk->MclkFrequency = memory_clock;
mclk->MpllFuncCntl = mpll_func_cntl;
mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
mclk->DllCntl = dll_cntl;
mclk->MpllSs1 = mpll_ss1;
mclk->MpllSs2 = mpll_ss2;
return 0;
}
static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
bool strobe_mode)
{
uint8_t mc_para_index;
if (strobe_mode) {
if (memory_clock < 12500) {
mc_para_index = 0x00;
} else if (memory_clock > 47500) {
mc_para_index = 0x0f;
} else {
mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
}
} else {
if (memory_clock < 65000) {
mc_para_index = 0x00;
} else if (memory_clock > 135000) {
mc_para_index = 0x0f;
} else {
mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
}
}
return mc_para_index;
}
static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
{
uint8_t mc_para_index;
if (memory_clock < 10000) {
mc_para_index = 0;
} else if (memory_clock >= 80000) {
mc_para_index = 0x0f;
} else {
mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
}
return mc_para_index;
}
static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
uint32_t memory_clock, uint32_t *p_shed)
{
unsigned int i;
*p_shed = 1;
for (i = 0; i < pl->count; i++) {
if (memory_clock < pl->entries[i].Mclk) {
*p_shed = i;
break;
}
}
return 0;
}
static int iceland_populate_single_memory_level(
struct pp_hwmgr *hwmgr,
uint32_t memory_clock,
SMU71_Discrete_MemoryLevel *memory_level
)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int result = 0;
bool dll_state_on;
struct cgs_display_info info = {0};
uint32_t mclk_edc_wr_enable_threshold = 40000;
uint32_t mclk_edc_enable_threshold = 40000;
uint32_t mclk_strobe_mode_threshold = 40000;
if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
result = iceland_get_dependecy_volt_by_clk(hwmgr,
hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
PP_ASSERT_WITH_CODE((0 == result),
"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
}
if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
memory_level->MinVddci = memory_level->MinVddc;
} else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
result = iceland_get_dependecy_volt_by_clk(hwmgr,
hwmgr->dyn_state.vddci_dependency_on_mclk,
memory_clock,
&memory_level->MinVddci);
PP_ASSERT_WITH_CODE((0 == result),
"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
}
memory_level->MinVddcPhases = 1;
if (data->vddc_phase_shed_control) {
iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
memory_clock, &memory_level->MinVddcPhases);
}
memory_level->EnabledForThrottle = 1;
memory_level->EnabledForActivity = 0;
memory_level->UpHyst = 0;
memory_level->DownHyst = 100;
memory_level->VoltageDownHyst = 0;
/* Indicates maximum activity level for this performance level.*/
memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
memory_level->StutterEnable = 0;
memory_level->StrobeEnable = 0;
memory_level->EdcReadEnable = 0;
memory_level->EdcWriteEnable = 0;
memory_level->RttEnable = 0;
/* default set to low watermark. Highest level will be set to high later.*/
memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
cgs_get_active_displays_info(hwmgr->device, &info);
data->display_timing.num_existing_displays = info.display_count;
/* stutter mode not support on iceland */
/* decide strobe mode*/
memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
(memory_clock <= mclk_strobe_mode_threshold);
/* decide EDC mode and memory clock ratio*/
if (data->is_memory_gddr5) {
memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
memory_level->StrobeEnable);
if ((mclk_edc_enable_threshold != 0) &&
(memory_clock > mclk_edc_enable_threshold)) {
memory_level->EdcReadEnable = 1;
}
if ((mclk_edc_wr_enable_threshold != 0) &&
(memory_clock > mclk_edc_wr_enable_threshold)) {
memory_level->EdcWriteEnable = 1;
}
if (memory_level->StrobeEnable) {
if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
else
dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
} else
dll_state_on = data->dll_default_on;
} else {
memory_level->StrobeRatio =
iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
}
result = iceland_calculate_mclk_params(hwmgr,
memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
if (0 == result) {
memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
/* MCLK frequency in units of 10KHz*/
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
/* Indicates maximum activity level for this performance level.*/
CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
}
return result;
}
/**
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
*
* @param hwmgr the address of the hardware manager
*/
int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
int result;
/* populate MCLK dpm table to SMU7 */
uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
uint32_t i;
memset(levels, 0x00, level_array_size);
for (i = 0; i < dpm_table->mclk_table.count; i++) {
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
"can not populate memory level as memory clock is zero", return -EINVAL);
result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
&(smu_data->smc_state_table.MemoryLevel[i]));
if (0 != result) {
return result;
}
}
/* Only enable level 0 for now.*/
smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
/*
* in order to prevent MC activity from stutter mode to push DPM up.
* the UVD change complements this by putting the MCLK in a higher state
* by default such that we are not effected by up threshold or and MCLK DPM latency.
*/
smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
/* set highest level watermark to high*/
smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
/* level count will send to smc once at init smc table and never change*/
result = smu7_copy_bytes_to_smc(hwmgr->smumgr,
level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
SMC_RAM_END);
return result;
}
static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
SMU71_Discrete_VoltageLevel *voltage)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t i = 0;
if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
/* find mvdd value which clock is more than request */
for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
/* Always round to higher voltage. */
voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
break;
}
}
PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
"MVDD Voltage is outside the supported range.", return -EINVAL);
} else {
return -EINVAL;
}
return 0;
}
static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
int result = 0;
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_clock_dividers_vi dividers;
uint32_t vddc_phase_shed_control = 0;
SMU71_Discrete_VoltageLevel voltage_level;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
/* The ACPI state should not do DPM on DC (or ever).*/
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (data->acpi_vddc)
table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
else
table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
/* assign zero for now*/
table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
/* get the engine clock dividers for this clock value*/
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
table->ACPILevel.SclkFrequency, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.", return result);
/* divider ID for required SCLK*/
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
/* For various features to be enabled/disabled while this level is active.*/
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
/* SCLK frequency in units of 10KHz*/
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
else {
if (data->acpi_vddci != 0)
table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
else
table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
}
if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
table->MemoryACPILevel.MinMvdd =
PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
else
table->MemoryACPILevel.MinMvdd = 0;
/* Force reset on DLL*/
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
/* Disable DLL in ACPIState*/
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
/* Enable DLL bypass signal*/
dll_cntl = PHM_SET_FIELD(dll_cntl,
DLL_CNTL, MRDCK0_BYPASS, 0);
dll_cntl = PHM_SET_FIELD(dll_cntl,
DLL_CNTL, MRDCK1_BYPASS, 0);
table->MemoryACPILevel.DllCntl =
PP_HOST_TO_SMC_UL(dll_cntl);
table->MemoryACPILevel.MclkPwrmgtCntl =
PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
table->MemoryACPILevel.MpllAdFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
table->MemoryACPILevel.MpllDqFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
table->MemoryACPILevel.MpllFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
table->MemoryACPILevel.MpllFuncCntl_1 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
table->MemoryACPILevel.MpllFuncCntl_2 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
table->MemoryACPILevel.MpllSs1 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
table->MemoryACPILevel.MpllSs2 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpHyst = 0;
table->MemoryACPILevel.DownHyst = 100;
table->MemoryACPILevel.VoltageDownHyst = 0;
/* Indicates maximum activity level for this performance level.*/
table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = 0;
table->MemoryACPILevel.StrobeEnable = 0;
table->MemoryACPILevel.EdcReadEnable = 0;
table->MemoryACPILevel.EdcWriteEnable = 0;
table->MemoryACPILevel.RttEnable = 0;
return result;
}
static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
return 0;
}
static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
return 0;
}
static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
return 0;
}
static int iceland_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
return 0;
}
static int iceland_populate_memory_timing_parameters(
struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
uint32_t memory_clock,
struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
)
{
uint32_t dramTiming;
uint32_t dramTiming2;
uint32_t burstTime;
int result;
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
engine_clock, memory_clock);
PP_ASSERT_WITH_CODE(result == 0,
"Error calling VBIOS to set DRAM_TIMING.", return result);
dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
arb_regs->McArbBurstTime = (uint8_t)burstTime;
return 0;
}
/**
* Setup parameters for the MC ARB.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
* This function is to be called from the SetPowerState table.
*/
static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
int result = 0;
SMU71_Discrete_MCArbDramTimingTable arb_regs;
uint32_t i, j;
memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
result = iceland_populate_memory_timing_parameters
(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
data->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (0 != result) {
break;
}
}
}
if (0 == result) {
result = smu7_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->smu7_data.arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU71_Discrete_MCArbDramTimingTable),
SMC_RAM_END
);
}
return result;
}
static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
/* find boot level from dpm table*/
result = phm_find_boot_level(&(data->dpm_table.sclk_table),
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
if (0 != result) {
smu_data->smc_state_table.GraphicsBootLevel = 0;
printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
in dependency table. Using Graphics DPM level 0!");
result = 0;
}
result = phm_find_boot_level(&(data->dpm_table.mclk_table),
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
if (0 != result) {
smu_data->smc_state_table.MemoryBootLevel = 0;
printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
in dependency table. Using Memory DPM level 0!");
result = 0;
}
table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
table->BootVddci = table->BootVddc;
else
table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
return result;
}
static int iceland_populate_mc_reg_address(struct pp_smumgr *smumgr,
SMU71_Discrete_MCRegisters *mc_reg_table)
{
const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)smumgr->backend;
uint32_t i, j;
for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
if (smu_data->mc_reg_table.validflag & 1<<j) {
PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
mc_reg_table->address[i].s0 =
PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
mc_reg_table->address[i].s1 =
PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
i++;
}
}
mc_reg_table->last = (uint8_t)i;
return 0;
}
/*convert register values from driver to SMC format */
static void iceland_convert_mc_registers(
const struct iceland_mc_reg_entry *entry,
SMU71_Discrete_MCRegisterSet *data,
uint32_t num_entries, uint32_t valid_flag)
{
uint32_t i, j;
for (i = 0, j = 0; j < num_entries; j++) {
if (valid_flag & 1<<j) {
data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
i++;
}
}
}
static int iceland_convert_mc_reg_table_entry_to_smc(
struct pp_smumgr *smumgr,
const uint32_t memory_clock,
SMU71_Discrete_MCRegisterSet *mc_reg_table_data
)
{
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(smumgr->backend);
uint32_t i = 0;
for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
if (memory_clock <=
smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
break;
}
}
if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
--i;
iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
mc_reg_table_data, smu_data->mc_reg_table.last,
smu_data->mc_reg_table.validflag);
return 0;
}
static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
SMU71_Discrete_MCRegisters *mc_regs)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int res;
uint32_t i;
for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
res = iceland_convert_mc_reg_table_entry_to_smc(
hwmgr->smumgr,
data->dpm_table.mclk_table.dpm_levels[i].value,
&mc_regs->data[i]
);
if (0 != res)
result = res;
}
return result;
}
static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(smumgr->backend);
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t address;
int32_t result;
if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
return 0;
memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
if (result != 0)
return result;
address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
return smu7_copy_bytes_to_smc(hwmgr->smumgr, address,
(uint8_t *)&smu_data->mc_regs.data[0],
sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
SMC_RAM_END);
}
static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
{
int result;
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(smumgr->backend);
memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
result = iceland_populate_mc_reg_address(smumgr, &(smu_data->mc_regs));
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize MCRegTable for the MC register addresses!", return result;);
result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize MCRegTable for driver state!", return result;);
return smu7_copy_bytes_to_smc(smumgr, smu_data->smu7_data.mc_reg_table_start,
(uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
}
static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
uint8_t count, level;
count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
for (level = 0; level < count; level++) {
if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
>= data->vbios_boot_state.sclk_bootup_value) {
smu_data->smc_state_table.GraphicsBootLevel = level;
break;
}
}
count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
for (level = 0; level < count; level++) {
if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
>= data->vbios_boot_state.mclk_bootup_value) {
smu_data->smc_state_table.MemoryBootLevel = level;
break;
}
}
return 0;
}
static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
const uint16_t *def1, *def2;
int i, j, k;
/*
* TDP number of fraction bits are changed from 8 to 7 for Iceland
* as requested by SMC team
*/
dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
dpm_table->DTETjOffset = 0;
dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
dpm_table->GpuTjHyst = 8;
dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
/* The following are for new Iceland Multi-input fan/thermal control */
if (NULL != ppm) {
dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
} else {
dpm_table->PPM_PkgPwrLimit = 0;
dpm_table->PPM_TemperatureLimit = 0;
}
CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient);
def1 = defaults->bapmti_r;
def2 = defaults->bapmti_rc;
for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
for (j = 0; j < SMU71_DTE_SOURCES; j++) {
for (k = 0; k < SMU71_DTE_SINKS; k++) {
dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
def1++;
def2++;
}
}
}
return 0;
}
static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *tab)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
tab->SVI2Enable |= VDDC_ON_SVI2;
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
tab->SVI2Enable |= VDDCI_ON_SVI2;
else
tab->MergedVddci = 1;
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
tab->SVI2Enable |= MVDD_ON_SVI2;
PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
(tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
return 0;
}
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data (PowerState)
* @return always 0
*/
int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table);
iceland_initialize_power_tune_defaults(hwmgr);
memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
iceland_populate_smc_voltage_tables(hwmgr, table);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition))
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StepVddc))
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (data->is_memory_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (data->ulv_supported) {
result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ULV state!", return result;);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_ULV_PARAMETER, 0x40035);
}
result = iceland_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Link Level!", return result;);
result = iceland_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Graphics Level!", return result;);
result = iceland_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Memory Level!", return result;);
result = iceland_populate_smc_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACPI Level!", return result;);
result = iceland_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize VCE Level!", return result;);
result = iceland_populate_smc_acp_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level!", return result;);
result = iceland_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result;);
/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
/* need to populate the ARB settings for the initial state. */
result = iceland_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to Write ARB settings for the initial state.", return result;);
result = iceland_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize UVD Level!", return result;);
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
result = iceland_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot Level!", return result;);
result = iceland_populate_smc_initial_state(hwmgr);
PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh =
(data->thermal_temp_setting.temperature_high *
SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
table->TemperatureLimitLow =
(data->thermal_temp_setting.temperature_low *
SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
table->PCIeBootLinkLevel = 0;
table->PCIeGenInterval = 1;
result = iceland_populate_smc_svi2_config(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate SVI2 setting!", return result);
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
result = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu_data->smu7_data.dpm_table_start +
offsetof(SMU71_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
SMC_RAM_END);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload dpm data to SMC memory!", return result;);
/* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
result = smu7_copy_bytes_to_smc(hwmgr->smumgr,
smu_data->smu7_data.ulv_setting_starts,
(uint8_t *)&(smu_data->ulv_setting),
sizeof(SMU71_Discrete_Ulv),
SMC_RAM_END);
result = iceland_populate_initial_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate initialize MC Reg table!", return result);
result = iceland_populate_pm_fuses(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate PM fuses to SMC memory!", return result);
return 0;
}
/**
* Set up the fan table to control the fan using the SMC.
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data
* @param pOutput the pointer to output data
* @param pStorage the pointer to temporary storage
* @param Result the last failure code
* @return result from set temperature range routine
*/
int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
{
struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smumgr->backend);
SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
uint32_t duty100;
uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
uint16_t fdo_min, slope1, slope2;
uint32_t reference_clock;
int res;
uint64_t tmp64;
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
return 0;
if (0 == smu7_data->fan_table_start) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
if (0 == duty100) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
do_div(tmp64, 10000);
fdo_min = (uint16_t)tmp64;
t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
fan_table.Slope1 = cpu_to_be16(slope1);
fan_table.Slope2 = cpu_to_be16(slope2);
fan_table.FdoMin = cpu_to_be16(fdo_min);
fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
fan_table.HystUp = cpu_to_be16(1);
fan_table.HystSlope = cpu_to_be16(1);
fan_table.TempRespLim = cpu_to_be16(5);
reference_clock = smu7_get_xclk(hwmgr);
fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
/* fan_table.FanControl_GL_Flag = 1; */
res = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
return 0;
}
static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
return iceland_program_memory_timing_parameters(hwmgr);
return 0;
}
int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
int result = 0;
uint32_t low_sclk_interrupt_threshold = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification)
&& (hwmgr->gfx_arbiter.sclk_threshold !=
data->low_sclk_interrupt_threshold)) {
data->low_sclk_interrupt_threshold =
hwmgr->gfx_arbiter.sclk_threshold;
low_sclk_interrupt_threshold =
data->low_sclk_interrupt_threshold;
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = smu7_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->smu7_data.dpm_table_start +
offsetof(SMU71_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
sizeof(uint32_t),
SMC_RAM_END);
}
result = iceland_update_and_upload_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
result = iceland_program_mem_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE((result == 0),
"Failed to program memory timing parameters!",
);
return result;
}
uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
{
switch (type) {
case SMU_SoftRegisters:
switch (member) {
case HandshakeDisables:
return offsetof(SMU71_SoftRegisters, HandshakeDisables);
case VoltageChangeTimeout:
return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
case AverageGraphicsActivity:
return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
case PreVBlankGap:
return offsetof(SMU71_SoftRegisters, PreVBlankGap);
case VBlankTimeout:
return offsetof(SMU71_SoftRegisters, VBlankTimeout);
case UcodeLoadStatus:
return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
}
case SMU_Discrete_DpmTable:
switch (member) {
case LowSclkInterruptThreshold:
return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
}
}
printk("cant't get the offset of type %x member %x \n", type, member);
return 0;
}
uint32_t iceland_get_mac_definition(uint32_t value)
{
switch (value) {
case SMU_MAX_LEVELS_GRAPHICS:
return SMU71_MAX_LEVELS_GRAPHICS;
case SMU_MAX_LEVELS_MEMORY:
return SMU71_MAX_LEVELS_MEMORY;
case SMU_MAX_LEVELS_LINK:
return SMU71_MAX_LEVELS_LINK;
case SMU_MAX_ENTRIES_SMIO:
return SMU71_MAX_ENTRIES_SMIO;
case SMU_MAX_LEVELS_VDDC:
return SMU71_MAX_LEVELS_VDDC;
case SMU_MAX_LEVELS_VDDCI:
return SMU71_MAX_LEVELS_VDDCI;
case SMU_MAX_LEVELS_MVDD:
return SMU71_MAX_LEVELS_MVDD;
}
printk("cant't get the mac of %x \n", value);
return 0;
}
/**
* Get the location of various tables inside the FW image.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smumgr->backend);
uint32_t tmp;
int result;
bool error = false;
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, DpmTable),
&tmp, SMC_RAM_END);
if (0 == result) {
smu7_data->dpm_table_start = tmp;
}
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, SoftRegisters),
&tmp, SMC_RAM_END);
if (0 == result) {
data->soft_regs_start = tmp;
smu7_data->soft_regs_start = tmp;
}
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, mcRegisterTable),
&tmp, SMC_RAM_END);
if (0 == result) {
smu7_data->mc_reg_table_start = tmp;
}
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, FanTable),
&tmp, SMC_RAM_END);
if (0 == result) {
smu7_data->fan_table_start = tmp;
}
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
&tmp, SMC_RAM_END);
if (0 == result) {
smu7_data->arb_table_start = tmp;
}
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, Version),
&tmp, SMC_RAM_END);
if (0 == result) {
hwmgr->microcode_version_info.SMC = tmp;
}
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU71_FIRMWARE_HEADER_LOCATION +
offsetof(SMU71_Firmware_Header, UlvSettings),
&tmp, SMC_RAM_END);
if (0 == result) {
smu7_data->ulv_setting_starts = tmp;
}
error |= (0 != result);
return error ? 1 : 0;
}
/*---------------------------MC----------------------------*/
static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
{
return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
}
static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
{
bool result = true;
switch (in_reg) {
case mmMC_SEQ_RAS_TIMING:
*out_reg = mmMC_SEQ_RAS_TIMING_LP;
break;
case mmMC_SEQ_DLL_STBY:
*out_reg = mmMC_SEQ_DLL_STBY_LP;
break;
case mmMC_SEQ_G5PDX_CMD0:
*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
break;
case mmMC_SEQ_G5PDX_CMD1:
*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
break;
case mmMC_SEQ_G5PDX_CTRL:
*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
break;
case mmMC_SEQ_CAS_TIMING:
*out_reg = mmMC_SEQ_CAS_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING:
*out_reg = mmMC_SEQ_MISC_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING2:
*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
break;
case mmMC_SEQ_PMG_DVS_CMD:
*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
break;
case mmMC_SEQ_PMG_DVS_CTL:
*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
break;
case mmMC_SEQ_RD_CTL_D0:
*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
break;
case mmMC_SEQ_RD_CTL_D1:
*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
break;
case mmMC_SEQ_WR_CTL_D0:
*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
break;
case mmMC_SEQ_WR_CTL_D1:
*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
break;
case mmMC_PMG_CMD_EMRS:
*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
break;
case mmMC_PMG_CMD_MRS:
*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
break;
case mmMC_PMG_CMD_MRS1:
*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
break;
case mmMC_SEQ_PMG_TIMING:
*out_reg = mmMC_SEQ_PMG_TIMING_LP;
break;
case mmMC_PMG_CMD_MRS2:
*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
break;
case mmMC_SEQ_WR_CTL_2:
*out_reg = mmMC_SEQ_WR_CTL_2_LP;
break;
default:
result = false;
break;
}
return result;
}
static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
{
uint32_t i;
uint16_t address;
for (i = 0; i < table->last; i++) {
table->mc_reg_address[i].s0 =
iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
? address : table->mc_reg_address[i].s1;
}
return 0;
}
static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
struct iceland_mc_reg_table *ni_table)
{
uint8_t i, j;
PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
"Invalid VramInfo table.", return -EINVAL);
for (i = 0; i < table->last; i++) {
ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
}
ni_table->last = table->last;
for (i = 0; i < table->num_entries; i++) {
ni_table->mc_reg_table_entry[i].mclk_max =
table->mc_reg_table_entry[i].mclk_max;
for (j = 0; j < table->last; j++) {
ni_table->mc_reg_table_entry[i].mc_data[j] =
table->mc_reg_table_entry[i].mc_data[j];
}
}
ni_table->num_entries = table->num_entries;
return 0;
}
/**
* VBIOS omits some information to reduce size, we need to recover them here.
* 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
* Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
* 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
* 3. need to set these data for each clock range
*
* @param hwmgr the address of the powerplay hardware manager.
* @param table the address of MCRegTable
* @return always 0
*/
static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
struct iceland_mc_reg_table *table)
{
uint8_t i, j, k;
uint32_t temp_reg;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
for (i = 0, j = table->last; i < table->last; i++) {
PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
switch (table->mc_reg_address[i].s1) {
case mmMC_SEQ_MISC1:
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
((temp_reg & 0xffff0000)) |
((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
}
j++;
PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
if (!data->is_memory_gddr5) {
table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
}
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
if (!data->is_memory_gddr5 && j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE) {
table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
}
break;
case mmMC_SEQ_RESERVE_M:
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
break;
default:
break;
}
}
table->last = j;
return 0;
}
static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
{
uint8_t i, j;
for (i = 0; i < table->last; i++) {
for (j = 1; j < table->num_entries; j++) {
if (table->mc_reg_table_entry[j-1].mc_data[i] !=
table->mc_reg_table_entry[j].mc_data[i]) {
table->validflag |= (1<<i);
break;
}
}
}
return 0;
}
int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
{
int result;
struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend);
pp_atomctrl_mc_reg_table *table;
struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
/* Program additional LP registers that are no longer programmed by VBIOS */
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
if (0 == result)
result = iceland_copy_vbios_smc_reg_table(table, ni_table);
if (0 == result) {
iceland_set_s0_mc_reg_index(ni_table);
result = iceland_set_mc_special_registers(hwmgr, ni_table);
}
if (0 == result)
iceland_set_valid_flag(ni_table);
kfree(table);
return result;
}
bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
{
return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
? true : false;
}