| // SPDX-License-Identifier: GPL-2.0+ |
| // Copyright 2017 IBM Corp. |
| #include <linux/sched/mm.h> |
| #include <linux/mutex.h> |
| #include <linux/mm_types.h> |
| #include <linux/mmu_context.h> |
| #include <asm/copro.h> |
| #include <asm/pnv-ocxl.h> |
| #include <misc/ocxl.h> |
| #include "ocxl_internal.h" |
| #include "trace.h" |
| |
| |
| #define SPA_PASID_BITS 15 |
| #define SPA_PASID_MAX ((1 << SPA_PASID_BITS) - 1) |
| #define SPA_PE_MASK SPA_PASID_MAX |
| #define SPA_SPA_SIZE_LOG 22 /* Each SPA is 4 Mb */ |
| |
| #define SPA_CFG_SF (1ull << (63-0)) |
| #define SPA_CFG_TA (1ull << (63-1)) |
| #define SPA_CFG_HV (1ull << (63-3)) |
| #define SPA_CFG_UV (1ull << (63-4)) |
| #define SPA_CFG_XLAT_hpt (0ull << (63-6)) /* Hashed page table (HPT) mode */ |
| #define SPA_CFG_XLAT_roh (2ull << (63-6)) /* Radix on HPT mode */ |
| #define SPA_CFG_XLAT_ror (3ull << (63-6)) /* Radix on Radix mode */ |
| #define SPA_CFG_PR (1ull << (63-49)) |
| #define SPA_CFG_TC (1ull << (63-54)) |
| #define SPA_CFG_DR (1ull << (63-59)) |
| |
| #define SPA_XSL_TF (1ull << (63-3)) /* Translation fault */ |
| #define SPA_XSL_S (1ull << (63-38)) /* Store operation */ |
| |
| #define SPA_PE_VALID 0x80000000 |
| |
| |
| struct pe_data { |
| struct mm_struct *mm; |
| /* callback to trigger when a translation fault occurs */ |
| void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr); |
| /* opaque pointer to be passed to the above callback */ |
| void *xsl_err_data; |
| struct rcu_head rcu; |
| }; |
| |
| struct spa { |
| struct ocxl_process_element *spa_mem; |
| int spa_order; |
| struct mutex spa_lock; |
| struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */ |
| char *irq_name; |
| int virq; |
| void __iomem *reg_dsisr; |
| void __iomem *reg_dar; |
| void __iomem *reg_tfc; |
| void __iomem *reg_pe_handle; |
| /* |
| * The following field are used by the memory fault |
| * interrupt handler. We can only have one interrupt at a |
| * time. The NPU won't raise another interrupt until the |
| * previous one has been ack'd by writing to the TFC register |
| */ |
| struct xsl_fault { |
| struct work_struct fault_work; |
| u64 pe; |
| u64 dsisr; |
| u64 dar; |
| struct pe_data pe_data; |
| } xsl_fault; |
| }; |
| |
| /* |
| * A opencapi link can be used be by several PCI functions. We have |
| * one link per device slot. |
| * |
| * A linked list of opencapi links should suffice, as there's a |
| * limited number of opencapi slots on a system and lookup is only |
| * done when the device is probed |
| */ |
| struct ocxl_link { |
| struct list_head list; |
| struct kref ref; |
| int domain; |
| int bus; |
| int dev; |
| atomic_t irq_available; |
| struct spa *spa; |
| void *platform_data; |
| }; |
| static struct list_head links_list = LIST_HEAD_INIT(links_list); |
| static DEFINE_MUTEX(links_list_lock); |
| |
| enum xsl_response { |
| CONTINUE, |
| ADDRESS_ERROR, |
| RESTART, |
| }; |
| |
| |
| static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe) |
| { |
| u64 reg; |
| |
| *dsisr = in_be64(spa->reg_dsisr); |
| *dar = in_be64(spa->reg_dar); |
| reg = in_be64(spa->reg_pe_handle); |
| *pe = reg & SPA_PE_MASK; |
| } |
| |
| static void ack_irq(struct spa *spa, enum xsl_response r) |
| { |
| u64 reg = 0; |
| |
| /* continue is not supported */ |
| if (r == RESTART) |
| reg = PPC_BIT(31); |
| else if (r == ADDRESS_ERROR) |
| reg = PPC_BIT(30); |
| else |
| WARN(1, "Invalid irq response %d\n", r); |
| |
| if (reg) { |
| trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe, |
| spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg); |
| out_be64(spa->reg_tfc, reg); |
| } |
| } |
| |
| static void xsl_fault_handler_bh(struct work_struct *fault_work) |
| { |
| vm_fault_t flt = 0; |
| unsigned long access, flags, inv_flags = 0; |
| enum xsl_response r; |
| struct xsl_fault *fault = container_of(fault_work, struct xsl_fault, |
| fault_work); |
| struct spa *spa = container_of(fault, struct spa, xsl_fault); |
| |
| int rc; |
| |
| /* |
| * We must release a reference on mm_users whenever exiting this |
| * function (taken in the memory fault interrupt handler) |
| */ |
| rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr, |
| &flt); |
| if (rc) { |
| pr_debug("copro_handle_mm_fault failed: %d\n", rc); |
| if (fault->pe_data.xsl_err_cb) { |
| fault->pe_data.xsl_err_cb( |
| fault->pe_data.xsl_err_data, |
| fault->dar, fault->dsisr); |
| } |
| r = ADDRESS_ERROR; |
| goto ack; |
| } |
| |
| if (!radix_enabled()) { |
| /* |
| * update_mmu_cache() will not have loaded the hash |
| * since current->trap is not a 0x400 or 0x300, so |
| * just call hash_page_mm() here. |
| */ |
| access = _PAGE_PRESENT | _PAGE_READ; |
| if (fault->dsisr & SPA_XSL_S) |
| access |= _PAGE_WRITE; |
| |
| if (get_region_id(fault->dar) != USER_REGION_ID) |
| access |= _PAGE_PRIVILEGED; |
| |
| local_irq_save(flags); |
| hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300, |
| inv_flags); |
| local_irq_restore(flags); |
| } |
| r = RESTART; |
| ack: |
| mmput(fault->pe_data.mm); |
| ack_irq(spa, r); |
| } |
| |
| static irqreturn_t xsl_fault_handler(int irq, void *data) |
| { |
| struct ocxl_link *link = (struct ocxl_link *) data; |
| struct spa *spa = link->spa; |
| u64 dsisr, dar, pe_handle; |
| struct pe_data *pe_data; |
| struct ocxl_process_element *pe; |
| int pid; |
| bool schedule = false; |
| |
| read_irq(spa, &dsisr, &dar, &pe_handle); |
| trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1); |
| |
| WARN_ON(pe_handle > SPA_PE_MASK); |
| pe = spa->spa_mem + pe_handle; |
| pid = be32_to_cpu(pe->pid); |
| /* We could be reading all null values here if the PE is being |
| * removed while an interrupt kicks in. It's not supposed to |
| * happen if the driver notified the AFU to terminate the |
| * PASID, and the AFU waited for pending operations before |
| * acknowledging. But even if it happens, we won't find a |
| * memory context below and fail silently, so it should be ok. |
| */ |
| if (!(dsisr & SPA_XSL_TF)) { |
| WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr); |
| ack_irq(spa, ADDRESS_ERROR); |
| return IRQ_HANDLED; |
| } |
| |
| rcu_read_lock(); |
| pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle); |
| if (!pe_data) { |
| /* |
| * Could only happen if the driver didn't notify the |
| * AFU about PASID termination before removing the PE, |
| * or the AFU didn't wait for all memory access to |
| * have completed. |
| * |
| * Either way, we fail early, but we shouldn't log an |
| * error message, as it is a valid (if unexpected) |
| * scenario |
| */ |
| rcu_read_unlock(); |
| pr_debug("Unknown mm context for xsl interrupt\n"); |
| ack_irq(spa, ADDRESS_ERROR); |
| return IRQ_HANDLED; |
| } |
| |
| if (!pe_data->mm) { |
| /* |
| * translation fault from a kernel context - an OpenCAPI |
| * device tried to access a bad kernel address |
| */ |
| rcu_read_unlock(); |
| pr_warn("Unresolved OpenCAPI xsl fault in kernel context\n"); |
| ack_irq(spa, ADDRESS_ERROR); |
| return IRQ_HANDLED; |
| } |
| WARN_ON(pe_data->mm->context.id != pid); |
| |
| if (mmget_not_zero(pe_data->mm)) { |
| spa->xsl_fault.pe = pe_handle; |
| spa->xsl_fault.dar = dar; |
| spa->xsl_fault.dsisr = dsisr; |
| spa->xsl_fault.pe_data = *pe_data; |
| schedule = true; |
| /* mm_users count released by bottom half */ |
| } |
| rcu_read_unlock(); |
| if (schedule) |
| schedule_work(&spa->xsl_fault.fault_work); |
| else |
| ack_irq(spa, ADDRESS_ERROR); |
| return IRQ_HANDLED; |
| } |
| |
| static void unmap_irq_registers(struct spa *spa) |
| { |
| pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc, |
| spa->reg_pe_handle); |
| } |
| |
| static int map_irq_registers(struct pci_dev *dev, struct spa *spa) |
| { |
| return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar, |
| &spa->reg_tfc, &spa->reg_pe_handle); |
| } |
| |
| static int setup_xsl_irq(struct pci_dev *dev, struct ocxl_link *link) |
| { |
| struct spa *spa = link->spa; |
| int rc; |
| int hwirq; |
| |
| rc = pnv_ocxl_get_xsl_irq(dev, &hwirq); |
| if (rc) |
| return rc; |
| |
| rc = map_irq_registers(dev, spa); |
| if (rc) |
| return rc; |
| |
| spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x", |
| link->domain, link->bus, link->dev); |
| if (!spa->irq_name) { |
| dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n"); |
| rc = -ENOMEM; |
| goto err_xsl; |
| } |
| /* |
| * At some point, we'll need to look into allowing a higher |
| * number of interrupts. Could we have an IRQ domain per link? |
| */ |
| spa->virq = irq_create_mapping(NULL, hwirq); |
| if (!spa->virq) { |
| dev_err(&dev->dev, |
| "irq_create_mapping failed for translation interrupt\n"); |
| rc = -EINVAL; |
| goto err_name; |
| } |
| |
| dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq); |
| |
| rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name, |
| link); |
| if (rc) { |
| dev_err(&dev->dev, |
| "request_irq failed for translation interrupt: %d\n", |
| rc); |
| rc = -EINVAL; |
| goto err_mapping; |
| } |
| return 0; |
| |
| err_mapping: |
| irq_dispose_mapping(spa->virq); |
| err_name: |
| kfree(spa->irq_name); |
| err_xsl: |
| unmap_irq_registers(spa); |
| return rc; |
| } |
| |
| static void release_xsl_irq(struct ocxl_link *link) |
| { |
| struct spa *spa = link->spa; |
| |
| if (spa->virq) { |
| free_irq(spa->virq, link); |
| irq_dispose_mapping(spa->virq); |
| } |
| kfree(spa->irq_name); |
| unmap_irq_registers(spa); |
| } |
| |
| static int alloc_spa(struct pci_dev *dev, struct ocxl_link *link) |
| { |
| struct spa *spa; |
| |
| spa = kzalloc(sizeof(struct spa), GFP_KERNEL); |
| if (!spa) |
| return -ENOMEM; |
| |
| mutex_init(&spa->spa_lock); |
| INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL); |
| INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh); |
| |
| spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT; |
| spa->spa_mem = (struct ocxl_process_element *) |
| __get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order); |
| if (!spa->spa_mem) { |
| dev_err(&dev->dev, "Can't allocate Shared Process Area\n"); |
| kfree(spa); |
| return -ENOMEM; |
| } |
| pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus, |
| link->dev, spa->spa_mem); |
| |
| link->spa = spa; |
| return 0; |
| } |
| |
| static void free_spa(struct ocxl_link *link) |
| { |
| struct spa *spa = link->spa; |
| |
| pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus, |
| link->dev); |
| |
| if (spa && spa->spa_mem) { |
| free_pages((unsigned long) spa->spa_mem, spa->spa_order); |
| kfree(spa); |
| link->spa = NULL; |
| } |
| } |
| |
| static int alloc_link(struct pci_dev *dev, int PE_mask, struct ocxl_link **out_link) |
| { |
| struct ocxl_link *link; |
| int rc; |
| |
| link = kzalloc(sizeof(struct ocxl_link), GFP_KERNEL); |
| if (!link) |
| return -ENOMEM; |
| |
| kref_init(&link->ref); |
| link->domain = pci_domain_nr(dev->bus); |
| link->bus = dev->bus->number; |
| link->dev = PCI_SLOT(dev->devfn); |
| atomic_set(&link->irq_available, MAX_IRQ_PER_LINK); |
| |
| rc = alloc_spa(dev, link); |
| if (rc) |
| goto err_free; |
| |
| rc = setup_xsl_irq(dev, link); |
| if (rc) |
| goto err_spa; |
| |
| /* platform specific hook */ |
| rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask, |
| &link->platform_data); |
| if (rc) |
| goto err_xsl_irq; |
| |
| *out_link = link; |
| return 0; |
| |
| err_xsl_irq: |
| release_xsl_irq(link); |
| err_spa: |
| free_spa(link); |
| err_free: |
| kfree(link); |
| return rc; |
| } |
| |
| static void free_link(struct ocxl_link *link) |
| { |
| release_xsl_irq(link); |
| free_spa(link); |
| kfree(link); |
| } |
| |
| int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle) |
| { |
| int rc = 0; |
| struct ocxl_link *link; |
| |
| mutex_lock(&links_list_lock); |
| list_for_each_entry(link, &links_list, list) { |
| /* The functions of a device all share the same link */ |
| if (link->domain == pci_domain_nr(dev->bus) && |
| link->bus == dev->bus->number && |
| link->dev == PCI_SLOT(dev->devfn)) { |
| kref_get(&link->ref); |
| *link_handle = link; |
| goto unlock; |
| } |
| } |
| rc = alloc_link(dev, PE_mask, &link); |
| if (rc) |
| goto unlock; |
| |
| list_add(&link->list, &links_list); |
| *link_handle = link; |
| unlock: |
| mutex_unlock(&links_list_lock); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ocxl_link_setup); |
| |
| static void release_xsl(struct kref *ref) |
| { |
| struct ocxl_link *link = container_of(ref, struct ocxl_link, ref); |
| |
| list_del(&link->list); |
| /* call platform code before releasing data */ |
| pnv_ocxl_spa_release(link->platform_data); |
| free_link(link); |
| } |
| |
| void ocxl_link_release(struct pci_dev *dev, void *link_handle) |
| { |
| struct ocxl_link *link = (struct ocxl_link *) link_handle; |
| |
| mutex_lock(&links_list_lock); |
| kref_put(&link->ref, release_xsl); |
| mutex_unlock(&links_list_lock); |
| } |
| EXPORT_SYMBOL_GPL(ocxl_link_release); |
| |
| static u64 calculate_cfg_state(bool kernel) |
| { |
| u64 state; |
| |
| state = SPA_CFG_DR; |
| if (mfspr(SPRN_LPCR) & LPCR_TC) |
| state |= SPA_CFG_TC; |
| if (radix_enabled()) |
| state |= SPA_CFG_XLAT_ror; |
| else |
| state |= SPA_CFG_XLAT_hpt; |
| state |= SPA_CFG_HV; |
| if (kernel) { |
| if (mfmsr() & MSR_SF) |
| state |= SPA_CFG_SF; |
| } else { |
| state |= SPA_CFG_PR; |
| if (!test_tsk_thread_flag(current, TIF_32BIT)) |
| state |= SPA_CFG_SF; |
| } |
| return state; |
| } |
| |
| int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr, |
| u64 amr, struct mm_struct *mm, |
| void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr), |
| void *xsl_err_data) |
| { |
| struct ocxl_link *link = (struct ocxl_link *) link_handle; |
| struct spa *spa = link->spa; |
| struct ocxl_process_element *pe; |
| int pe_handle, rc = 0; |
| struct pe_data *pe_data; |
| |
| BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128); |
| if (pasid > SPA_PASID_MAX) |
| return -EINVAL; |
| |
| mutex_lock(&spa->spa_lock); |
| pe_handle = pasid & SPA_PE_MASK; |
| pe = spa->spa_mem + pe_handle; |
| |
| if (pe->software_state) { |
| rc = -EBUSY; |
| goto unlock; |
| } |
| |
| pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL); |
| if (!pe_data) { |
| rc = -ENOMEM; |
| goto unlock; |
| } |
| |
| pe_data->mm = mm; |
| pe_data->xsl_err_cb = xsl_err_cb; |
| pe_data->xsl_err_data = xsl_err_data; |
| |
| memset(pe, 0, sizeof(struct ocxl_process_element)); |
| pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0)); |
| pe->lpid = cpu_to_be32(mfspr(SPRN_LPID)); |
| pe->pid = cpu_to_be32(pidr); |
| pe->tid = cpu_to_be32(tidr); |
| pe->amr = cpu_to_be64(amr); |
| pe->software_state = cpu_to_be32(SPA_PE_VALID); |
| |
| /* |
| * For user contexts, register a copro so that TLBIs are seen |
| * by the nest MMU. If we have a kernel context, TLBIs are |
| * already global. |
| */ |
| if (mm) |
| mm_context_add_copro(mm); |
| /* |
| * Barrier is to make sure PE is visible in the SPA before it |
| * is used by the device. It also helps with the global TLBI |
| * invalidation |
| */ |
| mb(); |
| radix_tree_insert(&spa->pe_tree, pe_handle, pe_data); |
| |
| /* |
| * The mm must stay valid for as long as the device uses it. We |
| * lower the count when the context is removed from the SPA. |
| * |
| * We grab mm_count (and not mm_users), as we don't want to |
| * end up in a circular dependency if a process mmaps its |
| * mmio, therefore incrementing the file ref count when |
| * calling mmap(), and forgets to unmap before exiting. In |
| * that scenario, when the kernel handles the death of the |
| * process, the file is not cleaned because unmap was not |
| * called, and the mm wouldn't be freed because we would still |
| * have a reference on mm_users. Incrementing mm_count solves |
| * the problem. |
| */ |
| if (mm) |
| mmgrab(mm); |
| trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr); |
| unlock: |
| mutex_unlock(&spa->spa_lock); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ocxl_link_add_pe); |
| |
| int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid) |
| { |
| struct ocxl_link *link = (struct ocxl_link *) link_handle; |
| struct spa *spa = link->spa; |
| struct ocxl_process_element *pe; |
| int pe_handle, rc; |
| |
| if (pasid > SPA_PASID_MAX) |
| return -EINVAL; |
| |
| pe_handle = pasid & SPA_PE_MASK; |
| pe = spa->spa_mem + pe_handle; |
| |
| mutex_lock(&spa->spa_lock); |
| |
| pe->tid = cpu_to_be32(tid); |
| |
| /* |
| * The barrier makes sure the PE is updated |
| * before we clear the NPU context cache below, so that the |
| * old PE cannot be reloaded erroneously. |
| */ |
| mb(); |
| |
| /* |
| * hook to platform code |
| * On powerpc, the entry needs to be cleared from the context |
| * cache of the NPU. |
| */ |
| rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle); |
| WARN_ON(rc); |
| |
| mutex_unlock(&spa->spa_lock); |
| return rc; |
| } |
| |
| int ocxl_link_remove_pe(void *link_handle, int pasid) |
| { |
| struct ocxl_link *link = (struct ocxl_link *) link_handle; |
| struct spa *spa = link->spa; |
| struct ocxl_process_element *pe; |
| struct pe_data *pe_data; |
| int pe_handle, rc; |
| |
| if (pasid > SPA_PASID_MAX) |
| return -EINVAL; |
| |
| /* |
| * About synchronization with our memory fault handler: |
| * |
| * Before removing the PE, the driver is supposed to have |
| * notified the AFU, which should have cleaned up and make |
| * sure the PASID is no longer in use, including pending |
| * interrupts. However, there's no way to be sure... |
| * |
| * We clear the PE and remove the context from our radix |
| * tree. From that point on, any new interrupt for that |
| * context will fail silently, which is ok. As mentioned |
| * above, that's not expected, but it could happen if the |
| * driver or AFU didn't do the right thing. |
| * |
| * There could still be a bottom half running, but we don't |
| * need to wait/flush, as it is managing a reference count on |
| * the mm it reads from the radix tree. |
| */ |
| pe_handle = pasid & SPA_PE_MASK; |
| pe = spa->spa_mem + pe_handle; |
| |
| mutex_lock(&spa->spa_lock); |
| |
| if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) { |
| rc = -EINVAL; |
| goto unlock; |
| } |
| |
| trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid, |
| be32_to_cpu(pe->pid), be32_to_cpu(pe->tid)); |
| |
| memset(pe, 0, sizeof(struct ocxl_process_element)); |
| /* |
| * The barrier makes sure the PE is removed from the SPA |
| * before we clear the NPU context cache below, so that the |
| * old PE cannot be reloaded erroneously. |
| */ |
| mb(); |
| |
| /* |
| * hook to platform code |
| * On powerpc, the entry needs to be cleared from the context |
| * cache of the NPU. |
| */ |
| rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle); |
| WARN_ON(rc); |
| |
| pe_data = radix_tree_delete(&spa->pe_tree, pe_handle); |
| if (!pe_data) { |
| WARN(1, "Couldn't find pe data when removing PE\n"); |
| } else { |
| if (pe_data->mm) { |
| mm_context_remove_copro(pe_data->mm); |
| mmdrop(pe_data->mm); |
| } |
| kfree_rcu(pe_data, rcu); |
| } |
| unlock: |
| mutex_unlock(&spa->spa_lock); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ocxl_link_remove_pe); |
| |
| int ocxl_link_irq_alloc(void *link_handle, int *hw_irq, u64 *trigger_addr) |
| { |
| struct ocxl_link *link = (struct ocxl_link *) link_handle; |
| int rc, irq; |
| u64 addr; |
| |
| if (atomic_dec_if_positive(&link->irq_available) < 0) |
| return -ENOSPC; |
| |
| rc = pnv_ocxl_alloc_xive_irq(&irq, &addr); |
| if (rc) { |
| atomic_inc(&link->irq_available); |
| return rc; |
| } |
| |
| *hw_irq = irq; |
| *trigger_addr = addr; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc); |
| |
| void ocxl_link_free_irq(void *link_handle, int hw_irq) |
| { |
| struct ocxl_link *link = (struct ocxl_link *) link_handle; |
| |
| pnv_ocxl_free_xive_irq(hw_irq); |
| atomic_inc(&link->irq_available); |
| } |
| EXPORT_SYMBOL_GPL(ocxl_link_free_irq); |