| /* |
| * Copyright(c) 2015-2017 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| #include <linux/poll.h> |
| #include <linux/cdev.h> |
| #include <linux/vmalloc.h> |
| #include <linux/io.h> |
| #include <linux/sched/mm.h> |
| #include <linux/bitmap.h> |
| |
| #include <rdma/ib.h> |
| |
| #include "hfi.h" |
| #include "pio.h" |
| #include "device.h" |
| #include "common.h" |
| #include "trace.h" |
| #include "mmu_rb.h" |
| #include "user_sdma.h" |
| #include "user_exp_rcv.h" |
| #include "aspm.h" |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) DRIVER_NAME ": " fmt |
| |
| #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ |
| |
| /* |
| * File operation functions |
| */ |
| static int hfi1_file_open(struct inode *inode, struct file *fp); |
| static int hfi1_file_close(struct inode *inode, struct file *fp); |
| static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from); |
| static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt); |
| static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma); |
| |
| static u64 kvirt_to_phys(void *addr); |
| static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len); |
| static void init_subctxts(struct hfi1_ctxtdata *uctxt, |
| const struct hfi1_user_info *uinfo); |
| static int init_user_ctxt(struct hfi1_filedata *fd, |
| struct hfi1_ctxtdata *uctxt); |
| static void user_init(struct hfi1_ctxtdata *uctxt); |
| static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); |
| static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); |
| static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, |
| u32 len); |
| static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, |
| u32 len); |
| static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, |
| u32 len); |
| static int setup_base_ctxt(struct hfi1_filedata *fd, |
| struct hfi1_ctxtdata *uctxt); |
| static int setup_subctxt(struct hfi1_ctxtdata *uctxt); |
| |
| static int find_sub_ctxt(struct hfi1_filedata *fd, |
| const struct hfi1_user_info *uinfo); |
| static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, |
| struct hfi1_user_info *uinfo, |
| struct hfi1_ctxtdata **cd); |
| static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt); |
| static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt); |
| static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt); |
| static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, |
| unsigned long arg); |
| static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg); |
| static int ctxt_reset(struct hfi1_ctxtdata *uctxt); |
| static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, |
| unsigned long arg); |
| static vm_fault_t vma_fault(struct vm_fault *vmf); |
| static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, |
| unsigned long arg); |
| |
| static const struct file_operations hfi1_file_ops = { |
| .owner = THIS_MODULE, |
| .write_iter = hfi1_write_iter, |
| .open = hfi1_file_open, |
| .release = hfi1_file_close, |
| .unlocked_ioctl = hfi1_file_ioctl, |
| .poll = hfi1_poll, |
| .mmap = hfi1_file_mmap, |
| .llseek = noop_llseek, |
| }; |
| |
| static const struct vm_operations_struct vm_ops = { |
| .fault = vma_fault, |
| }; |
| |
| /* |
| * Types of memories mapped into user processes' space |
| */ |
| enum mmap_types { |
| PIO_BUFS = 1, |
| PIO_BUFS_SOP, |
| PIO_CRED, |
| RCV_HDRQ, |
| RCV_EGRBUF, |
| UREGS, |
| EVENTS, |
| STATUS, |
| RTAIL, |
| SUBCTXT_UREGS, |
| SUBCTXT_RCV_HDRQ, |
| SUBCTXT_EGRBUF, |
| SDMA_COMP |
| }; |
| |
| /* |
| * Masks and offsets defining the mmap tokens |
| */ |
| #define HFI1_MMAP_OFFSET_MASK 0xfffULL |
| #define HFI1_MMAP_OFFSET_SHIFT 0 |
| #define HFI1_MMAP_SUBCTXT_MASK 0xfULL |
| #define HFI1_MMAP_SUBCTXT_SHIFT 12 |
| #define HFI1_MMAP_CTXT_MASK 0xffULL |
| #define HFI1_MMAP_CTXT_SHIFT 16 |
| #define HFI1_MMAP_TYPE_MASK 0xfULL |
| #define HFI1_MMAP_TYPE_SHIFT 24 |
| #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL |
| #define HFI1_MMAP_MAGIC_SHIFT 32 |
| |
| #define HFI1_MMAP_MAGIC 0xdabbad00 |
| |
| #define HFI1_MMAP_TOKEN_SET(field, val) \ |
| (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) |
| #define HFI1_MMAP_TOKEN_GET(field, token) \ |
| (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) |
| #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ |
| (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ |
| HFI1_MMAP_TOKEN_SET(TYPE, type) | \ |
| HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ |
| HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ |
| HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) |
| |
| #define dbg(fmt, ...) \ |
| pr_info(fmt, ##__VA_ARGS__) |
| |
| static inline int is_valid_mmap(u64 token) |
| { |
| return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); |
| } |
| |
| static int hfi1_file_open(struct inode *inode, struct file *fp) |
| { |
| struct hfi1_filedata *fd; |
| struct hfi1_devdata *dd = container_of(inode->i_cdev, |
| struct hfi1_devdata, |
| user_cdev); |
| |
| if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1)) |
| return -EINVAL; |
| |
| if (!atomic_inc_not_zero(&dd->user_refcount)) |
| return -ENXIO; |
| |
| /* The real work is performed later in assign_ctxt() */ |
| |
| fd = kzalloc(sizeof(*fd), GFP_KERNEL); |
| |
| if (fd) { |
| fd->rec_cpu_num = -1; /* no cpu affinity by default */ |
| fd->mm = current->mm; |
| mmgrab(fd->mm); |
| fd->dd = dd; |
| kobject_get(&fd->dd->kobj); |
| fp->private_data = fd; |
| } else { |
| fp->private_data = NULL; |
| |
| if (atomic_dec_and_test(&dd->user_refcount)) |
| complete(&dd->user_comp); |
| |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| int ret = 0; |
| int uval = 0; |
| |
| hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); |
| if (cmd != HFI1_IOCTL_ASSIGN_CTXT && |
| cmd != HFI1_IOCTL_GET_VERS && |
| !uctxt) |
| return -EINVAL; |
| |
| switch (cmd) { |
| case HFI1_IOCTL_ASSIGN_CTXT: |
| ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd)); |
| break; |
| |
| case HFI1_IOCTL_CTXT_INFO: |
| ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd)); |
| break; |
| |
| case HFI1_IOCTL_USER_INFO: |
| ret = get_base_info(fd, arg, _IOC_SIZE(cmd)); |
| break; |
| |
| case HFI1_IOCTL_CREDIT_UPD: |
| if (uctxt) |
| sc_return_credits(uctxt->sc); |
| break; |
| |
| case HFI1_IOCTL_TID_UPDATE: |
| ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd)); |
| break; |
| |
| case HFI1_IOCTL_TID_FREE: |
| ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd)); |
| break; |
| |
| case HFI1_IOCTL_TID_INVAL_READ: |
| ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd)); |
| break; |
| |
| case HFI1_IOCTL_RECV_CTRL: |
| ret = manage_rcvq(uctxt, fd->subctxt, arg); |
| break; |
| |
| case HFI1_IOCTL_POLL_TYPE: |
| if (get_user(uval, (int __user *)arg)) |
| return -EFAULT; |
| uctxt->poll_type = (typeof(uctxt->poll_type))uval; |
| break; |
| |
| case HFI1_IOCTL_ACK_EVENT: |
| ret = user_event_ack(uctxt, fd->subctxt, arg); |
| break; |
| |
| case HFI1_IOCTL_SET_PKEY: |
| ret = set_ctxt_pkey(uctxt, arg); |
| break; |
| |
| case HFI1_IOCTL_CTXT_RESET: |
| ret = ctxt_reset(uctxt); |
| break; |
| |
| case HFI1_IOCTL_GET_VERS: |
| uval = HFI1_USER_SWVERSION; |
| if (put_user(uval, (int __user *)arg)) |
| return -EFAULT; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) |
| { |
| struct hfi1_filedata *fd = kiocb->ki_filp->private_data; |
| struct hfi1_user_sdma_pkt_q *pq = fd->pq; |
| struct hfi1_user_sdma_comp_q *cq = fd->cq; |
| int done = 0, reqs = 0; |
| unsigned long dim = from->nr_segs; |
| |
| if (!cq || !pq) |
| return -EIO; |
| |
| if (!iter_is_iovec(from) || !dim) |
| return -EINVAL; |
| |
| trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim); |
| |
| if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) |
| return -ENOSPC; |
| |
| while (dim) { |
| int ret; |
| unsigned long count = 0; |
| |
| ret = hfi1_user_sdma_process_request( |
| fd, (struct iovec *)(from->iov + done), |
| dim, &count); |
| if (ret) { |
| reqs = ret; |
| break; |
| } |
| dim -= count; |
| done += count; |
| reqs++; |
| } |
| |
| return reqs; |
| } |
| |
| static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd; |
| unsigned long flags; |
| u64 token = vma->vm_pgoff << PAGE_SHIFT, |
| memaddr = 0; |
| void *memvirt = NULL; |
| u8 subctxt, mapio = 0, vmf = 0, type; |
| ssize_t memlen = 0; |
| int ret = 0; |
| u16 ctxt; |
| |
| if (!is_valid_mmap(token) || !uctxt || |
| !(vma->vm_flags & VM_SHARED)) { |
| ret = -EINVAL; |
| goto done; |
| } |
| dd = uctxt->dd; |
| ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); |
| subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); |
| type = HFI1_MMAP_TOKEN_GET(TYPE, token); |
| if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| flags = vma->vm_flags; |
| |
| switch (type) { |
| case PIO_BUFS: |
| case PIO_BUFS_SOP: |
| memaddr = ((dd->physaddr + TXE_PIO_SEND) + |
| /* chip pio base */ |
| (uctxt->sc->hw_context * BIT(16))) + |
| /* 64K PIO space / ctxt */ |
| (type == PIO_BUFS_SOP ? |
| (TXE_PIO_SIZE / 2) : 0); /* sop? */ |
| /* |
| * Map only the amount allocated to the context, not the |
| * entire available context's PIO space. |
| */ |
| memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); |
| flags &= ~VM_MAYREAD; |
| flags |= VM_DONTCOPY | VM_DONTEXPAND; |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| mapio = 1; |
| break; |
| case PIO_CRED: |
| if (flags & VM_WRITE) { |
| ret = -EPERM; |
| goto done; |
| } |
| /* |
| * The credit return location for this context could be on the |
| * second or third page allocated for credit returns (if number |
| * of enabled contexts > 64 and 128 respectively). |
| */ |
| memvirt = dd->cr_base[uctxt->numa_id].va; |
| memaddr = virt_to_phys(memvirt) + |
| (((u64)uctxt->sc->hw_free - |
| (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); |
| memlen = PAGE_SIZE; |
| flags &= ~VM_MAYWRITE; |
| flags |= VM_DONTCOPY | VM_DONTEXPAND; |
| /* |
| * The driver has already allocated memory for credit |
| * returns and programmed it into the chip. Has that |
| * memory been flagged as non-cached? |
| */ |
| /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ |
| mapio = 1; |
| break; |
| case RCV_HDRQ: |
| memlen = rcvhdrq_size(uctxt); |
| memvirt = uctxt->rcvhdrq; |
| break; |
| case RCV_EGRBUF: { |
| unsigned long addr; |
| int i; |
| /* |
| * The RcvEgr buffer need to be handled differently |
| * as multiple non-contiguous pages need to be mapped |
| * into the user process. |
| */ |
| memlen = uctxt->egrbufs.size; |
| if ((vma->vm_end - vma->vm_start) != memlen) { |
| dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", |
| (vma->vm_end - vma->vm_start), memlen); |
| ret = -EINVAL; |
| goto done; |
| } |
| if (vma->vm_flags & VM_WRITE) { |
| ret = -EPERM; |
| goto done; |
| } |
| vma->vm_flags &= ~VM_MAYWRITE; |
| addr = vma->vm_start; |
| for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { |
| memlen = uctxt->egrbufs.buffers[i].len; |
| memvirt = uctxt->egrbufs.buffers[i].addr; |
| ret = remap_pfn_range( |
| vma, addr, |
| /* |
| * virt_to_pfn() does the same, but |
| * it's not available on x86_64 |
| * when CONFIG_MMU is enabled. |
| */ |
| PFN_DOWN(__pa(memvirt)), |
| memlen, |
| vma->vm_page_prot); |
| if (ret < 0) |
| goto done; |
| addr += memlen; |
| } |
| ret = 0; |
| goto done; |
| } |
| case UREGS: |
| /* |
| * Map only the page that contains this context's user |
| * registers. |
| */ |
| memaddr = (unsigned long) |
| (dd->physaddr + RXE_PER_CONTEXT_USER) |
| + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); |
| /* |
| * TidFlow table is on the same page as the rest of the |
| * user registers. |
| */ |
| memlen = PAGE_SIZE; |
| flags |= VM_DONTCOPY | VM_DONTEXPAND; |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| mapio = 1; |
| break; |
| case EVENTS: |
| /* |
| * Use the page where this context's flags are. User level |
| * knows where it's own bitmap is within the page. |
| */ |
| memaddr = (unsigned long) |
| (dd->events + uctxt_offset(uctxt)) & PAGE_MASK; |
| memlen = PAGE_SIZE; |
| /* |
| * v3.7 removes VM_RESERVED but the effect is kept by |
| * using VM_IO. |
| */ |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| case STATUS: |
| if (flags & (unsigned long)(VM_WRITE | VM_EXEC)) { |
| ret = -EPERM; |
| goto done; |
| } |
| memaddr = kvirt_to_phys((void *)dd->status); |
| memlen = PAGE_SIZE; |
| flags |= VM_IO | VM_DONTEXPAND; |
| break; |
| case RTAIL: |
| if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { |
| /* |
| * If the memory allocation failed, the context alloc |
| * also would have failed, so we would never get here |
| */ |
| ret = -EINVAL; |
| goto done; |
| } |
| if ((flags & VM_WRITE) || !uctxt->rcvhdrtail_kvaddr) { |
| ret = -EPERM; |
| goto done; |
| } |
| memlen = PAGE_SIZE; |
| memvirt = (void *)uctxt->rcvhdrtail_kvaddr; |
| flags &= ~VM_MAYWRITE; |
| break; |
| case SUBCTXT_UREGS: |
| memaddr = (u64)uctxt->subctxt_uregbase; |
| memlen = PAGE_SIZE; |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| case SUBCTXT_RCV_HDRQ: |
| memaddr = (u64)uctxt->subctxt_rcvhdr_base; |
| memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt; |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| case SUBCTXT_EGRBUF: |
| memaddr = (u64)uctxt->subctxt_rcvegrbuf; |
| memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; |
| flags |= VM_IO | VM_DONTEXPAND; |
| flags &= ~VM_MAYWRITE; |
| vmf = 1; |
| break; |
| case SDMA_COMP: { |
| struct hfi1_user_sdma_comp_q *cq = fd->cq; |
| |
| if (!cq) { |
| ret = -EFAULT; |
| goto done; |
| } |
| memaddr = (u64)cq->comps; |
| memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| } |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| if ((vma->vm_end - vma->vm_start) != memlen) { |
| hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", |
| uctxt->ctxt, fd->subctxt, |
| (vma->vm_end - vma->vm_start), memlen); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| vma->vm_flags = flags; |
| hfi1_cdbg(PROC, |
| "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", |
| ctxt, subctxt, type, mapio, vmf, memaddr, memlen, |
| vma->vm_end - vma->vm_start, vma->vm_flags); |
| if (vmf) { |
| vma->vm_pgoff = PFN_DOWN(memaddr); |
| vma->vm_ops = &vm_ops; |
| ret = 0; |
| } else if (mapio) { |
| ret = io_remap_pfn_range(vma, vma->vm_start, |
| PFN_DOWN(memaddr), |
| memlen, |
| vma->vm_page_prot); |
| } else if (memvirt) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| PFN_DOWN(__pa(memvirt)), |
| memlen, |
| vma->vm_page_prot); |
| } else { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| PFN_DOWN(memaddr), |
| memlen, |
| vma->vm_page_prot); |
| } |
| done: |
| return ret; |
| } |
| |
| /* |
| * Local (non-chip) user memory is not mapped right away but as it is |
| * accessed by the user-level code. |
| */ |
| static vm_fault_t vma_fault(struct vm_fault *vmf) |
| { |
| struct page *page; |
| |
| page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); |
| if (!page) |
| return VM_FAULT_SIGBUS; |
| |
| get_page(page); |
| vmf->page = page; |
| |
| return 0; |
| } |
| |
| static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt) |
| { |
| struct hfi1_ctxtdata *uctxt; |
| __poll_t pollflag; |
| |
| uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; |
| if (!uctxt) |
| pollflag = EPOLLERR; |
| else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) |
| pollflag = poll_urgent(fp, pt); |
| else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) |
| pollflag = poll_next(fp, pt); |
| else /* invalid */ |
| pollflag = EPOLLERR; |
| |
| return pollflag; |
| } |
| |
| static int hfi1_file_close(struct inode *inode, struct file *fp) |
| { |
| struct hfi1_filedata *fdata = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fdata->uctxt; |
| struct hfi1_devdata *dd = container_of(inode->i_cdev, |
| struct hfi1_devdata, |
| user_cdev); |
| unsigned long flags, *ev; |
| |
| fp->private_data = NULL; |
| |
| if (!uctxt) |
| goto done; |
| |
| hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); |
| |
| flush_wc(); |
| /* drain user sdma queue */ |
| hfi1_user_sdma_free_queues(fdata, uctxt); |
| |
| /* release the cpu */ |
| hfi1_put_proc_affinity(fdata->rec_cpu_num); |
| |
| /* clean up rcv side */ |
| hfi1_user_exp_rcv_free(fdata); |
| |
| /* |
| * fdata->uctxt is used in the above cleanup. It is not ready to be |
| * removed until here. |
| */ |
| fdata->uctxt = NULL; |
| hfi1_rcd_put(uctxt); |
| |
| /* |
| * Clear any left over, unhandled events so the next process that |
| * gets this context doesn't get confused. |
| */ |
| ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt; |
| *ev = 0; |
| |
| spin_lock_irqsave(&dd->uctxt_lock, flags); |
| __clear_bit(fdata->subctxt, uctxt->in_use_ctxts); |
| if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| goto done; |
| } |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| |
| /* |
| * Disable receive context and interrupt available, reset all |
| * RcvCtxtCtrl bits to default values. |
| */ |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | |
| HFI1_RCVCTRL_TIDFLOW_DIS | |
| HFI1_RCVCTRL_INTRAVAIL_DIS | |
| HFI1_RCVCTRL_TAILUPD_DIS | |
| HFI1_RCVCTRL_ONE_PKT_EGR_DIS | |
| HFI1_RCVCTRL_NO_RHQ_DROP_DIS | |
| HFI1_RCVCTRL_NO_EGR_DROP_DIS | |
| HFI1_RCVCTRL_URGENT_DIS, uctxt); |
| /* Clear the context's J_KEY */ |
| hfi1_clear_ctxt_jkey(dd, uctxt); |
| /* |
| * If a send context is allocated, reset context integrity |
| * checks to default and disable the send context. |
| */ |
| if (uctxt->sc) { |
| sc_disable(uctxt->sc); |
| set_pio_integrity(uctxt->sc); |
| } |
| |
| hfi1_free_ctxt_rcv_groups(uctxt); |
| hfi1_clear_ctxt_pkey(dd, uctxt); |
| |
| uctxt->event_flags = 0; |
| |
| deallocate_ctxt(uctxt); |
| done: |
| mmdrop(fdata->mm); |
| kobject_put(&dd->kobj); |
| |
| if (atomic_dec_and_test(&dd->user_refcount)) |
| complete(&dd->user_comp); |
| |
| kfree(fdata); |
| return 0; |
| } |
| |
| /* |
| * Convert kernel *virtual* addresses to physical addresses. |
| * This is used to vmalloc'ed addresses. |
| */ |
| static u64 kvirt_to_phys(void *addr) |
| { |
| struct page *page; |
| u64 paddr = 0; |
| |
| page = vmalloc_to_page(addr); |
| if (page) |
| paddr = page_to_pfn(page) << PAGE_SHIFT; |
| |
| return paddr; |
| } |
| |
| /** |
| * complete_subctxt |
| * @fd: valid filedata pointer |
| * |
| * Sub-context info can only be set up after the base context |
| * has been completed. This is indicated by the clearing of the |
| * HFI1_CTXT_BASE_UINIT bit. |
| * |
| * Wait for the bit to be cleared, and then complete the subcontext |
| * initialization. |
| * |
| */ |
| static int complete_subctxt(struct hfi1_filedata *fd) |
| { |
| int ret; |
| unsigned long flags; |
| |
| /* |
| * sub-context info can only be set up after the base context |
| * has been completed. |
| */ |
| ret = wait_event_interruptible( |
| fd->uctxt->wait, |
| !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags)); |
| |
| if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags)) |
| ret = -ENOMEM; |
| |
| /* Finish the sub-context init */ |
| if (!ret) { |
| fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); |
| ret = init_user_ctxt(fd, fd->uctxt); |
| } |
| |
| if (ret) { |
| spin_lock_irqsave(&fd->dd->uctxt_lock, flags); |
| __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts); |
| spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags); |
| hfi1_rcd_put(fd->uctxt); |
| fd->uctxt = NULL; |
| } |
| |
| return ret; |
| } |
| |
| static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len) |
| { |
| int ret; |
| unsigned int swmajor; |
| struct hfi1_ctxtdata *uctxt = NULL; |
| struct hfi1_user_info uinfo; |
| |
| if (fd->uctxt) |
| return -EINVAL; |
| |
| if (sizeof(uinfo) != len) |
| return -EINVAL; |
| |
| if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo))) |
| return -EFAULT; |
| |
| swmajor = uinfo.userversion >> 16; |
| if (swmajor != HFI1_USER_SWMAJOR) |
| return -ENODEV; |
| |
| if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS) |
| return -EINVAL; |
| |
| /* |
| * Acquire the mutex to protect against multiple creations of what |
| * could be a shared base context. |
| */ |
| mutex_lock(&hfi1_mutex); |
| /* |
| * Get a sub context if available (fd->uctxt will be set). |
| * ret < 0 error, 0 no context, 1 sub-context found |
| */ |
| ret = find_sub_ctxt(fd, &uinfo); |
| |
| /* |
| * Allocate a base context if context sharing is not required or a |
| * sub context wasn't found. |
| */ |
| if (!ret) |
| ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt); |
| |
| mutex_unlock(&hfi1_mutex); |
| |
| /* Depending on the context type, finish the appropriate init */ |
| switch (ret) { |
| case 0: |
| ret = setup_base_ctxt(fd, uctxt); |
| if (ret) |
| deallocate_ctxt(uctxt); |
| break; |
| case 1: |
| ret = complete_subctxt(fd); |
| break; |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * match_ctxt |
| * @fd: valid filedata pointer |
| * @uinfo: user info to compare base context with |
| * @uctxt: context to compare uinfo to. |
| * |
| * Compare the given context with the given information to see if it |
| * can be used for a sub context. |
| */ |
| static int match_ctxt(struct hfi1_filedata *fd, |
| const struct hfi1_user_info *uinfo, |
| struct hfi1_ctxtdata *uctxt) |
| { |
| struct hfi1_devdata *dd = fd->dd; |
| unsigned long flags; |
| u16 subctxt; |
| |
| /* Skip dynamically allocated kernel contexts */ |
| if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) |
| return 0; |
| |
| /* Skip ctxt if it doesn't match the requested one */ |
| if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || |
| uctxt->jkey != generate_jkey(current_uid()) || |
| uctxt->subctxt_id != uinfo->subctxt_id || |
| uctxt->subctxt_cnt != uinfo->subctxt_cnt) |
| return 0; |
| |
| /* Verify the sharing process matches the base */ |
| if (uctxt->userversion != uinfo->userversion) |
| return -EINVAL; |
| |
| /* Find an unused sub context */ |
| spin_lock_irqsave(&dd->uctxt_lock, flags); |
| if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { |
| /* context is being closed, do not use */ |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| return 0; |
| } |
| |
| subctxt = find_first_zero_bit(uctxt->in_use_ctxts, |
| HFI1_MAX_SHARED_CTXTS); |
| if (subctxt >= uctxt->subctxt_cnt) { |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| return -EBUSY; |
| } |
| |
| fd->subctxt = subctxt; |
| __set_bit(fd->subctxt, uctxt->in_use_ctxts); |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| |
| fd->uctxt = uctxt; |
| hfi1_rcd_get(uctxt); |
| |
| return 1; |
| } |
| |
| /** |
| * find_sub_ctxt |
| * @fd: valid filedata pointer |
| * @uinfo: matching info to use to find a possible context to share. |
| * |
| * The hfi1_mutex must be held when this function is called. It is |
| * necessary to ensure serialized creation of shared contexts. |
| * |
| * Return: |
| * 0 No sub-context found |
| * 1 Subcontext found and allocated |
| * errno EINVAL (incorrect parameters) |
| * EBUSY (all sub contexts in use) |
| */ |
| static int find_sub_ctxt(struct hfi1_filedata *fd, |
| const struct hfi1_user_info *uinfo) |
| { |
| struct hfi1_ctxtdata *uctxt; |
| struct hfi1_devdata *dd = fd->dd; |
| u16 i; |
| int ret; |
| |
| if (!uinfo->subctxt_cnt) |
| return 0; |
| |
| for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { |
| uctxt = hfi1_rcd_get_by_index(dd, i); |
| if (uctxt) { |
| ret = match_ctxt(fd, uinfo, uctxt); |
| hfi1_rcd_put(uctxt); |
| /* value of != 0 will return */ |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, |
| struct hfi1_user_info *uinfo, |
| struct hfi1_ctxtdata **rcd) |
| { |
| struct hfi1_ctxtdata *uctxt; |
| int ret, numa; |
| |
| if (dd->flags & HFI1_FROZEN) { |
| /* |
| * Pick an error that is unique from all other errors |
| * that are returned so the user process knows that |
| * it tried to allocate while the SPC was frozen. It |
| * it should be able to retry with success in a short |
| * while. |
| */ |
| return -EIO; |
| } |
| |
| if (!dd->freectxts) |
| return -EBUSY; |
| |
| /* |
| * If we don't have a NUMA node requested, preference is towards |
| * device NUMA node. |
| */ |
| fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); |
| if (fd->rec_cpu_num != -1) |
| numa = cpu_to_node(fd->rec_cpu_num); |
| else |
| numa = numa_node_id(); |
| ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt); |
| if (ret < 0) { |
| dd_dev_err(dd, "user ctxtdata allocation failed\n"); |
| return ret; |
| } |
| hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", |
| uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, |
| uctxt->numa_id); |
| |
| /* |
| * Allocate and enable a PIO send context. |
| */ |
| uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node); |
| if (!uctxt->sc) { |
| ret = -ENOMEM; |
| goto ctxdata_free; |
| } |
| hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, |
| uctxt->sc->hw_context); |
| ret = sc_enable(uctxt->sc); |
| if (ret) |
| goto ctxdata_free; |
| |
| /* |
| * Setup sub context information if the user-level has requested |
| * sub contexts. |
| * This has to be done here so the rest of the sub-contexts find the |
| * proper base context. |
| * NOTE: _set_bit() can be used here because the context creation is |
| * protected by the mutex (rather than the spin_lock), and will be the |
| * very first instance of this context. |
| */ |
| __set_bit(0, uctxt->in_use_ctxts); |
| if (uinfo->subctxt_cnt) |
| init_subctxts(uctxt, uinfo); |
| uctxt->userversion = uinfo->userversion; |
| uctxt->flags = hfi1_cap_mask; /* save current flag state */ |
| init_waitqueue_head(&uctxt->wait); |
| strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); |
| memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); |
| uctxt->jkey = generate_jkey(current_uid()); |
| hfi1_stats.sps_ctxts++; |
| /* |
| * Disable ASPM when there are open user/PSM contexts to avoid |
| * issues with ASPM L1 exit latency |
| */ |
| if (dd->freectxts-- == dd->num_user_contexts) |
| aspm_disable_all(dd); |
| |
| *rcd = uctxt; |
| |
| return 0; |
| |
| ctxdata_free: |
| hfi1_free_ctxt(uctxt); |
| return ret; |
| } |
| |
| static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt) |
| { |
| mutex_lock(&hfi1_mutex); |
| hfi1_stats.sps_ctxts--; |
| if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts) |
| aspm_enable_all(uctxt->dd); |
| mutex_unlock(&hfi1_mutex); |
| |
| hfi1_free_ctxt(uctxt); |
| } |
| |
| static void init_subctxts(struct hfi1_ctxtdata *uctxt, |
| const struct hfi1_user_info *uinfo) |
| { |
| uctxt->subctxt_cnt = uinfo->subctxt_cnt; |
| uctxt->subctxt_id = uinfo->subctxt_id; |
| set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); |
| } |
| |
| static int setup_subctxt(struct hfi1_ctxtdata *uctxt) |
| { |
| int ret = 0; |
| u16 num_subctxts = uctxt->subctxt_cnt; |
| |
| uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); |
| if (!uctxt->subctxt_uregbase) |
| return -ENOMEM; |
| |
| /* We can take the size of the RcvHdr Queue from the master */ |
| uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) * |
| num_subctxts); |
| if (!uctxt->subctxt_rcvhdr_base) { |
| ret = -ENOMEM; |
| goto bail_ureg; |
| } |
| |
| uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * |
| num_subctxts); |
| if (!uctxt->subctxt_rcvegrbuf) { |
| ret = -ENOMEM; |
| goto bail_rhdr; |
| } |
| |
| return 0; |
| |
| bail_rhdr: |
| vfree(uctxt->subctxt_rcvhdr_base); |
| uctxt->subctxt_rcvhdr_base = NULL; |
| bail_ureg: |
| vfree(uctxt->subctxt_uregbase); |
| uctxt->subctxt_uregbase = NULL; |
| |
| return ret; |
| } |
| |
| static void user_init(struct hfi1_ctxtdata *uctxt) |
| { |
| unsigned int rcvctrl_ops = 0; |
| |
| /* initialize poll variables... */ |
| uctxt->urgent = 0; |
| uctxt->urgent_poll = 0; |
| |
| /* |
| * Now enable the ctxt for receive. |
| * For chips that are set to DMA the tail register to memory |
| * when they change (and when the update bit transitions from |
| * 0 to 1. So for those chips, we turn it off and then back on. |
| * This will (very briefly) affect any other open ctxts, but the |
| * duration is very short, and therefore isn't an issue. We |
| * explicitly set the in-memory tail copy to 0 beforehand, so we |
| * don't have to wait to be sure the DMA update has happened |
| * (chip resets head/tail to 0 on transition to enable). |
| */ |
| if (uctxt->rcvhdrtail_kvaddr) |
| clear_rcvhdrtail(uctxt); |
| |
| /* Setup J_KEY before enabling the context */ |
| hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey); |
| |
| rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; |
| rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB; |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) |
| rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; |
| /* |
| * Ignore the bit in the flags for now until proper |
| * support for multiple packet per rcv array entry is |
| * added. |
| */ |
| if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) |
| rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) |
| rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) |
| rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; |
| /* |
| * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. |
| * We can't rely on the correct value to be set from prior |
| * uses of the chip or ctxt. Therefore, add the rcvctrl op |
| * for both cases. |
| */ |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) |
| rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; |
| else |
| rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; |
| hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt); |
| } |
| |
| static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) |
| { |
| struct hfi1_ctxt_info cinfo; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| |
| if (sizeof(cinfo) != len) |
| return -EINVAL; |
| |
| memset(&cinfo, 0, sizeof(cinfo)); |
| cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & |
| HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | |
| HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | |
| HFI1_CAP_KGET_MASK(uctxt->flags, K2U); |
| /* adjust flag if this fd is not able to cache */ |
| if (!fd->handler) |
| cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ |
| |
| cinfo.num_active = hfi1_count_active_units(); |
| cinfo.unit = uctxt->dd->unit; |
| cinfo.ctxt = uctxt->ctxt; |
| cinfo.subctxt = fd->subctxt; |
| cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, |
| uctxt->dd->rcv_entries.group_size) + |
| uctxt->expected_count; |
| cinfo.credits = uctxt->sc->credits; |
| cinfo.numa_node = uctxt->numa_id; |
| cinfo.rec_cpu = fd->rec_cpu_num; |
| cinfo.send_ctxt = uctxt->sc->hw_context; |
| |
| cinfo.egrtids = uctxt->egrbufs.alloced; |
| cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; |
| cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; |
| cinfo.sdma_ring_size = fd->cq->nentries; |
| cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; |
| |
| trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo); |
| if (copy_to_user((void __user *)arg, &cinfo, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int init_user_ctxt(struct hfi1_filedata *fd, |
| struct hfi1_ctxtdata *uctxt) |
| { |
| int ret; |
| |
| ret = hfi1_user_sdma_alloc_queues(uctxt, fd); |
| if (ret) |
| return ret; |
| |
| ret = hfi1_user_exp_rcv_init(fd, uctxt); |
| if (ret) |
| hfi1_user_sdma_free_queues(fd, uctxt); |
| |
| return ret; |
| } |
| |
| static int setup_base_ctxt(struct hfi1_filedata *fd, |
| struct hfi1_ctxtdata *uctxt) |
| { |
| struct hfi1_devdata *dd = uctxt->dd; |
| int ret = 0; |
| |
| hfi1_init_ctxt(uctxt->sc); |
| |
| /* Now allocate the RcvHdr queue and eager buffers. */ |
| ret = hfi1_create_rcvhdrq(dd, uctxt); |
| if (ret) |
| goto done; |
| |
| ret = hfi1_setup_eagerbufs(uctxt); |
| if (ret) |
| goto done; |
| |
| /* If sub-contexts are enabled, do the appropriate setup */ |
| if (uctxt->subctxt_cnt) |
| ret = setup_subctxt(uctxt); |
| if (ret) |
| goto done; |
| |
| ret = hfi1_alloc_ctxt_rcv_groups(uctxt); |
| if (ret) |
| goto done; |
| |
| ret = init_user_ctxt(fd, uctxt); |
| if (ret) |
| goto done; |
| |
| user_init(uctxt); |
| |
| /* Now that the context is set up, the fd can get a reference. */ |
| fd->uctxt = uctxt; |
| hfi1_rcd_get(uctxt); |
| |
| done: |
| if (uctxt->subctxt_cnt) { |
| /* |
| * On error, set the failed bit so sub-contexts will clean up |
| * correctly. |
| */ |
| if (ret) |
| set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags); |
| |
| /* |
| * Base context is done (successfully or not), notify anybody |
| * using a sub-context that is waiting for this completion. |
| */ |
| clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); |
| wake_up(&uctxt->wait); |
| } |
| |
| return ret; |
| } |
| |
| static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) |
| { |
| struct hfi1_base_info binfo; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned offset; |
| |
| trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt); |
| |
| if (sizeof(binfo) != len) |
| return -EINVAL; |
| |
| memset(&binfo, 0, sizeof(binfo)); |
| binfo.hw_version = dd->revision; |
| binfo.sw_version = HFI1_KERN_SWVERSION; |
| binfo.bthqp = kdeth_qp; |
| binfo.jkey = uctxt->jkey; |
| /* |
| * If more than 64 contexts are enabled the allocated credit |
| * return will span two or three contiguous pages. Since we only |
| * map the page containing the context's credit return address, |
| * we need to calculate the offset in the proper page. |
| */ |
| offset = ((u64)uctxt->sc->hw_free - |
| (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; |
| binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, |
| fd->subctxt, offset); |
| binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, |
| fd->subctxt, |
| uctxt->sc->base_addr); |
| binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, |
| uctxt->ctxt, |
| fd->subctxt, |
| uctxt->sc->base_addr); |
| binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, |
| fd->subctxt, |
| uctxt->rcvhdrq); |
| binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, |
| fd->subctxt, |
| uctxt->egrbufs.rcvtids[0].dma); |
| binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, |
| fd->subctxt, 0); |
| /* |
| * user regs are at |
| * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) |
| */ |
| binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, |
| fd->subctxt, 0); |
| offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) * |
| sizeof(*dd->events)); |
| binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, |
| fd->subctxt, |
| offset); |
| binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, |
| fd->subctxt, |
| dd->status); |
| if (HFI1_CAP_IS_USET(DMA_RTAIL)) |
| binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, |
| fd->subctxt, 0); |
| if (uctxt->subctxt_cnt) { |
| binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, |
| uctxt->ctxt, |
| fd->subctxt, 0); |
| binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, |
| uctxt->ctxt, |
| fd->subctxt, 0); |
| binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, |
| uctxt->ctxt, |
| fd->subctxt, 0); |
| } |
| |
| if (copy_to_user((void __user *)arg, &binfo, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * user_exp_rcv_setup - Set up the given tid rcv list |
| * @fd: file data of the current driver instance |
| * @arg: ioctl argumnent for user space information |
| * @len: length of data structure associated with ioctl command |
| * |
| * Wrapper to validate ioctl information before doing _rcv_setup. |
| * |
| */ |
| static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, |
| u32 len) |
| { |
| int ret; |
| unsigned long addr; |
| struct hfi1_tid_info tinfo; |
| |
| if (sizeof(tinfo) != len) |
| return -EINVAL; |
| |
| if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) |
| return -EFAULT; |
| |
| ret = hfi1_user_exp_rcv_setup(fd, &tinfo); |
| if (!ret) { |
| /* |
| * Copy the number of tidlist entries we used |
| * and the length of the buffer we registered. |
| */ |
| addr = arg + offsetof(struct hfi1_tid_info, tidcnt); |
| if (copy_to_user((void __user *)addr, &tinfo.tidcnt, |
| sizeof(tinfo.tidcnt))) |
| return -EFAULT; |
| |
| addr = arg + offsetof(struct hfi1_tid_info, length); |
| if (copy_to_user((void __user *)addr, &tinfo.length, |
| sizeof(tinfo.length))) |
| ret = -EFAULT; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * user_exp_rcv_clear - Clear the given tid rcv list |
| * @fd: file data of the current driver instance |
| * @arg: ioctl argumnent for user space information |
| * @len: length of data structure associated with ioctl command |
| * |
| * The hfi1_user_exp_rcv_clear() can be called from the error path. Because |
| * of this, we need to use this wrapper to copy the user space information |
| * before doing the clear. |
| */ |
| static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, |
| u32 len) |
| { |
| int ret; |
| unsigned long addr; |
| struct hfi1_tid_info tinfo; |
| |
| if (sizeof(tinfo) != len) |
| return -EINVAL; |
| |
| if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) |
| return -EFAULT; |
| |
| ret = hfi1_user_exp_rcv_clear(fd, &tinfo); |
| if (!ret) { |
| addr = arg + offsetof(struct hfi1_tid_info, tidcnt); |
| if (copy_to_user((void __user *)addr, &tinfo.tidcnt, |
| sizeof(tinfo.tidcnt))) |
| return -EFAULT; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * user_exp_rcv_invalid - Invalidate the given tid rcv list |
| * @fd: file data of the current driver instance |
| * @arg: ioctl argumnent for user space information |
| * @len: length of data structure associated with ioctl command |
| * |
| * Wrapper to validate ioctl information before doing _rcv_invalid. |
| * |
| */ |
| static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, |
| u32 len) |
| { |
| int ret; |
| unsigned long addr; |
| struct hfi1_tid_info tinfo; |
| |
| if (sizeof(tinfo) != len) |
| return -EINVAL; |
| |
| if (!fd->invalid_tids) |
| return -EINVAL; |
| |
| if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) |
| return -EFAULT; |
| |
| ret = hfi1_user_exp_rcv_invalid(fd, &tinfo); |
| if (ret) |
| return ret; |
| |
| addr = arg + offsetof(struct hfi1_tid_info, tidcnt); |
| if (copy_to_user((void __user *)addr, &tinfo.tidcnt, |
| sizeof(tinfo.tidcnt))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static __poll_t poll_urgent(struct file *fp, |
| struct poll_table_struct *pt) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| __poll_t pollflag; |
| |
| poll_wait(fp, &uctxt->wait, pt); |
| |
| spin_lock_irq(&dd->uctxt_lock); |
| if (uctxt->urgent != uctxt->urgent_poll) { |
| pollflag = EPOLLIN | EPOLLRDNORM; |
| uctxt->urgent_poll = uctxt->urgent; |
| } else { |
| pollflag = 0; |
| set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); |
| } |
| spin_unlock_irq(&dd->uctxt_lock); |
| |
| return pollflag; |
| } |
| |
| static __poll_t poll_next(struct file *fp, |
| struct poll_table_struct *pt) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| __poll_t pollflag; |
| |
| poll_wait(fp, &uctxt->wait, pt); |
| |
| spin_lock_irq(&dd->uctxt_lock); |
| if (hdrqempty(uctxt)) { |
| set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt); |
| pollflag = 0; |
| } else { |
| pollflag = EPOLLIN | EPOLLRDNORM; |
| } |
| spin_unlock_irq(&dd->uctxt_lock); |
| |
| return pollflag; |
| } |
| |
| /* |
| * Find all user contexts in use, and set the specified bit in their |
| * event mask. |
| * See also find_ctxt() for a similar use, that is specific to send buffers. |
| */ |
| int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) |
| { |
| struct hfi1_ctxtdata *uctxt; |
| struct hfi1_devdata *dd = ppd->dd; |
| u16 ctxt; |
| |
| if (!dd->events) |
| return -EINVAL; |
| |
| for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; |
| ctxt++) { |
| uctxt = hfi1_rcd_get_by_index(dd, ctxt); |
| if (uctxt) { |
| unsigned long *evs; |
| int i; |
| /* |
| * subctxt_cnt is 0 if not shared, so do base |
| * separately, first, then remaining subctxt, if any |
| */ |
| evs = dd->events + uctxt_offset(uctxt); |
| set_bit(evtbit, evs); |
| for (i = 1; i < uctxt->subctxt_cnt; i++) |
| set_bit(evtbit, evs + i); |
| hfi1_rcd_put(uctxt); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * manage_rcvq - manage a context's receive queue |
| * @uctxt: the context |
| * @subctxt: the sub-context |
| * @start_stop: action to carry out |
| * |
| * start_stop == 0 disables receive on the context, for use in queue |
| * overflow conditions. start_stop==1 re-enables, to be used to |
| * re-init the software copy of the head register |
| */ |
| static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, |
| unsigned long arg) |
| { |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned int rcvctrl_op; |
| int start_stop; |
| |
| if (subctxt) |
| return 0; |
| |
| if (get_user(start_stop, (int __user *)arg)) |
| return -EFAULT; |
| |
| /* atomically clear receive enable ctxt. */ |
| if (start_stop) { |
| /* |
| * On enable, force in-memory copy of the tail register to |
| * 0, so that protocol code doesn't have to worry about |
| * whether or not the chip has yet updated the in-memory |
| * copy or not on return from the system call. The chip |
| * always resets it's tail register back to 0 on a |
| * transition from disabled to enabled. |
| */ |
| if (uctxt->rcvhdrtail_kvaddr) |
| clear_rcvhdrtail(uctxt); |
| rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; |
| } else { |
| rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; |
| } |
| hfi1_rcvctrl(dd, rcvctrl_op, uctxt); |
| /* always; new head should be equal to new tail; see above */ |
| |
| return 0; |
| } |
| |
| /* |
| * clear the event notifier events for this context. |
| * User process then performs actions appropriate to bit having been |
| * set, if desired, and checks again in future. |
| */ |
| static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, |
| unsigned long arg) |
| { |
| int i; |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned long *evs; |
| unsigned long events; |
| |
| if (!dd->events) |
| return 0; |
| |
| if (get_user(events, (unsigned long __user *)arg)) |
| return -EFAULT; |
| |
| evs = dd->events + uctxt_offset(uctxt) + subctxt; |
| |
| for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { |
| if (!test_bit(i, &events)) |
| continue; |
| clear_bit(i, evs); |
| } |
| return 0; |
| } |
| |
| static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg) |
| { |
| int i; |
| struct hfi1_pportdata *ppd = uctxt->ppd; |
| struct hfi1_devdata *dd = uctxt->dd; |
| u16 pkey; |
| |
| if (!HFI1_CAP_IS_USET(PKEY_CHECK)) |
| return -EPERM; |
| |
| if (get_user(pkey, (u16 __user *)arg)) |
| return -EFAULT; |
| |
| if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) |
| return -EINVAL; |
| |
| for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) |
| if (pkey == ppd->pkeys[i]) |
| return hfi1_set_ctxt_pkey(dd, uctxt, pkey); |
| |
| return -ENOENT; |
| } |
| |
| /** |
| * ctxt_reset - Reset the user context |
| * @uctxt: valid user context |
| */ |
| static int ctxt_reset(struct hfi1_ctxtdata *uctxt) |
| { |
| struct send_context *sc; |
| struct hfi1_devdata *dd; |
| int ret = 0; |
| |
| if (!uctxt || !uctxt->dd || !uctxt->sc) |
| return -EINVAL; |
| |
| /* |
| * There is no protection here. User level has to guarantee that |
| * no one will be writing to the send context while it is being |
| * re-initialized. If user level breaks that guarantee, it will |
| * break it's own context and no one else's. |
| */ |
| dd = uctxt->dd; |
| sc = uctxt->sc; |
| |
| /* |
| * Wait until the interrupt handler has marked the context as |
| * halted or frozen. Report error if we time out. |
| */ |
| wait_event_interruptible_timeout( |
| sc->halt_wait, (sc->flags & SCF_HALTED), |
| msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); |
| if (!(sc->flags & SCF_HALTED)) |
| return -ENOLCK; |
| |
| /* |
| * If the send context was halted due to a Freeze, wait until the |
| * device has been "unfrozen" before resetting the context. |
| */ |
| if (sc->flags & SCF_FROZEN) { |
| wait_event_interruptible_timeout( |
| dd->event_queue, |
| !(READ_ONCE(dd->flags) & HFI1_FROZEN), |
| msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); |
| if (dd->flags & HFI1_FROZEN) |
| return -ENOLCK; |
| |
| if (dd->flags & HFI1_FORCED_FREEZE) |
| /* |
| * Don't allow context reset if we are into |
| * forced freeze |
| */ |
| return -ENODEV; |
| |
| sc_disable(sc); |
| ret = sc_enable(sc); |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt); |
| } else { |
| ret = sc_restart(sc); |
| } |
| if (!ret) |
| sc_return_credits(sc); |
| |
| return ret; |
| } |
| |
| static void user_remove(struct hfi1_devdata *dd) |
| { |
| |
| hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); |
| } |
| |
| static int user_add(struct hfi1_devdata *dd) |
| { |
| char name[10]; |
| int ret; |
| |
| snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); |
| ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, |
| &dd->user_cdev, &dd->user_device, |
| true, &dd->kobj); |
| if (ret) |
| user_remove(dd); |
| |
| return ret; |
| } |
| |
| /* |
| * Create per-unit files in /dev |
| */ |
| int hfi1_device_create(struct hfi1_devdata *dd) |
| { |
| return user_add(dd); |
| } |
| |
| /* |
| * Remove per-unit files in /dev |
| * void, core kernel returns no errors for this stuff |
| */ |
| void hfi1_device_remove(struct hfi1_devdata *dd) |
| { |
| user_remove(dd); |
| } |