| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright(c) 2017 Intel Corporation. All rights reserved. |
| * |
| * This code is based in part on work published here: |
| * |
| * https://github.com/IAIK/KAISER |
| * |
| * The original work was written by and and signed off by for the Linux |
| * kernel by: |
| * |
| * Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> |
| * Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> |
| * Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> |
| * Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> |
| * |
| * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com> |
| * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and |
| * Andy Lutomirsky <luto@amacapital.net> |
| */ |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/bug.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/uaccess.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/hypervisor.h> |
| #include <asm/vsyscall.h> |
| #include <asm/cmdline.h> |
| #include <asm/pti.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/desc.h> |
| #include <asm/sections.h> |
| #include <asm/set_memory.h> |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "Kernel/User page tables isolation: " fmt |
| |
| /* Backporting helper */ |
| #ifndef __GFP_NOTRACK |
| #define __GFP_NOTRACK 0 |
| #endif |
| |
| /* |
| * Define the page-table levels we clone for user-space on 32 |
| * and 64 bit. |
| */ |
| #ifdef CONFIG_X86_64 |
| #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PMD |
| #else |
| #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PTE |
| #endif |
| |
| static void __init pti_print_if_insecure(const char *reason) |
| { |
| if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) |
| pr_info("%s\n", reason); |
| } |
| |
| static void __init pti_print_if_secure(const char *reason) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) |
| pr_info("%s\n", reason); |
| } |
| |
| static enum pti_mode { |
| PTI_AUTO = 0, |
| PTI_FORCE_OFF, |
| PTI_FORCE_ON |
| } pti_mode; |
| |
| void __init pti_check_boottime_disable(void) |
| { |
| char arg[5]; |
| int ret; |
| |
| /* Assume mode is auto unless overridden. */ |
| pti_mode = PTI_AUTO; |
| |
| if (hypervisor_is_type(X86_HYPER_XEN_PV)) { |
| pti_mode = PTI_FORCE_OFF; |
| pti_print_if_insecure("disabled on XEN PV."); |
| return; |
| } |
| |
| ret = cmdline_find_option(boot_command_line, "pti", arg, sizeof(arg)); |
| if (ret > 0) { |
| if (ret == 3 && !strncmp(arg, "off", 3)) { |
| pti_mode = PTI_FORCE_OFF; |
| pti_print_if_insecure("disabled on command line."); |
| return; |
| } |
| if (ret == 2 && !strncmp(arg, "on", 2)) { |
| pti_mode = PTI_FORCE_ON; |
| pti_print_if_secure("force enabled on command line."); |
| goto enable; |
| } |
| if (ret == 4 && !strncmp(arg, "auto", 4)) { |
| pti_mode = PTI_AUTO; |
| goto autosel; |
| } |
| } |
| |
| if (cmdline_find_option_bool(boot_command_line, "nopti") || |
| cpu_mitigations_off()) { |
| pti_mode = PTI_FORCE_OFF; |
| pti_print_if_insecure("disabled on command line."); |
| return; |
| } |
| |
| autosel: |
| if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) |
| return; |
| enable: |
| setup_force_cpu_cap(X86_FEATURE_PTI); |
| } |
| |
| pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) |
| { |
| /* |
| * Changes to the high (kernel) portion of the kernelmode page |
| * tables are not automatically propagated to the usermode tables. |
| * |
| * Users should keep in mind that, unlike the kernelmode tables, |
| * there is no vmalloc_fault equivalent for the usermode tables. |
| * Top-level entries added to init_mm's usermode pgd after boot |
| * will not be automatically propagated to other mms. |
| */ |
| if (!pgdp_maps_userspace(pgdp)) |
| return pgd; |
| |
| /* |
| * The user page tables get the full PGD, accessible from |
| * userspace: |
| */ |
| kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd; |
| |
| /* |
| * If this is normal user memory, make it NX in the kernel |
| * pagetables so that, if we somehow screw up and return to |
| * usermode with the kernel CR3 loaded, we'll get a page fault |
| * instead of allowing user code to execute with the wrong CR3. |
| * |
| * As exceptions, we don't set NX if: |
| * - _PAGE_USER is not set. This could be an executable |
| * EFI runtime mapping or something similar, and the kernel |
| * may execute from it |
| * - we don't have NX support |
| * - we're clearing the PGD (i.e. the new pgd is not present). |
| */ |
| if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) && |
| (__supported_pte_mask & _PAGE_NX)) |
| pgd.pgd |= _PAGE_NX; |
| |
| /* return the copy of the PGD we want the kernel to use: */ |
| return pgd; |
| } |
| |
| /* |
| * Walk the user copy of the page tables (optionally) trying to allocate |
| * page table pages on the way down. |
| * |
| * Returns a pointer to a P4D on success, or NULL on failure. |
| */ |
| static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address) |
| { |
| pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address)); |
| gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); |
| |
| if (address < PAGE_OFFSET) { |
| WARN_ONCE(1, "attempt to walk user address\n"); |
| return NULL; |
| } |
| |
| if (pgd_none(*pgd)) { |
| unsigned long new_p4d_page = __get_free_page(gfp); |
| if (WARN_ON_ONCE(!new_p4d_page)) |
| return NULL; |
| |
| set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page))); |
| } |
| BUILD_BUG_ON(pgd_large(*pgd) != 0); |
| |
| return p4d_offset(pgd, address); |
| } |
| |
| /* |
| * Walk the user copy of the page tables (optionally) trying to allocate |
| * page table pages on the way down. |
| * |
| * Returns a pointer to a PMD on success, or NULL on failure. |
| */ |
| static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address) |
| { |
| gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| p4d = pti_user_pagetable_walk_p4d(address); |
| if (!p4d) |
| return NULL; |
| |
| BUILD_BUG_ON(p4d_large(*p4d) != 0); |
| if (p4d_none(*p4d)) { |
| unsigned long new_pud_page = __get_free_page(gfp); |
| if (WARN_ON_ONCE(!new_pud_page)) |
| return NULL; |
| |
| set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page))); |
| } |
| |
| pud = pud_offset(p4d, address); |
| /* The user page tables do not use large mappings: */ |
| if (pud_large(*pud)) { |
| WARN_ON(1); |
| return NULL; |
| } |
| if (pud_none(*pud)) { |
| unsigned long new_pmd_page = __get_free_page(gfp); |
| if (WARN_ON_ONCE(!new_pmd_page)) |
| return NULL; |
| |
| set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page))); |
| } |
| |
| return pmd_offset(pud, address); |
| } |
| |
| /* |
| * Walk the shadow copy of the page tables (optionally) trying to allocate |
| * page table pages on the way down. Does not support large pages. |
| * |
| * Note: this is only used when mapping *new* kernel data into the |
| * user/shadow page tables. It is never used for userspace data. |
| * |
| * Returns a pointer to a PTE on success, or NULL on failure. |
| */ |
| static pte_t *pti_user_pagetable_walk_pte(unsigned long address) |
| { |
| gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pmd = pti_user_pagetable_walk_pmd(address); |
| if (!pmd) |
| return NULL; |
| |
| /* We can't do anything sensible if we hit a large mapping. */ |
| if (pmd_large(*pmd)) { |
| WARN_ON(1); |
| return NULL; |
| } |
| |
| if (pmd_none(*pmd)) { |
| unsigned long new_pte_page = __get_free_page(gfp); |
| if (!new_pte_page) |
| return NULL; |
| |
| set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page))); |
| } |
| |
| pte = pte_offset_kernel(pmd, address); |
| if (pte_flags(*pte) & _PAGE_USER) { |
| WARN_ONCE(1, "attempt to walk to user pte\n"); |
| return NULL; |
| } |
| return pte; |
| } |
| |
| #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| static void __init pti_setup_vsyscall(void) |
| { |
| pte_t *pte, *target_pte; |
| unsigned int level; |
| |
| pte = lookup_address(VSYSCALL_ADDR, &level); |
| if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte)) |
| return; |
| |
| target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR); |
| if (WARN_ON(!target_pte)) |
| return; |
| |
| *target_pte = *pte; |
| set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir)); |
| } |
| #else |
| static void __init pti_setup_vsyscall(void) { } |
| #endif |
| |
| enum pti_clone_level { |
| PTI_CLONE_PMD, |
| PTI_CLONE_PTE, |
| }; |
| |
| static void |
| pti_clone_pgtable(unsigned long start, unsigned long end, |
| enum pti_clone_level level) |
| { |
| unsigned long addr; |
| |
| /* |
| * Clone the populated PMDs which cover start to end. These PMD areas |
| * can have holes. |
| */ |
| for (addr = start; addr < end;) { |
| pte_t *pte, *target_pte; |
| pmd_t *pmd, *target_pmd; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| /* Overflow check */ |
| if (addr < start) |
| break; |
| |
| pgd = pgd_offset_k(addr); |
| if (WARN_ON(pgd_none(*pgd))) |
| return; |
| p4d = p4d_offset(pgd, addr); |
| if (WARN_ON(p4d_none(*p4d))) |
| return; |
| |
| pud = pud_offset(p4d, addr); |
| if (pud_none(*pud)) { |
| WARN_ON_ONCE(addr & ~PUD_MASK); |
| addr = round_up(addr + 1, PUD_SIZE); |
| continue; |
| } |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| WARN_ON_ONCE(addr & ~PMD_MASK); |
| addr = round_up(addr + 1, PMD_SIZE); |
| continue; |
| } |
| |
| if (pmd_large(*pmd) || level == PTI_CLONE_PMD) { |
| target_pmd = pti_user_pagetable_walk_pmd(addr); |
| if (WARN_ON(!target_pmd)) |
| return; |
| |
| /* |
| * Only clone present PMDs. This ensures only setting |
| * _PAGE_GLOBAL on present PMDs. This should only be |
| * called on well-known addresses anyway, so a non- |
| * present PMD would be a surprise. |
| */ |
| if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT))) |
| return; |
| |
| /* |
| * Setting 'target_pmd' below creates a mapping in both |
| * the user and kernel page tables. It is effectively |
| * global, so set it as global in both copies. Note: |
| * the X86_FEATURE_PGE check is not _required_ because |
| * the CPU ignores _PAGE_GLOBAL when PGE is not |
| * supported. The check keeps consistentency with |
| * code that only set this bit when supported. |
| */ |
| if (boot_cpu_has(X86_FEATURE_PGE)) |
| *pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL); |
| |
| /* |
| * Copy the PMD. That is, the kernelmode and usermode |
| * tables will share the last-level page tables of this |
| * address range |
| */ |
| *target_pmd = *pmd; |
| |
| addr += PMD_SIZE; |
| |
| } else if (level == PTI_CLONE_PTE) { |
| |
| /* Walk the page-table down to the pte level */ |
| pte = pte_offset_kernel(pmd, addr); |
| if (pte_none(*pte)) { |
| addr += PAGE_SIZE; |
| continue; |
| } |
| |
| /* Only clone present PTEs */ |
| if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT))) |
| return; |
| |
| /* Allocate PTE in the user page-table */ |
| target_pte = pti_user_pagetable_walk_pte(addr); |
| if (WARN_ON(!target_pte)) |
| return; |
| |
| /* Set GLOBAL bit in both PTEs */ |
| if (boot_cpu_has(X86_FEATURE_PGE)) |
| *pte = pte_set_flags(*pte, _PAGE_GLOBAL); |
| |
| /* Clone the PTE */ |
| *target_pte = *pte; |
| |
| addr += PAGE_SIZE; |
| |
| } else { |
| BUG(); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Clone a single p4d (i.e. a top-level entry on 4-level systems and a |
| * next-level entry on 5-level systems. |
| */ |
| static void __init pti_clone_p4d(unsigned long addr) |
| { |
| p4d_t *kernel_p4d, *user_p4d; |
| pgd_t *kernel_pgd; |
| |
| user_p4d = pti_user_pagetable_walk_p4d(addr); |
| if (!user_p4d) |
| return; |
| |
| kernel_pgd = pgd_offset_k(addr); |
| kernel_p4d = p4d_offset(kernel_pgd, addr); |
| *user_p4d = *kernel_p4d; |
| } |
| |
| /* |
| * Clone the CPU_ENTRY_AREA and associated data into the user space visible |
| * page table. |
| */ |
| static void __init pti_clone_user_shared(void) |
| { |
| unsigned int cpu; |
| |
| pti_clone_p4d(CPU_ENTRY_AREA_BASE); |
| |
| for_each_possible_cpu(cpu) { |
| /* |
| * The SYSCALL64 entry code needs to be able to find the |
| * thread stack and needs one word of scratch space in which |
| * to spill a register. All of this lives in the TSS, in |
| * the sp1 and sp2 slots. |
| * |
| * This is done for all possible CPUs during boot to ensure |
| * that it's propagated to all mms. If we were to add one of |
| * these mappings during CPU hotplug, we would need to take |
| * some measure to make sure that every mm that subsequently |
| * ran on that CPU would have the relevant PGD entry in its |
| * pagetables. The usual vmalloc_fault() mechanism would not |
| * work for page faults taken in entry_SYSCALL_64 before RSP |
| * is set up. |
| */ |
| |
| unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu); |
| phys_addr_t pa = per_cpu_ptr_to_phys((void *)va); |
| pte_t *target_pte; |
| |
| target_pte = pti_user_pagetable_walk_pte(va); |
| if (WARN_ON(!target_pte)) |
| return; |
| |
| *target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL); |
| } |
| } |
| |
| #else /* CONFIG_X86_64 */ |
| |
| /* |
| * On 32 bit PAE systems with 1GB of Kernel address space there is only |
| * one pgd/p4d for the whole kernel. Cloning that would map the whole |
| * address space into the user page-tables, making PTI useless. So clone |
| * the page-table on the PMD level to prevent that. |
| */ |
| static void __init pti_clone_user_shared(void) |
| { |
| unsigned long start, end; |
| |
| start = CPU_ENTRY_AREA_BASE; |
| end = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES); |
| |
| pti_clone_pgtable(start, end, PTI_CLONE_PMD); |
| } |
| #endif /* CONFIG_X86_64 */ |
| |
| /* |
| * Clone the ESPFIX P4D into the user space visible page table |
| */ |
| static void __init pti_setup_espfix64(void) |
| { |
| #ifdef CONFIG_X86_ESPFIX64 |
| pti_clone_p4d(ESPFIX_BASE_ADDR); |
| #endif |
| } |
| |
| /* |
| * Clone the populated PMDs of the entry and irqentry text and force it RO. |
| */ |
| static void pti_clone_entry_text(void) |
| { |
| pti_clone_pgtable((unsigned long) __entry_text_start, |
| (unsigned long) __irqentry_text_end, |
| PTI_CLONE_PMD); |
| } |
| |
| /* |
| * Global pages and PCIDs are both ways to make kernel TLB entries |
| * live longer, reduce TLB misses and improve kernel performance. |
| * But, leaving all kernel text Global makes it potentially accessible |
| * to Meltdown-style attacks which make it trivial to find gadgets or |
| * defeat KASLR. |
| * |
| * Only use global pages when it is really worth it. |
| */ |
| static inline bool pti_kernel_image_global_ok(void) |
| { |
| /* |
| * Systems with PCIDs get litlle benefit from global |
| * kernel text and are not worth the downsides. |
| */ |
| if (cpu_feature_enabled(X86_FEATURE_PCID)) |
| return false; |
| |
| /* |
| * Only do global kernel image for pti=auto. Do the most |
| * secure thing (not global) if pti=on specified. |
| */ |
| if (pti_mode != PTI_AUTO) |
| return false; |
| |
| /* |
| * K8 may not tolerate the cleared _PAGE_RW on the userspace |
| * global kernel image pages. Do the safe thing (disable |
| * global kernel image). This is unlikely to ever be |
| * noticed because PTI is disabled by default on AMD CPUs. |
| */ |
| if (boot_cpu_has(X86_FEATURE_K8)) |
| return false; |
| |
| /* |
| * RANDSTRUCT derives its hardening benefits from the |
| * attacker's lack of knowledge about the layout of kernel |
| * data structures. Keep the kernel image non-global in |
| * cases where RANDSTRUCT is in use to help keep the layout a |
| * secret. |
| */ |
| if (IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * For some configurations, map all of kernel text into the user page |
| * tables. This reduces TLB misses, especially on non-PCID systems. |
| */ |
| static void pti_clone_kernel_text(void) |
| { |
| /* |
| * rodata is part of the kernel image and is normally |
| * readable on the filesystem or on the web. But, do not |
| * clone the areas past rodata, they might contain secrets. |
| */ |
| unsigned long start = PFN_ALIGN(_text); |
| unsigned long end_clone = (unsigned long)__end_rodata_aligned; |
| unsigned long end_global = PFN_ALIGN((unsigned long)_etext); |
| |
| if (!pti_kernel_image_global_ok()) |
| return; |
| |
| pr_debug("mapping partial kernel image into user address space\n"); |
| |
| /* |
| * Note that this will undo _some_ of the work that |
| * pti_set_kernel_image_nonglobal() did to clear the |
| * global bit. |
| */ |
| pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE); |
| |
| /* |
| * pti_clone_pgtable() will set the global bit in any PMDs |
| * that it clones, but we also need to get any PTEs in |
| * the last level for areas that are not huge-page-aligned. |
| */ |
| |
| /* Set the global bit for normal non-__init kernel text: */ |
| set_memory_global(start, (end_global - start) >> PAGE_SHIFT); |
| } |
| |
| static void pti_set_kernel_image_nonglobal(void) |
| { |
| /* |
| * The identity map is created with PMDs, regardless of the |
| * actual length of the kernel. We need to clear |
| * _PAGE_GLOBAL up to a PMD boundary, not just to the end |
| * of the image. |
| */ |
| unsigned long start = PFN_ALIGN(_text); |
| unsigned long end = ALIGN((unsigned long)_end, PMD_PAGE_SIZE); |
| |
| /* |
| * This clears _PAGE_GLOBAL from the entire kernel image. |
| * pti_clone_kernel_text() map put _PAGE_GLOBAL back for |
| * areas that are mapped to userspace. |
| */ |
| set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT); |
| } |
| |
| /* |
| * Initialize kernel page table isolation |
| */ |
| void __init pti_init(void) |
| { |
| if (!boot_cpu_has(X86_FEATURE_PTI)) |
| return; |
| |
| pr_info("enabled\n"); |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * We check for X86_FEATURE_PCID here. But the init-code will |
| * clear the feature flag on 32 bit because the feature is not |
| * supported on 32 bit anyway. To print the warning we need to |
| * check with cpuid directly again. |
| */ |
| if (cpuid_ecx(0x1) & BIT(17)) { |
| /* Use printk to work around pr_fmt() */ |
| printk(KERN_WARNING "\n"); |
| printk(KERN_WARNING "************************************************************\n"); |
| printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); |
| printk(KERN_WARNING "** **\n"); |
| printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n"); |
| printk(KERN_WARNING "** Your performance will increase dramatically if you **\n"); |
| printk(KERN_WARNING "** switch to a 64-bit kernel! **\n"); |
| printk(KERN_WARNING "** **\n"); |
| printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); |
| printk(KERN_WARNING "************************************************************\n"); |
| } |
| #endif |
| |
| pti_clone_user_shared(); |
| |
| /* Undo all global bits from the init pagetables in head_64.S: */ |
| pti_set_kernel_image_nonglobal(); |
| /* Replace some of the global bits just for shared entry text: */ |
| pti_clone_entry_text(); |
| pti_setup_espfix64(); |
| pti_setup_vsyscall(); |
| } |
| |
| /* |
| * Finalize the kernel mappings in the userspace page-table. Some of the |
| * mappings for the kernel image might have changed since pti_init() |
| * cloned them. This is because parts of the kernel image have been |
| * mapped RO and/or NX. These changes need to be cloned again to the |
| * userspace page-table. |
| */ |
| void pti_finalize(void) |
| { |
| if (!boot_cpu_has(X86_FEATURE_PTI)) |
| return; |
| /* |
| * We need to clone everything (again) that maps parts of the |
| * kernel image. |
| */ |
| pti_clone_entry_text(); |
| pti_clone_kernel_text(); |
| |
| debug_checkwx_user(); |
| } |