| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Support for Intel AES-NI instructions. This file contains glue |
| * code, the real AES implementation is in intel-aes_asm.S. |
| * |
| * Copyright (C) 2008, Intel Corp. |
| * Author: Huang Ying <ying.huang@intel.com> |
| * |
| * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD |
| * interface for 64-bit kernels. |
| * Authors: Adrian Hoban <adrian.hoban@intel.com> |
| * Gabriele Paoloni <gabriele.paoloni@intel.com> |
| * Tadeusz Struk (tadeusz.struk@intel.com) |
| * Aidan O'Mahony (aidan.o.mahony@intel.com) |
| * Copyright (c) 2010, Intel Corporation. |
| */ |
| |
| #include <linux/hardirq.h> |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <linux/err.h> |
| #include <crypto/algapi.h> |
| #include <crypto/aes.h> |
| #include <crypto/ctr.h> |
| #include <crypto/b128ops.h> |
| #include <crypto/gcm.h> |
| #include <crypto/xts.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/simd.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/simd.h> |
| #include <crypto/internal/skcipher.h> |
| #include <linux/jump_label.h> |
| #include <linux/workqueue.h> |
| #include <linux/spinlock.h> |
| #include <linux/static_call.h> |
| |
| |
| #define AESNI_ALIGN 16 |
| #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN))) |
| #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1)) |
| #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1)) |
| #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA) |
| #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA) |
| |
| /* This data is stored at the end of the crypto_tfm struct. |
| * It's a type of per "session" data storage location. |
| * This needs to be 16 byte aligned. |
| */ |
| struct aesni_rfc4106_gcm_ctx { |
| u8 hash_subkey[16] AESNI_ALIGN_ATTR; |
| struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR; |
| u8 nonce[4]; |
| }; |
| |
| struct generic_gcmaes_ctx { |
| u8 hash_subkey[16] AESNI_ALIGN_ATTR; |
| struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR; |
| }; |
| |
| struct aesni_xts_ctx { |
| struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR; |
| struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR; |
| }; |
| |
| #define GCM_BLOCK_LEN 16 |
| |
| struct gcm_context_data { |
| /* init, update and finalize context data */ |
| u8 aad_hash[GCM_BLOCK_LEN]; |
| u64 aad_length; |
| u64 in_length; |
| u8 partial_block_enc_key[GCM_BLOCK_LEN]; |
| u8 orig_IV[GCM_BLOCK_LEN]; |
| u8 current_counter[GCM_BLOCK_LEN]; |
| u64 partial_block_len; |
| u64 unused; |
| u8 hash_keys[GCM_BLOCK_LEN * 16]; |
| }; |
| |
| static inline void *aes_align_addr(void *addr) |
| { |
| if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN) |
| return addr; |
| return PTR_ALIGN(addr, AESNI_ALIGN); |
| } |
| |
| asmlinkage void aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key, |
| unsigned int key_len); |
| asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in); |
| asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in); |
| asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len); |
| asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len); |
| asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| |
| #define AVX_GEN2_OPTSIZE 640 |
| #define AVX_GEN4_OPTSIZE 4096 |
| |
| asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| |
| asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| |
| #ifdef CONFIG_X86_64 |
| |
| asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc); |
| |
| /* Scatter / Gather routines, with args similar to above */ |
| asmlinkage void aesni_gcm_init(void *ctx, |
| struct gcm_context_data *gdata, |
| u8 *iv, |
| u8 *hash_subkey, const u8 *aad, |
| unsigned long aad_len); |
| asmlinkage void aesni_gcm_enc_update(void *ctx, |
| struct gcm_context_data *gdata, u8 *out, |
| const u8 *in, unsigned long plaintext_len); |
| asmlinkage void aesni_gcm_dec_update(void *ctx, |
| struct gcm_context_data *gdata, u8 *out, |
| const u8 *in, |
| unsigned long ciphertext_len); |
| asmlinkage void aesni_gcm_finalize(void *ctx, |
| struct gcm_context_data *gdata, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv, |
| void *keys, u8 *out, unsigned int num_bytes); |
| asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv, |
| void *keys, u8 *out, unsigned int num_bytes); |
| asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv, |
| void *keys, u8 *out, unsigned int num_bytes); |
| |
| |
| asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv, |
| const void *keys, u8 *out, unsigned int num_bytes, |
| unsigned int byte_ctr); |
| |
| asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv, |
| const void *keys, u8 *out, unsigned int num_bytes, |
| unsigned int byte_ctr); |
| |
| asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv, |
| const void *keys, u8 *out, unsigned int num_bytes, |
| unsigned int byte_ctr); |
| |
| /* |
| * asmlinkage void aesni_gcm_init_avx_gen2() |
| * gcm_data *my_ctx_data, context data |
| * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. |
| */ |
| asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data, |
| struct gcm_context_data *gdata, |
| u8 *iv, |
| u8 *hash_subkey, |
| const u8 *aad, |
| unsigned long aad_len); |
| |
| asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx, |
| struct gcm_context_data *gdata, u8 *out, |
| const u8 *in, unsigned long plaintext_len); |
| asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx, |
| struct gcm_context_data *gdata, u8 *out, |
| const u8 *in, |
| unsigned long ciphertext_len); |
| asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx, |
| struct gcm_context_data *gdata, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| /* |
| * asmlinkage void aesni_gcm_init_avx_gen4() |
| * gcm_data *my_ctx_data, context data |
| * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. |
| */ |
| asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data, |
| struct gcm_context_data *gdata, |
| u8 *iv, |
| u8 *hash_subkey, |
| const u8 *aad, |
| unsigned long aad_len); |
| |
| asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx, |
| struct gcm_context_data *gdata, u8 *out, |
| const u8 *in, unsigned long plaintext_len); |
| asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx, |
| struct gcm_context_data *gdata, u8 *out, |
| const u8 *in, |
| unsigned long ciphertext_len); |
| asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx, |
| struct gcm_context_data *gdata, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx); |
| static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx2); |
| |
| static inline struct |
| aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm) |
| { |
| return aes_align_addr(crypto_aead_ctx(tfm)); |
| } |
| |
| static inline struct |
| generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm) |
| { |
| return aes_align_addr(crypto_aead_ctx(tfm)); |
| } |
| #endif |
| |
| static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx) |
| { |
| return aes_align_addr(raw_ctx); |
| } |
| |
| static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm) |
| { |
| return aes_align_addr(crypto_skcipher_ctx(tfm)); |
| } |
| |
| static int aes_set_key_common(struct crypto_aes_ctx *ctx, |
| const u8 *in_key, unsigned int key_len) |
| { |
| int err; |
| |
| if (!crypto_simd_usable()) |
| return aes_expandkey(ctx, in_key, key_len); |
| |
| err = aes_check_keylen(key_len); |
| if (err) |
| return err; |
| |
| kernel_fpu_begin(); |
| aesni_set_key(ctx, in_key, key_len); |
| kernel_fpu_end(); |
| return 0; |
| } |
| |
| static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key, |
| key_len); |
| } |
| |
| static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) |
| { |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); |
| |
| if (!crypto_simd_usable()) { |
| aes_encrypt(ctx, dst, src); |
| } else { |
| kernel_fpu_begin(); |
| aesni_enc(ctx, dst, src); |
| kernel_fpu_end(); |
| } |
| } |
| |
| static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) |
| { |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); |
| |
| if (!crypto_simd_usable()) { |
| aes_decrypt(ctx, dst, src); |
| } else { |
| kernel_fpu_begin(); |
| aesni_dec(ctx, dst, src); |
| kernel_fpu_end(); |
| } |
| } |
| |
| static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int len) |
| { |
| return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len); |
| } |
| |
| static int ecb_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes)) { |
| kernel_fpu_begin(); |
| aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK); |
| kernel_fpu_end(); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| return err; |
| } |
| |
| static int ecb_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes)) { |
| kernel_fpu_begin(); |
| aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK); |
| kernel_fpu_end(); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| return err; |
| } |
| |
| static int cbc_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes)) { |
| kernel_fpu_begin(); |
| aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK, walk.iv); |
| kernel_fpu_end(); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| return err; |
| } |
| |
| static int cbc_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes)) { |
| kernel_fpu_begin(); |
| aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK, walk.iv); |
| kernel_fpu_end(); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| return err; |
| } |
| |
| static int cts_cbc_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; |
| struct scatterlist *src = req->src, *dst = req->dst; |
| struct scatterlist sg_src[2], sg_dst[2]; |
| struct skcipher_request subreq; |
| struct skcipher_walk walk; |
| int err; |
| |
| skcipher_request_set_tfm(&subreq, tfm); |
| skcipher_request_set_callback(&subreq, skcipher_request_flags(req), |
| NULL, NULL); |
| |
| if (req->cryptlen <= AES_BLOCK_SIZE) { |
| if (req->cryptlen < AES_BLOCK_SIZE) |
| return -EINVAL; |
| cbc_blocks = 1; |
| } |
| |
| if (cbc_blocks > 0) { |
| skcipher_request_set_crypt(&subreq, req->src, req->dst, |
| cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = cbc_encrypt(&subreq); |
| if (err) |
| return err; |
| |
| if (req->cryptlen == AES_BLOCK_SIZE) |
| return 0; |
| |
| dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); |
| if (req->dst != req->src) |
| dst = scatterwalk_ffwd(sg_dst, req->dst, |
| subreq.cryptlen); |
| } |
| |
| /* handle ciphertext stealing */ |
| skcipher_request_set_crypt(&subreq, src, dst, |
| req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false); |
| if (err) |
| return err; |
| |
| kernel_fpu_begin(); |
| aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| walk.nbytes, walk.iv); |
| kernel_fpu_end(); |
| |
| return skcipher_walk_done(&walk, 0); |
| } |
| |
| static int cts_cbc_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; |
| struct scatterlist *src = req->src, *dst = req->dst; |
| struct scatterlist sg_src[2], sg_dst[2]; |
| struct skcipher_request subreq; |
| struct skcipher_walk walk; |
| int err; |
| |
| skcipher_request_set_tfm(&subreq, tfm); |
| skcipher_request_set_callback(&subreq, skcipher_request_flags(req), |
| NULL, NULL); |
| |
| if (req->cryptlen <= AES_BLOCK_SIZE) { |
| if (req->cryptlen < AES_BLOCK_SIZE) |
| return -EINVAL; |
| cbc_blocks = 1; |
| } |
| |
| if (cbc_blocks > 0) { |
| skcipher_request_set_crypt(&subreq, req->src, req->dst, |
| cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = cbc_decrypt(&subreq); |
| if (err) |
| return err; |
| |
| if (req->cryptlen == AES_BLOCK_SIZE) |
| return 0; |
| |
| dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); |
| if (req->dst != req->src) |
| dst = scatterwalk_ffwd(sg_dst, req->dst, |
| subreq.cryptlen); |
| } |
| |
| /* handle ciphertext stealing */ |
| skcipher_request_set_crypt(&subreq, src, dst, |
| req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false); |
| if (err) |
| return err; |
| |
| kernel_fpu_begin(); |
| aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| walk.nbytes, walk.iv); |
| kernel_fpu_end(); |
| |
| return skcipher_walk_done(&walk, 0); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv) |
| { |
| /* |
| * based on key length, override with the by8 version |
| * of ctr mode encryption/decryption for improved performance |
| * aes_set_key_common() ensures that key length is one of |
| * {128,192,256} |
| */ |
| if (ctx->key_length == AES_KEYSIZE_128) |
| aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len); |
| else if (ctx->key_length == AES_KEYSIZE_192) |
| aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len); |
| else |
| aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len); |
| } |
| |
| static int ctr_crypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| u8 keystream[AES_BLOCK_SIZE]; |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes) > 0) { |
| kernel_fpu_begin(); |
| if (nbytes & AES_BLOCK_MASK) |
| static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr, |
| walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK, |
| walk.iv); |
| nbytes &= ~AES_BLOCK_MASK; |
| |
| if (walk.nbytes == walk.total && nbytes > 0) { |
| aesni_enc(ctx, keystream, walk.iv); |
| crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes, |
| walk.src.virt.addr + walk.nbytes - nbytes, |
| keystream, nbytes); |
| crypto_inc(walk.iv, AES_BLOCK_SIZE); |
| nbytes = 0; |
| } |
| kernel_fpu_end(); |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| return err; |
| } |
| |
| static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv, |
| unsigned int byte_ctr) |
| { |
| if (ctx->key_length == AES_KEYSIZE_128) |
| aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len, |
| byte_ctr); |
| else if (ctx->key_length == AES_KEYSIZE_192) |
| aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len, |
| byte_ctr); |
| else |
| aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len, |
| byte_ctr); |
| } |
| |
| static int xctr_crypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| u8 keystream[AES_BLOCK_SIZE]; |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| unsigned int byte_ctr = 0; |
| int err; |
| __le32 block[AES_BLOCK_SIZE / sizeof(__le32)]; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes) > 0) { |
| kernel_fpu_begin(); |
| if (nbytes & AES_BLOCK_MASK) |
| aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr, |
| walk.src.virt.addr, nbytes & AES_BLOCK_MASK, |
| walk.iv, byte_ctr); |
| nbytes &= ~AES_BLOCK_MASK; |
| byte_ctr += walk.nbytes - nbytes; |
| |
| if (walk.nbytes == walk.total && nbytes > 0) { |
| memcpy(block, walk.iv, AES_BLOCK_SIZE); |
| block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE); |
| aesni_enc(ctx, keystream, (u8 *)block); |
| crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - |
| nbytes, walk.src.virt.addr + walk.nbytes |
| - nbytes, keystream, nbytes); |
| byte_ctr += nbytes; |
| nbytes = 0; |
| } |
| kernel_fpu_end(); |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| return err; |
| } |
| |
| static int aes_gcm_derive_hash_subkey(const struct crypto_aes_ctx *aes_key, |
| u8 hash_subkey[AES_BLOCK_SIZE]) |
| { |
| static const u8 zeroes[AES_BLOCK_SIZE]; |
| |
| aes_encrypt(aes_key, hash_subkey, zeroes); |
| return 0; |
| } |
| |
| static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key, |
| unsigned int key_len) |
| { |
| struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead); |
| |
| if (key_len < 4) |
| return -EINVAL; |
| |
| /*Account for 4 byte nonce at the end.*/ |
| key_len -= 4; |
| |
| memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce)); |
| |
| return aes_set_key_common(&ctx->aes_key_expanded, key, key_len) ?: |
| aes_gcm_derive_hash_subkey(&ctx->aes_key_expanded, |
| ctx->hash_subkey); |
| } |
| |
| /* This is the Integrity Check Value (aka the authentication tag) length and can |
| * be 8, 12 or 16 bytes long. */ |
| static int common_rfc4106_set_authsize(struct crypto_aead *aead, |
| unsigned int authsize) |
| { |
| switch (authsize) { |
| case 8: |
| case 12: |
| case 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int generic_gcmaes_set_authsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| switch (authsize) { |
| case 4: |
| case 8: |
| case 12: |
| case 13: |
| case 14: |
| case 15: |
| case 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, |
| unsigned int assoclen, u8 *hash_subkey, |
| u8 *iv, void *aes_ctx, u8 *auth_tag, |
| unsigned long auth_tag_len) |
| { |
| u8 databuf[sizeof(struct gcm_context_data) + (AESNI_ALIGN - 8)] __aligned(8); |
| struct gcm_context_data *data = PTR_ALIGN((void *)databuf, AESNI_ALIGN); |
| unsigned long left = req->cryptlen; |
| struct scatter_walk assoc_sg_walk; |
| struct skcipher_walk walk; |
| bool do_avx, do_avx2; |
| u8 *assocmem = NULL; |
| u8 *assoc; |
| int err; |
| |
| if (!enc) |
| left -= auth_tag_len; |
| |
| do_avx = (left >= AVX_GEN2_OPTSIZE); |
| do_avx2 = (left >= AVX_GEN4_OPTSIZE); |
| |
| /* Linearize assoc, if not already linear */ |
| if (req->src->length >= assoclen && req->src->length) { |
| scatterwalk_start(&assoc_sg_walk, req->src); |
| assoc = scatterwalk_map(&assoc_sg_walk); |
| } else { |
| gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC; |
| |
| /* assoc can be any length, so must be on heap */ |
| assocmem = kmalloc(assoclen, flags); |
| if (unlikely(!assocmem)) |
| return -ENOMEM; |
| assoc = assocmem; |
| |
| scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0); |
| } |
| |
| kernel_fpu_begin(); |
| if (static_branch_likely(&gcm_use_avx2) && do_avx2) |
| aesni_gcm_init_avx_gen4(aes_ctx, data, iv, hash_subkey, assoc, |
| assoclen); |
| else if (static_branch_likely(&gcm_use_avx) && do_avx) |
| aesni_gcm_init_avx_gen2(aes_ctx, data, iv, hash_subkey, assoc, |
| assoclen); |
| else |
| aesni_gcm_init(aes_ctx, data, iv, hash_subkey, assoc, assoclen); |
| kernel_fpu_end(); |
| |
| if (!assocmem) |
| scatterwalk_unmap(assoc); |
| else |
| kfree(assocmem); |
| |
| err = enc ? skcipher_walk_aead_encrypt(&walk, req, false) |
| : skcipher_walk_aead_decrypt(&walk, req, false); |
| |
| while (walk.nbytes > 0) { |
| kernel_fpu_begin(); |
| if (static_branch_likely(&gcm_use_avx2) && do_avx2) { |
| if (enc) |
| aesni_gcm_enc_update_avx_gen4(aes_ctx, data, |
| walk.dst.virt.addr, |
| walk.src.virt.addr, |
| walk.nbytes); |
| else |
| aesni_gcm_dec_update_avx_gen4(aes_ctx, data, |
| walk.dst.virt.addr, |
| walk.src.virt.addr, |
| walk.nbytes); |
| } else if (static_branch_likely(&gcm_use_avx) && do_avx) { |
| if (enc) |
| aesni_gcm_enc_update_avx_gen2(aes_ctx, data, |
| walk.dst.virt.addr, |
| walk.src.virt.addr, |
| walk.nbytes); |
| else |
| aesni_gcm_dec_update_avx_gen2(aes_ctx, data, |
| walk.dst.virt.addr, |
| walk.src.virt.addr, |
| walk.nbytes); |
| } else if (enc) { |
| aesni_gcm_enc_update(aes_ctx, data, walk.dst.virt.addr, |
| walk.src.virt.addr, walk.nbytes); |
| } else { |
| aesni_gcm_dec_update(aes_ctx, data, walk.dst.virt.addr, |
| walk.src.virt.addr, walk.nbytes); |
| } |
| kernel_fpu_end(); |
| |
| err = skcipher_walk_done(&walk, 0); |
| } |
| |
| if (err) |
| return err; |
| |
| kernel_fpu_begin(); |
| if (static_branch_likely(&gcm_use_avx2) && do_avx2) |
| aesni_gcm_finalize_avx_gen4(aes_ctx, data, auth_tag, |
| auth_tag_len); |
| else if (static_branch_likely(&gcm_use_avx) && do_avx) |
| aesni_gcm_finalize_avx_gen2(aes_ctx, data, auth_tag, |
| auth_tag_len); |
| else |
| aesni_gcm_finalize(aes_ctx, data, auth_tag, auth_tag_len); |
| kernel_fpu_end(); |
| |
| return 0; |
| } |
| |
| static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen, |
| u8 *hash_subkey, u8 *iv, void *aes_ctx) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| unsigned long auth_tag_len = crypto_aead_authsize(tfm); |
| u8 auth_tag[16]; |
| int err; |
| |
| err = gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, aes_ctx, |
| auth_tag, auth_tag_len); |
| if (err) |
| return err; |
| |
| scatterwalk_map_and_copy(auth_tag, req->dst, |
| req->assoclen + req->cryptlen, |
| auth_tag_len, 1); |
| return 0; |
| } |
| |
| static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen, |
| u8 *hash_subkey, u8 *iv, void *aes_ctx) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| unsigned long auth_tag_len = crypto_aead_authsize(tfm); |
| u8 auth_tag_msg[16]; |
| u8 auth_tag[16]; |
| int err; |
| |
| err = gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, aes_ctx, |
| auth_tag, auth_tag_len); |
| if (err) |
| return err; |
| |
| /* Copy out original auth_tag */ |
| scatterwalk_map_and_copy(auth_tag_msg, req->src, |
| req->assoclen + req->cryptlen - auth_tag_len, |
| auth_tag_len, 0); |
| |
| /* Compare generated tag with passed in tag. */ |
| if (crypto_memneq(auth_tag_msg, auth_tag, auth_tag_len)) { |
| memzero_explicit(auth_tag, sizeof(auth_tag)); |
| return -EBADMSG; |
| } |
| return 0; |
| } |
| |
| static int helper_rfc4106_encrypt(struct aead_request *req) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); |
| void *aes_ctx = &(ctx->aes_key_expanded); |
| u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); |
| u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); |
| unsigned int i; |
| __be32 counter = cpu_to_be32(1); |
| |
| /* Assuming we are supporting rfc4106 64-bit extended */ |
| /* sequence numbers We need to have the AAD length equal */ |
| /* to 16 or 20 bytes */ |
| if (unlikely(req->assoclen != 16 && req->assoclen != 20)) |
| return -EINVAL; |
| |
| /* IV below built */ |
| for (i = 0; i < 4; i++) |
| *(iv+i) = ctx->nonce[i]; |
| for (i = 0; i < 8; i++) |
| *(iv+4+i) = req->iv[i]; |
| *((__be32 *)(iv+12)) = counter; |
| |
| return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv, |
| aes_ctx); |
| } |
| |
| static int helper_rfc4106_decrypt(struct aead_request *req) |
| { |
| __be32 counter = cpu_to_be32(1); |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); |
| void *aes_ctx = &(ctx->aes_key_expanded); |
| u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); |
| u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); |
| unsigned int i; |
| |
| if (unlikely(req->assoclen != 16 && req->assoclen != 20)) |
| return -EINVAL; |
| |
| /* Assuming we are supporting rfc4106 64-bit extended */ |
| /* sequence numbers We need to have the AAD length */ |
| /* equal to 16 or 20 bytes */ |
| |
| /* IV below built */ |
| for (i = 0; i < 4; i++) |
| *(iv+i) = ctx->nonce[i]; |
| for (i = 0; i < 8; i++) |
| *(iv+4+i) = req->iv[i]; |
| *((__be32 *)(iv+12)) = counter; |
| |
| return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv, |
| aes_ctx); |
| } |
| #endif |
| |
| static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm); |
| int err; |
| |
| err = xts_verify_key(tfm, key, keylen); |
| if (err) |
| return err; |
| |
| keylen /= 2; |
| |
| /* first half of xts-key is for crypt */ |
| err = aes_set_key_common(&ctx->crypt_ctx, key, keylen); |
| if (err) |
| return err; |
| |
| /* second half of xts-key is for tweak */ |
| return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen); |
| } |
| |
| typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key, |
| u8 iv[AES_BLOCK_SIZE]); |
| typedef void (*xts_crypt_func)(const struct crypto_aes_ctx *key, |
| const u8 *src, u8 *dst, unsigned int len, |
| u8 tweak[AES_BLOCK_SIZE]); |
| |
| /* This handles cases where the source and/or destination span pages. */ |
| static noinline int |
| xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm); |
| int tail = req->cryptlen % AES_BLOCK_SIZE; |
| struct scatterlist sg_src[2], sg_dst[2]; |
| struct skcipher_request subreq; |
| struct skcipher_walk walk; |
| struct scatterlist *src, *dst; |
| int err; |
| |
| /* |
| * If the message length isn't divisible by the AES block size, then |
| * separate off the last full block and the partial block. This ensures |
| * that they are processed in the same call to the assembly function, |
| * which is required for ciphertext stealing. |
| */ |
| if (tail) { |
| skcipher_request_set_tfm(&subreq, tfm); |
| skcipher_request_set_callback(&subreq, |
| skcipher_request_flags(req), |
| NULL, NULL); |
| skcipher_request_set_crypt(&subreq, req->src, req->dst, |
| req->cryptlen - tail - AES_BLOCK_SIZE, |
| req->iv); |
| req = &subreq; |
| } |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while (walk.nbytes) { |
| kernel_fpu_begin(); |
| (*crypt_func)(&ctx->crypt_ctx, |
| walk.src.virt.addr, walk.dst.virt.addr, |
| walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv); |
| kernel_fpu_end(); |
| err = skcipher_walk_done(&walk, |
| walk.nbytes & (AES_BLOCK_SIZE - 1)); |
| } |
| |
| if (err || !tail) |
| return err; |
| |
| /* Do ciphertext stealing with the last full block and partial block. */ |
| |
| dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); |
| if (req->dst != req->src) |
| dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); |
| |
| skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| if (err) |
| return err; |
| |
| kernel_fpu_begin(); |
| (*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr, |
| walk.nbytes, req->iv); |
| kernel_fpu_end(); |
| |
| return skcipher_walk_done(&walk, 0); |
| } |
| |
| /* __always_inline to avoid indirect call in fastpath */ |
| static __always_inline int |
| xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv, |
| xts_crypt_func crypt_func) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm); |
| const unsigned int cryptlen = req->cryptlen; |
| struct scatterlist *src = req->src; |
| struct scatterlist *dst = req->dst; |
| |
| if (unlikely(cryptlen < AES_BLOCK_SIZE)) |
| return -EINVAL; |
| |
| kernel_fpu_begin(); |
| (*encrypt_iv)(&ctx->tweak_ctx, req->iv); |
| |
| /* |
| * In practice, virtually all XTS plaintexts and ciphertexts are either |
| * 512 or 4096 bytes, aligned such that they don't span page boundaries. |
| * To optimize the performance of these cases, and also any other case |
| * where no page boundary is spanned, the below fast-path handles |
| * single-page sources and destinations as efficiently as possible. |
| */ |
| if (likely(src->length >= cryptlen && dst->length >= cryptlen && |
| src->offset + cryptlen <= PAGE_SIZE && |
| dst->offset + cryptlen <= PAGE_SIZE)) { |
| struct page *src_page = sg_page(src); |
| struct page *dst_page = sg_page(dst); |
| void *src_virt = kmap_local_page(src_page) + src->offset; |
| void *dst_virt = kmap_local_page(dst_page) + dst->offset; |
| |
| (*crypt_func)(&ctx->crypt_ctx, src_virt, dst_virt, cryptlen, |
| req->iv); |
| kunmap_local(dst_virt); |
| kunmap_local(src_virt); |
| kernel_fpu_end(); |
| return 0; |
| } |
| kernel_fpu_end(); |
| return xts_crypt_slowpath(req, crypt_func); |
| } |
| |
| static void aesni_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key, |
| u8 iv[AES_BLOCK_SIZE]) |
| { |
| aesni_enc(tweak_key, iv, iv); |
| } |
| |
| static void aesni_xts_encrypt(const struct crypto_aes_ctx *key, |
| const u8 *src, u8 *dst, unsigned int len, |
| u8 tweak[AES_BLOCK_SIZE]) |
| { |
| aesni_xts_enc(key, dst, src, len, tweak); |
| } |
| |
| static void aesni_xts_decrypt(const struct crypto_aes_ctx *key, |
| const u8 *src, u8 *dst, unsigned int len, |
| u8 tweak[AES_BLOCK_SIZE]) |
| { |
| aesni_xts_dec(key, dst, src, len, tweak); |
| } |
| |
| static int xts_encrypt_aesni(struct skcipher_request *req) |
| { |
| return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt); |
| } |
| |
| static int xts_decrypt_aesni(struct skcipher_request *req) |
| { |
| return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt); |
| } |
| |
| static struct crypto_alg aesni_cipher_alg = { |
| .cra_name = "aes", |
| .cra_driver_name = "aes-aesni", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| .cra_u = { |
| .cipher = { |
| .cia_min_keysize = AES_MIN_KEY_SIZE, |
| .cia_max_keysize = AES_MAX_KEY_SIZE, |
| .cia_setkey = aes_set_key, |
| .cia_encrypt = aesni_encrypt, |
| .cia_decrypt = aesni_decrypt |
| } |
| } |
| }; |
| |
| static struct skcipher_alg aesni_skciphers[] = { |
| { |
| .base = { |
| .cra_name = "__ecb(aes)", |
| .cra_driver_name = "__ecb-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = ecb_encrypt, |
| .decrypt = ecb_decrypt, |
| }, { |
| .base = { |
| .cra_name = "__cbc(aes)", |
| .cra_driver_name = "__cbc-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = cbc_encrypt, |
| .decrypt = cbc_decrypt, |
| }, { |
| .base = { |
| .cra_name = "__cts(cbc(aes))", |
| .cra_driver_name = "__cts-cbc-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .walksize = 2 * AES_BLOCK_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = cts_cbc_encrypt, |
| .decrypt = cts_cbc_decrypt, |
| #ifdef CONFIG_X86_64 |
| }, { |
| .base = { |
| .cra_name = "__ctr(aes)", |
| .cra_driver_name = "__ctr-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = 1, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .chunksize = AES_BLOCK_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = ctr_crypt, |
| .decrypt = ctr_crypt, |
| #endif |
| }, { |
| .base = { |
| .cra_name = "__xts(aes)", |
| .cra_driver_name = "__xts-aes-aesni", |
| .cra_priority = 401, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = XTS_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = 2 * AES_MIN_KEY_SIZE, |
| .max_keysize = 2 * AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .walksize = 2 * AES_BLOCK_SIZE, |
| .setkey = xts_setkey_aesni, |
| .encrypt = xts_encrypt_aesni, |
| .decrypt = xts_decrypt_aesni, |
| } |
| }; |
| |
| static |
| struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)]; |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * XCTR does not have a non-AVX implementation, so it must be enabled |
| * conditionally. |
| */ |
| static struct skcipher_alg aesni_xctr = { |
| .base = { |
| .cra_name = "__xctr(aes)", |
| .cra_driver_name = "__xctr-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = 1, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .chunksize = AES_BLOCK_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = xctr_crypt, |
| .decrypt = xctr_crypt, |
| }; |
| |
| static struct simd_skcipher_alg *aesni_simd_xctr; |
| |
| asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key, |
| u8 iv[AES_BLOCK_SIZE]); |
| |
| #define DEFINE_XTS_ALG(suffix, driver_name, priority) \ |
| \ |
| asmlinkage void \ |
| aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src, \ |
| u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \ |
| asmlinkage void \ |
| aes_xts_decrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src, \ |
| u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \ |
| \ |
| static int xts_encrypt_##suffix(struct skcipher_request *req) \ |
| { \ |
| return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_encrypt_##suffix); \ |
| } \ |
| \ |
| static int xts_decrypt_##suffix(struct skcipher_request *req) \ |
| { \ |
| return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix); \ |
| } \ |
| \ |
| static struct skcipher_alg aes_xts_alg_##suffix = { \ |
| .base = { \ |
| .cra_name = "__xts(aes)", \ |
| .cra_driver_name = "__" driver_name, \ |
| .cra_priority = priority, \ |
| .cra_flags = CRYPTO_ALG_INTERNAL, \ |
| .cra_blocksize = AES_BLOCK_SIZE, \ |
| .cra_ctxsize = XTS_AES_CTX_SIZE, \ |
| .cra_module = THIS_MODULE, \ |
| }, \ |
| .min_keysize = 2 * AES_MIN_KEY_SIZE, \ |
| .max_keysize = 2 * AES_MAX_KEY_SIZE, \ |
| .ivsize = AES_BLOCK_SIZE, \ |
| .walksize = 2 * AES_BLOCK_SIZE, \ |
| .setkey = xts_setkey_aesni, \ |
| .encrypt = xts_encrypt_##suffix, \ |
| .decrypt = xts_decrypt_##suffix, \ |
| }; \ |
| \ |
| static struct simd_skcipher_alg *aes_xts_simdalg_##suffix |
| |
| DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500); |
| #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ) |
| DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600); |
| DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700); |
| DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800); |
| #endif |
| |
| /* |
| * This is a list of CPU models that are known to suffer from downclocking when |
| * zmm registers (512-bit vectors) are used. On these CPUs, the AES-XTS |
| * implementation with zmm registers won't be used by default. An |
| * implementation with ymm registers (256-bit vectors) will be used instead. |
| */ |
| static const struct x86_cpu_id zmm_exclusion_list[] = { |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_SKYLAKE_X }, |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_X }, |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_D }, |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE }, |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_L }, |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_NNPI }, |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE_L }, |
| { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE }, |
| /* Allow Rocket Lake and later, and Sapphire Rapids and later. */ |
| /* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */ |
| {}, |
| }; |
| |
| static int __init register_xts_algs(void) |
| { |
| int err; |
| |
| if (!boot_cpu_has(X86_FEATURE_AVX)) |
| return 0; |
| err = simd_register_skciphers_compat(&aes_xts_alg_aesni_avx, 1, |
| &aes_xts_simdalg_aesni_avx); |
| if (err) |
| return err; |
| #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ) |
| if (!boot_cpu_has(X86_FEATURE_AVX2) || |
| !boot_cpu_has(X86_FEATURE_VAES) || |
| !boot_cpu_has(X86_FEATURE_VPCLMULQDQ) || |
| !boot_cpu_has(X86_FEATURE_PCLMULQDQ) || |
| !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) |
| return 0; |
| err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx2, 1, |
| &aes_xts_simdalg_vaes_avx2); |
| if (err) |
| return err; |
| |
| if (!boot_cpu_has(X86_FEATURE_AVX512BW) || |
| !boot_cpu_has(X86_FEATURE_AVX512VL) || |
| !boot_cpu_has(X86_FEATURE_BMI2) || |
| !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM | |
| XFEATURE_MASK_AVX512, NULL)) |
| return 0; |
| |
| err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1, |
| &aes_xts_simdalg_vaes_avx10_256); |
| if (err) |
| return err; |
| |
| if (x86_match_cpu(zmm_exclusion_list)) |
| aes_xts_alg_vaes_avx10_512.base.cra_priority = 1; |
| |
| err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1, |
| &aes_xts_simdalg_vaes_avx10_512); |
| if (err) |
| return err; |
| #endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */ |
| return 0; |
| } |
| |
| static void unregister_xts_algs(void) |
| { |
| if (aes_xts_simdalg_aesni_avx) |
| simd_unregister_skciphers(&aes_xts_alg_aesni_avx, 1, |
| &aes_xts_simdalg_aesni_avx); |
| #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ) |
| if (aes_xts_simdalg_vaes_avx2) |
| simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1, |
| &aes_xts_simdalg_vaes_avx2); |
| if (aes_xts_simdalg_vaes_avx10_256) |
| simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1, |
| &aes_xts_simdalg_vaes_avx10_256); |
| if (aes_xts_simdalg_vaes_avx10_512) |
| simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1, |
| &aes_xts_simdalg_vaes_avx10_512); |
| #endif |
| } |
| #else /* CONFIG_X86_64 */ |
| static int __init register_xts_algs(void) |
| { |
| return 0; |
| } |
| |
| static void unregister_xts_algs(void) |
| { |
| } |
| #endif /* !CONFIG_X86_64 */ |
| |
| #ifdef CONFIG_X86_64 |
| static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key, |
| unsigned int key_len) |
| { |
| struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead); |
| |
| return aes_set_key_common(&ctx->aes_key_expanded, key, key_len) ?: |
| aes_gcm_derive_hash_subkey(&ctx->aes_key_expanded, |
| ctx->hash_subkey); |
| } |
| |
| static int generic_gcmaes_encrypt(struct aead_request *req) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm); |
| void *aes_ctx = &(ctx->aes_key_expanded); |
| u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); |
| u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); |
| __be32 counter = cpu_to_be32(1); |
| |
| memcpy(iv, req->iv, 12); |
| *((__be32 *)(iv+12)) = counter; |
| |
| return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv, |
| aes_ctx); |
| } |
| |
| static int generic_gcmaes_decrypt(struct aead_request *req) |
| { |
| __be32 counter = cpu_to_be32(1); |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm); |
| void *aes_ctx = &(ctx->aes_key_expanded); |
| u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); |
| u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); |
| |
| memcpy(iv, req->iv, 12); |
| *((__be32 *)(iv+12)) = counter; |
| |
| return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv, |
| aes_ctx); |
| } |
| |
| static struct aead_alg aesni_aeads[] = { { |
| .setkey = common_rfc4106_set_key, |
| .setauthsize = common_rfc4106_set_authsize, |
| .encrypt = helper_rfc4106_encrypt, |
| .decrypt = helper_rfc4106_decrypt, |
| .ivsize = GCM_RFC4106_IV_SIZE, |
| .maxauthsize = 16, |
| .base = { |
| .cra_name = "__rfc4106(gcm(aes))", |
| .cra_driver_name = "__rfc4106-gcm-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| }, { |
| .setkey = generic_gcmaes_set_key, |
| .setauthsize = generic_gcmaes_set_authsize, |
| .encrypt = generic_gcmaes_encrypt, |
| .decrypt = generic_gcmaes_decrypt, |
| .ivsize = GCM_AES_IV_SIZE, |
| .maxauthsize = 16, |
| .base = { |
| .cra_name = "__gcm(aes)", |
| .cra_driver_name = "__generic-gcm-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct generic_gcmaes_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| } }; |
| #else |
| static struct aead_alg aesni_aeads[0]; |
| #endif |
| |
| static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)]; |
| |
| static const struct x86_cpu_id aesni_cpu_id[] = { |
| X86_MATCH_FEATURE(X86_FEATURE_AES, NULL), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id); |
| |
| static int __init aesni_init(void) |
| { |
| int err; |
| |
| if (!x86_match_cpu(aesni_cpu_id)) |
| return -ENODEV; |
| #ifdef CONFIG_X86_64 |
| if (boot_cpu_has(X86_FEATURE_AVX2)) { |
| pr_info("AVX2 version of gcm_enc/dec engaged.\n"); |
| static_branch_enable(&gcm_use_avx); |
| static_branch_enable(&gcm_use_avx2); |
| } else |
| if (boot_cpu_has(X86_FEATURE_AVX)) { |
| pr_info("AVX version of gcm_enc/dec engaged.\n"); |
| static_branch_enable(&gcm_use_avx); |
| } else { |
| pr_info("SSE version of gcm_enc/dec engaged.\n"); |
| } |
| if (boot_cpu_has(X86_FEATURE_AVX)) { |
| /* optimize performance of ctr mode encryption transform */ |
| static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm); |
| pr_info("AES CTR mode by8 optimization enabled\n"); |
| } |
| #endif /* CONFIG_X86_64 */ |
| |
| err = crypto_register_alg(&aesni_cipher_alg); |
| if (err) |
| return err; |
| |
| err = simd_register_skciphers_compat(aesni_skciphers, |
| ARRAY_SIZE(aesni_skciphers), |
| aesni_simd_skciphers); |
| if (err) |
| goto unregister_cipher; |
| |
| err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads), |
| aesni_simd_aeads); |
| if (err) |
| goto unregister_skciphers; |
| |
| #ifdef CONFIG_X86_64 |
| if (boot_cpu_has(X86_FEATURE_AVX)) |
| err = simd_register_skciphers_compat(&aesni_xctr, 1, |
| &aesni_simd_xctr); |
| if (err) |
| goto unregister_aeads; |
| #endif /* CONFIG_X86_64 */ |
| |
| err = register_xts_algs(); |
| if (err) |
| goto unregister_xts; |
| |
| return 0; |
| |
| unregister_xts: |
| unregister_xts_algs(); |
| #ifdef CONFIG_X86_64 |
| if (aesni_simd_xctr) |
| simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr); |
| unregister_aeads: |
| #endif /* CONFIG_X86_64 */ |
| simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads), |
| aesni_simd_aeads); |
| |
| unregister_skciphers: |
| simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers), |
| aesni_simd_skciphers); |
| unregister_cipher: |
| crypto_unregister_alg(&aesni_cipher_alg); |
| return err; |
| } |
| |
| static void __exit aesni_exit(void) |
| { |
| simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads), |
| aesni_simd_aeads); |
| simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers), |
| aesni_simd_skciphers); |
| crypto_unregister_alg(&aesni_cipher_alg); |
| #ifdef CONFIG_X86_64 |
| if (boot_cpu_has(X86_FEATURE_AVX)) |
| simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr); |
| #endif /* CONFIG_X86_64 */ |
| unregister_xts_algs(); |
| } |
| |
| late_initcall(aesni_init); |
| module_exit(aesni_exit); |
| |
| MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS_CRYPTO("aes"); |