blob: a7947a16c86e819989d10f2538c9455164e8b416 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/include/asm/kvm_host.h:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__
#include <linux/arm-smccc.h>
#include <linux/bitmap.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/kvm_types.h>
#include <linux/maple_tree.h>
#include <linux/percpu.h>
#include <linux/psci.h>
#include <asm/arch_gicv3.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/daifflags.h>
#include <asm/fpsimd.h>
#include <asm/kvm.h>
#include <asm/kvm_asm.h>
#include <asm/vncr_mapping.h>
#define __KVM_HAVE_ARCH_INTC_INITIALIZED
#define KVM_HALT_POLL_NS_DEFAULT 500000
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
#include <kvm/arm_pmu.h>
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
#define KVM_VCPU_MAX_FEATURES 7
#define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
#define KVM_REQ_SLEEP \
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
#define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
#define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
#define KVM_REQ_SUSPEND KVM_ARCH_REQ(6)
#define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7)
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
KVM_DIRTY_LOG_INITIALLY_SET)
#define KVM_HAVE_MMU_RWLOCK
/*
* Mode of operation configurable with kvm-arm.mode early param.
* See Documentation/admin-guide/kernel-parameters.txt for more information.
*/
enum kvm_mode {
KVM_MODE_DEFAULT,
KVM_MODE_PROTECTED,
KVM_MODE_NV,
KVM_MODE_NONE,
};
#ifdef CONFIG_KVM
enum kvm_mode kvm_get_mode(void);
#else
static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
#endif
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
extern unsigned int __ro_after_init kvm_sve_max_vl;
int __init kvm_arm_init_sve(void);
u32 __attribute_const__ kvm_target_cpu(void);
void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
struct kvm_hyp_memcache {
phys_addr_t head;
unsigned long nr_pages;
};
static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
phys_addr_t *p,
phys_addr_t (*to_pa)(void *virt))
{
*p = mc->head;
mc->head = to_pa(p);
mc->nr_pages++;
}
static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
void *(*to_va)(phys_addr_t phys))
{
phys_addr_t *p = to_va(mc->head);
if (!mc->nr_pages)
return NULL;
mc->head = *p;
mc->nr_pages--;
return p;
}
static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
unsigned long min_pages,
void *(*alloc_fn)(void *arg),
phys_addr_t (*to_pa)(void *virt),
void *arg)
{
while (mc->nr_pages < min_pages) {
phys_addr_t *p = alloc_fn(arg);
if (!p)
return -ENOMEM;
push_hyp_memcache(mc, p, to_pa);
}
return 0;
}
static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
void (*free_fn)(void *virt, void *arg),
void *(*to_va)(phys_addr_t phys),
void *arg)
{
while (mc->nr_pages)
free_fn(pop_hyp_memcache(mc, to_va), arg);
}
void free_hyp_memcache(struct kvm_hyp_memcache *mc);
int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
struct kvm_vmid {
atomic64_t id;
};
struct kvm_s2_mmu {
struct kvm_vmid vmid;
/*
* stage2 entry level table
*
* Two kvm_s2_mmu structures in the same VM can point to the same
* pgd here. This happens when running a guest using a
* translation regime that isn't affected by its own stage-2
* translation, such as a non-VHE hypervisor running at vEL2, or
* for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
* canonical stage-2 page tables.
*/
phys_addr_t pgd_phys;
struct kvm_pgtable *pgt;
/*
* VTCR value used on the host. For a non-NV guest (or a NV
* guest that runs in a context where its own S2 doesn't
* apply), its T0SZ value reflects that of the IPA size.
*
* For a shadow S2 MMU, T0SZ reflects the PARange exposed to
* the guest.
*/
u64 vtcr;
/* The last vcpu id that ran on each physical CPU */
int __percpu *last_vcpu_ran;
#define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
/*
* Memory cache used to split
* KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
* is used to allocate stage2 page tables while splitting huge
* pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
* influences both the capacity of the split page cache, and
* how often KVM reschedules. Be wary of raising CHUNK_SIZE
* too high.
*
* Protected by kvm->slots_lock.
*/
struct kvm_mmu_memory_cache split_page_cache;
uint64_t split_page_chunk_size;
struct kvm_arch *arch;
};
struct kvm_arch_memory_slot {
};
/**
* struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
*
* @std_bmap: Bitmap of standard secure service calls
* @std_hyp_bmap: Bitmap of standard hypervisor service calls
* @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
*/
struct kvm_smccc_features {
unsigned long std_bmap;
unsigned long std_hyp_bmap;
unsigned long vendor_hyp_bmap;
};
struct kvm_guest_page {
struct rb_node node;
struct page *page;
u64 ipa;
bool is_pinned;
};
typedef unsigned int pkvm_handle_t;
struct kvm_protected_vm {
pkvm_handle_t handle;
struct kvm_hyp_memcache teardown_mc;
struct rb_root pinned_pages;
bool enabled;
/* Protects VM-scoped pKVM data. */
struct mutex lock;
};
struct kvm_mpidr_data {
u64 mpidr_mask;
DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
};
static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
{
unsigned long mask = data->mpidr_mask;
u64 aff = mpidr & MPIDR_HWID_BITMASK;
int nbits, bit, bit_idx = 0;
u16 index = 0;
/*
* If this looks like RISC-V's BEXT or x86's PEXT
* instructions, it isn't by accident.
*/
nbits = fls(mask);
for_each_set_bit(bit, &mask, nbits) {
index |= (aff & BIT(bit)) >> (bit - bit_idx);
bit_idx++;
}
return index;
}
struct kvm_arch {
struct kvm_s2_mmu mmu;
/* Interrupt controller */
struct vgic_dist vgic;
/* Timers */
struct arch_timer_vm_data timer_data;
/* Mandated version of PSCI */
u32 psci_version;
/* Protects VM-scoped configuration data */
struct mutex config_lock;
/*
* If we encounter a data abort without valid instruction syndrome
* information, report this to user space. User space can (and
* should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
* supported.
*/
#define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0
/* Memory Tagging Extension enabled for the guest */
#define KVM_ARCH_FLAG_MTE_ENABLED 1
/* At least one vCPU has ran in the VM */
#define KVM_ARCH_FLAG_HAS_RAN_ONCE 2
/* The vCPU feature set for the VM is configured */
#define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3
/* PSCI SYSTEM_SUSPEND enabled for the guest */
#define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4
/* VM counter offset */
#define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5
/* Timer PPIs made immutable */
#define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6
/* Initial ID reg values loaded */
#define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 7
unsigned long flags;
/* VM-wide vCPU feature set */
DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
/* MPIDR to vcpu index mapping, optional */
struct kvm_mpidr_data *mpidr_data;
/*
* VM-wide PMU filter, implemented as a bitmap and big enough for
* up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
*/
unsigned long *pmu_filter;
struct arm_pmu *arm_pmu;
cpumask_var_t supported_cpus;
/* PMCR_EL0.N value for the guest */
u8 pmcr_n;
/* Hypercall features firmware registers' descriptor */
struct kvm_smccc_features smccc_feat;
struct maple_tree smccc_filter;
/*
* Emulated CPU ID registers per VM
* (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
* is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
*
* These emulated idregs are VM-wide, but accessed from the context of a vCPU.
* Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
*/
#define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
#define IDX_IDREG(idx) sys_reg(3, 0, 0, ((idx) >> 3) + 1, (idx) & Op2_mask)
#define IDREG(kvm, id) ((kvm)->arch.id_regs[IDREG_IDX(id)])
#define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
u64 id_regs[KVM_ARM_ID_REG_NUM];
/*
* For an untrusted host VM, 'pkvm.handle' is used to lookup
* the associated pKVM instance in the hypervisor.
*/
struct kvm_protected_vm pkvm;
u64 hypercall_exit_enabled;
};
struct kvm_vcpu_fault_info {
u64 esr_el2; /* Hyp Syndrom Register */
u64 far_el2; /* Hyp Fault Address Register */
u64 hpfar_el2; /* Hyp IPA Fault Address Register */
u64 disr_el1; /* Deferred [SError] Status Register */
};
/*
* VNCR() just places the VNCR_capable registers in the enum after
* __VNCR_START__, and the value (after correction) to be an 8-byte offset
* from the VNCR base. As we don't require the enum to be otherwise ordered,
* we need the terrible hack below to ensure that we correctly size the
* sys_regs array, no matter what.
*
* The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
* treasure trove of bit hacks:
* https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
*/
#define __MAX__(x,y) ((x) ^ (((x) ^ (y)) & -((x) < (y))))
#define VNCR(r) \
__before_##r, \
r = __VNCR_START__ + ((VNCR_ ## r) / 8), \
__after_##r = __MAX__(__before_##r - 1, r)
enum vcpu_sysreg {
__INVALID_SYSREG__, /* 0 is reserved as an invalid value */
MPIDR_EL1, /* MultiProcessor Affinity Register */
CLIDR_EL1, /* Cache Level ID Register */
CSSELR_EL1, /* Cache Size Selection Register */
TPIDR_EL0, /* Thread ID, User R/W */
TPIDRRO_EL0, /* Thread ID, User R/O */
TPIDR_EL1, /* Thread ID, Privileged */
CNTKCTL_EL1, /* Timer Control Register (EL1) */
PAR_EL1, /* Physical Address Register */
MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
OSLSR_EL1, /* OS Lock Status Register */
DISR_EL1, /* Deferred Interrupt Status Register */
/* Performance Monitors Registers */
PMCR_EL0, /* Control Register */
PMSELR_EL0, /* Event Counter Selection Register */
PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
PMCCNTR_EL0, /* Cycle Counter Register */
PMEVTYPER0_EL0, /* Event Type Register (0-30) */
PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
PMCCFILTR_EL0, /* Cycle Count Filter Register */
PMCNTENSET_EL0, /* Count Enable Set Register */
PMINTENSET_EL1, /* Interrupt Enable Set Register */
PMOVSSET_EL0, /* Overflow Flag Status Set Register */
PMUSERENR_EL0, /* User Enable Register */
/* Pointer Authentication Registers in a strict increasing order. */
APIAKEYLO_EL1,
APIAKEYHI_EL1,
APIBKEYLO_EL1,
APIBKEYHI_EL1,
APDAKEYLO_EL1,
APDAKEYHI_EL1,
APDBKEYLO_EL1,
APDBKEYHI_EL1,
APGAKEYLO_EL1,
APGAKEYHI_EL1,
/* Memory Tagging Extension registers */
RGSR_EL1, /* Random Allocation Tag Seed Register */
GCR_EL1, /* Tag Control Register */
TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
/* 32bit specific registers. */
DACR32_EL2, /* Domain Access Control Register */
IFSR32_EL2, /* Instruction Fault Status Register */
FPEXC32_EL2, /* Floating-Point Exception Control Register */
DBGVCR32_EL2, /* Debug Vector Catch Register */
/* EL2 registers */
SCTLR_EL2, /* System Control Register (EL2) */
ACTLR_EL2, /* Auxiliary Control Register (EL2) */
MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */
CPTR_EL2, /* Architectural Feature Trap Register (EL2) */
HACR_EL2, /* Hypervisor Auxiliary Control Register */
TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */
TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */
TCR_EL2, /* Translation Control Register (EL2) */
SPSR_EL2, /* EL2 saved program status register */
ELR_EL2, /* EL2 exception link register */
AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */
AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */
ESR_EL2, /* Exception Syndrome Register (EL2) */
FAR_EL2, /* Fault Address Register (EL2) */
HPFAR_EL2, /* Hypervisor IPA Fault Address Register */
MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */
AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */
VBAR_EL2, /* Vector Base Address Register (EL2) */
RVBAR_EL2, /* Reset Vector Base Address Register */
CONTEXTIDR_EL2, /* Context ID Register (EL2) */
CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */
SP_EL2, /* EL2 Stack Pointer */
CNTHP_CTL_EL2,
CNTHP_CVAL_EL2,
CNTHV_CTL_EL2,
CNTHV_CVAL_EL2,
__VNCR_START__, /* Any VNCR-capable reg goes after this point */
VNCR(SCTLR_EL1),/* System Control Register */
VNCR(ACTLR_EL1),/* Auxiliary Control Register */
VNCR(CPACR_EL1),/* Coprocessor Access Control */
VNCR(ZCR_EL1), /* SVE Control */
VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
VNCR(TCR_EL1), /* Translation Control Register */
VNCR(TCR2_EL1), /* Extended Translation Control Register */
VNCR(ESR_EL1), /* Exception Syndrome Register */
VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
VNCR(FAR_EL1), /* Fault Address Register */
VNCR(MAIR_EL1), /* Memory Attribute Indirection Register */
VNCR(VBAR_EL1), /* Vector Base Address Register */
VNCR(CONTEXTIDR_EL1), /* Context ID Register */
VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
VNCR(ELR_EL1),
VNCR(SP_EL1),
VNCR(SPSR_EL1),
VNCR(TFSR_EL1), /* Tag Fault Status Register (EL1) */
VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
VNCR(HCR_EL2), /* Hypervisor Configuration Register */
VNCR(HSTR_EL2), /* Hypervisor System Trap Register */
VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
VNCR(VTCR_EL2), /* Virtualization Translation Control Register */
VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
VNCR(HCRX_EL2), /* Extended Hypervisor Configuration Register */
/* Permission Indirection Extension registers */
VNCR(PIR_EL1), /* Permission Indirection Register 1 (EL1) */
VNCR(PIRE0_EL1), /* Permission Indirection Register 0 (EL1) */
VNCR(HFGRTR_EL2),
VNCR(HFGWTR_EL2),
VNCR(HFGITR_EL2),
VNCR(HDFGRTR_EL2),
VNCR(HDFGWTR_EL2),
VNCR(HAFGRTR_EL2),
VNCR(CNTVOFF_EL2),
VNCR(CNTV_CVAL_EL0),
VNCR(CNTV_CTL_EL0),
VNCR(CNTP_CVAL_EL0),
VNCR(CNTP_CTL_EL0),
NR_SYS_REGS /* Nothing after this line! */
};
struct kvm_cpu_context {
struct user_pt_regs regs; /* sp = sp_el0 */
u64 spsr_abt;
u64 spsr_und;
u64 spsr_irq;
u64 spsr_fiq;
struct user_fpsimd_state fp_regs;
u64 sys_regs[NR_SYS_REGS];
struct kvm_vcpu *__hyp_running_vcpu;
/* This pointer has to be 4kB aligned. */
u64 *vncr_array;
};
struct kvm_host_data {
struct kvm_cpu_context host_ctxt;
};
struct kvm_host_psci_config {
/* PSCI version used by host. */
u32 version;
u32 smccc_version;
/* Function IDs used by host if version is v0.1. */
struct psci_0_1_function_ids function_ids_0_1;
bool psci_0_1_cpu_suspend_implemented;
bool psci_0_1_cpu_on_implemented;
bool psci_0_1_cpu_off_implemented;
bool psci_0_1_migrate_implemented;
};
extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
struct vcpu_reset_state {
unsigned long pc;
unsigned long r0;
bool be;
bool reset;
};
struct kvm_vcpu_arch {
struct kvm_cpu_context ctxt;
/*
* Guest floating point state
*
* The architecture has two main floating point extensions,
* the original FPSIMD and SVE. These have overlapping
* register views, with the FPSIMD V registers occupying the
* low 128 bits of the SVE Z registers. When the core
* floating point code saves the register state of a task it
* records which view it saved in fp_type.
*/
void *sve_state;
enum fp_type fp_type;
unsigned int sve_max_vl;
u64 svcr;
/* Stage 2 paging state used by the hardware on next switch */
struct kvm_s2_mmu *hw_mmu;
/* Values of trap registers for the guest. */
u64 hcr_el2;
u64 mdcr_el2;
u64 cptr_el2;
/* Values of trap registers for the host before guest entry. */
u64 mdcr_el2_host;
/* Exception Information */
struct kvm_vcpu_fault_info fault;
/* Ownership of the FP regs */
enum {
FP_STATE_FREE,
FP_STATE_HOST_OWNED,
FP_STATE_GUEST_OWNED,
} fp_state;
/* Configuration flags, set once and for all before the vcpu can run */
u8 cflags;
/* Input flags to the hypervisor code, potentially cleared after use */
u8 iflags;
/* State flags for kernel bookkeeping, unused by the hypervisor code */
u8 sflags;
/*
* Don't run the guest (internal implementation need).
*
* Contrary to the flags above, this is set/cleared outside of
* a vcpu context, and thus cannot be mixed with the flags
* themselves (or the flag accesses need to be made atomic).
*/
bool pause;
/*
* We maintain more than a single set of debug registers to support
* debugging the guest from the host and to maintain separate host and
* guest state during world switches. vcpu_debug_state are the debug
* registers of the vcpu as the guest sees them. host_debug_state are
* the host registers which are saved and restored during
* world switches. external_debug_state contains the debug
* values we want to debug the guest. This is set via the
* KVM_SET_GUEST_DEBUG ioctl.
*
* debug_ptr points to the set of debug registers that should be loaded
* onto the hardware when running the guest.
*/
struct kvm_guest_debug_arch *debug_ptr;
struct kvm_guest_debug_arch vcpu_debug_state;
struct kvm_guest_debug_arch external_debug_state;
struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
struct {
/* {Break,watch}point registers */
struct kvm_guest_debug_arch regs;
/* Statistical profiling extension */
u64 pmscr_el1;
/* Self-hosted trace */
u64 trfcr_el1;
} host_debug_state;
/* VGIC state */
struct vgic_cpu vgic_cpu;
struct arch_timer_cpu timer_cpu;
struct kvm_pmu pmu;
/*
* Guest registers we preserve during guest debugging.
*
* These shadow registers are updated by the kvm_handle_sys_reg
* trap handler if the guest accesses or updates them while we
* are using guest debug.
*/
struct {
u32 mdscr_el1;
bool pstate_ss;
} guest_debug_preserved;
/* vcpu power state */
struct kvm_mp_state mp_state;
spinlock_t mp_state_lock;
union {
/* Cache some mmu pages needed inside spinlock regions */
struct kvm_mmu_memory_cache mmu_page_cache;
/* Pages to be donated to pkvm/EL2 if it runs out */
struct kvm_hyp_memcache pkvm_memcache;
};
/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
u64 vsesr_el2;
/* Additional reset state */
struct vcpu_reset_state reset_state;
/* Guest PV state */
struct {
u64 last_steal;
gpa_t base;
} steal;
/* Per-vcpu CCSIDR override or NULL */
u32 *ccsidr;
};
/*
* Each 'flag' is composed of a comma-separated triplet:
*
* - the flag-set it belongs to in the vcpu->arch structure
* - the value for that flag
* - the mask for that flag
*
* __vcpu_single_flag() builds such a triplet for a single-bit flag.
* unpack_vcpu_flag() extract the flag value from the triplet for
* direct use outside of the flag accessors.
*/
#define __vcpu_single_flag(_set, _f) _set, (_f), (_f)
#define __unpack_flag(_set, _f, _m) _f
#define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__)
#define __build_check_flag(v, flagset, f, m) \
do { \
typeof(v->arch.flagset) *_fset; \
\
/* Check that the flags fit in the mask */ \
BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
/* Check that the flags fit in the type */ \
BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
} while (0)
#define __vcpu_get_flag(v, flagset, f, m) \
({ \
__build_check_flag(v, flagset, f, m); \
\
READ_ONCE(v->arch.flagset) & (m); \
})
/*
* Note that the set/clear accessors must be preempt-safe in order to
* avoid nesting them with load/put which also manipulate flags...
*/
#ifdef __KVM_NVHE_HYPERVISOR__
/* the nVHE hypervisor is always non-preemptible */
#define __vcpu_flags_preempt_disable()
#define __vcpu_flags_preempt_enable()
#else
#define __vcpu_flags_preempt_disable() preempt_disable()
#define __vcpu_flags_preempt_enable() preempt_enable()
#endif
#define __vcpu_set_flag(v, flagset, f, m) \
do { \
typeof(v->arch.flagset) *fset; \
\
__build_check_flag(v, flagset, f, m); \
\
fset = &v->arch.flagset; \
__vcpu_flags_preempt_disable(); \
if (HWEIGHT(m) > 1) \
*fset &= ~(m); \
*fset |= (f); \
__vcpu_flags_preempt_enable(); \
} while (0)
#define __vcpu_clear_flag(v, flagset, f, m) \
do { \
typeof(v->arch.flagset) *fset; \
\
__build_check_flag(v, flagset, f, m); \
\
fset = &v->arch.flagset; \
__vcpu_flags_preempt_disable(); \
*fset &= ~(m); \
__vcpu_flags_preempt_enable(); \
} while (0)
#define __vcpu_copy_flag(vt, vs, flagset, f, m) \
do { \
typeof(vs->arch.flagset) tmp, val; \
\
__build_check_flag(vs, flagset, f, m); \
\
val = READ_ONCE(vs->arch.flagset); \
val &= (m); \
tmp = READ_ONCE(vt->arch.flagset); \
tmp &= ~(m); \
tmp |= val; \
WRITE_ONCE(vt->arch.flagset, tmp); \
} while (0)
#define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__)
#define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__)
#define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
#define vcpu_copy_flag(vt, vs, ...) __vcpu_copy_flag((vt), (vs), __VA_ARGS__)
/* SVE exposed to guest */
#define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0))
/* SVE config completed */
#define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1))
/* PTRAUTH exposed to guest */
#define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2))
/* KVM_ARM_VCPU_INIT completed */
#define VCPU_INITIALIZED __vcpu_single_flag(cflags, BIT(3))
/* Exception pending */
#define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0))
/*
* PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
* be set together with an exception...
*/
#define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1))
/* Target EL/MODE (not a single flag, but let's abuse the macro) */
#define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1))
/* Cover both PENDING_EXCEPTION and EXCEPT_MASK for global operations */
#define PC_UPDATE_REQ __vcpu_single_flag(iflags, GENMASK(3, 0))
/* Helpers to encode exceptions with minimum fuss */
#define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK)
#define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL)
#define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
/*
* When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
* values:
*
* For AArch32 EL1:
*/
#define EXCEPT_AA32_UND __vcpu_except_flags(0)
#define EXCEPT_AA32_IABT __vcpu_except_flags(1)
#define EXCEPT_AA32_DABT __vcpu_except_flags(2)
/* For AArch64: */
#define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0)
#define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1)
#define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2)
#define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3)
/* For AArch64 with NV: */
#define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4)
#define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5)
#define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6)
#define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7)
/* Guest debug is live */
#define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4))
/* Save SPE context if active */
#define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5))
/* Save TRBE context if active */
#define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6))
/* vcpu running in HYP context (VHE-only) */
#define VCPU_HYP_CONTEXT __vcpu_single_flag(iflags, BIT(7))
/* pKVM host vcpu state is dirty, needs resync (nVHE-only) */
#define PKVM_HOST_STATE_DIRTY __vcpu_single_flag(iflags, BIT(7))
/* SVE enabled for host EL0 */
#define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0))
/* SME enabled for EL0 */
#define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1))
/* Physical CPU not in supported_cpus */
#define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2))
/* WFIT instruction trapped */
#define IN_WFIT __vcpu_single_flag(sflags, BIT(3))
/* vcpu system registers loaded on physical CPU */
#define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4))
/* Software step state is Active-pending */
#define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5))
/* PMUSERENR for the guest EL0 is on physical CPU */
#define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(6))
/* WFI instruction trapped */
#define IN_WFI __vcpu_single_flag(sflags, BIT(7))
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
#define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \
sve_ffr_offset((vcpu)->arch.sve_max_vl))
#define _vcpu_sve_state_size(sve_max_vl) ({ \
size_t __size_ret; \
unsigned int __vq; \
\
if (WARN_ON(!sve_vl_valid(sve_max_vl))) { \
__size_ret = 0; \
} else { \
__vq = sve_vq_from_vl(sve_max_vl); \
__size_ret = SVE_SIG_REGS_SIZE(__vq); \
} \
\
__size_ret; \
})
#define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
#define vcpu_sve_state_size(vcpu) _vcpu_sve_state_size((vcpu)->arch.sve_max_vl)
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
KVM_GUESTDBG_USE_SW_BP | \
KVM_GUESTDBG_USE_HW | \
KVM_GUESTDBG_SINGLESTEP)
#define vcpu_has_sve(vcpu) (system_supports_sve() && \
vcpu_get_flag(vcpu, GUEST_HAS_SVE))
#ifdef CONFIG_ARM64_PTR_AUTH
#define vcpu_has_ptrauth(vcpu) \
((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \
cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \
vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
#else
#define vcpu_has_ptrauth(vcpu) false
#endif
#define vcpu_on_unsupported_cpu(vcpu) \
vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
#define vcpu_set_on_unsupported_cpu(vcpu) \
vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
#define vcpu_clear_on_unsupported_cpu(vcpu) \
vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
/*
* Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
* memory backed version of a register, and not the one most recently
* accessed by a running VCPU. For example, for userspace access or
* for system registers that are never context switched, but only
* emulated.
*
* Don't bother with VNCR-based accesses in the nVHE code, it has no
* business dealing with NV.
*/
static inline u64 *__ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
{
#if !defined (__KVM_NVHE_HYPERVISOR__)
if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
r >= __VNCR_START__ && ctxt->vncr_array))
return &ctxt->vncr_array[r - __VNCR_START__];
#endif
return (u64 *)&ctxt->sys_regs[r];
}
#define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
#define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
{
/*
* *** VHE ONLY ***
*
* System registers listed in the switch are not saved on every
* exit from the guest but are only saved on vcpu_put.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
* should never be listed below, because the guest cannot modify its
* own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
* thread when emulating cross-VCPU communication.
*/
if (!has_vhe())
return false;
switch (reg) {
case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
case SPSR_EL1: *val = read_sysreg_s(SYS_SPSR_EL12); break;
case PAR_EL1: *val = read_sysreg_par(); break;
case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
default: return false;
}
return true;
}
static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
{
/*
* *** VHE ONLY ***
*
* System registers listed in the switch are not restored on every
* entry to the guest but are only restored on vcpu_load.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
* should never be listed below, because the MPIDR should only be set
* once, before running the VCPU, and never changed later.
*/
if (!has_vhe())
return false;
switch (reg) {
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
case SPSR_EL1: write_sysreg_s(val, SYS_SPSR_EL12); break;
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
default: return false;
}
return true;
}
struct kvm_vm_stat {
struct kvm_vm_stat_generic generic;
};
struct kvm_vcpu_stat {
struct kvm_vcpu_stat_generic generic;
u64 hvc_exit_stat;
u64 wfe_exit_stat;
u64 wfi_exit_stat;
u64 mmio_exit_user;
u64 mmio_exit_kernel;
u64 signal_exits;
u64 exits;
};
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events);
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events);
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
#define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
#ifndef __KVM_NVHE_HYPERVISOR__
#define kvm_call_hyp_nvhe(f, ...) \
({ \
struct arm_smccc_res res; \
\
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \
##__VA_ARGS__, &res); \
WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \
\
res.a1; \
})
/*
* The couple of isb() below are there to guarantee the same behaviour
* on VHE as on !VHE, where the eret to EL1 acts as a context
* synchronization event.
*/
#define kvm_call_hyp(f, ...) \
do { \
if (has_vhe()) { \
f(__VA_ARGS__); \
isb(); \
} else { \
kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
} \
} while(0)
#define kvm_call_hyp_ret(f, ...) \
({ \
typeof(f(__VA_ARGS__)) ret; \
\
if (has_vhe()) { \
ret = f(__VA_ARGS__); \
isb(); \
} else { \
ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
} \
\
ret; \
})
#else /* __KVM_NVHE_HYPERVISOR__ */
#define kvm_call_hyp(f, ...) f(__VA_ARGS__)
#define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
#define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
#endif /* __KVM_NVHE_HYPERVISOR__ */
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
int __init kvm_sys_reg_table_init(void);
int __init populate_nv_trap_config(void);
bool lock_all_vcpus(struct kvm *kvm);
void unlock_all_vcpus(struct kvm *kvm);
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
int kvm_handle_hypercall_return(struct kvm_vcpu *vcpu);
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
/*
* Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
* arrived in guest context. For arm64, any event that arrives while a vCPU is
* loaded is considered to be "in guest".
*/
static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
{
return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
}
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
bool kvm_arm_pvtime_supported(void);
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
extern unsigned int __ro_after_init kvm_arm_vmid_bits;
int __init kvm_arm_vmid_alloc_init(void);
void __init kvm_arm_vmid_alloc_free(void);
bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
void kvm_arm_vmid_clear_active(void);
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
vcpu_arch->steal.base = INVALID_GPA;
}
static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
return (vcpu_arch->steal.base != INVALID_GPA);
}
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
{
/* The host's MPIDR is immutable, so let's set it up at boot time */
ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
}
static inline bool kvm_system_needs_idmapped_vectors(void)
{
return cpus_have_final_cap(ARM64_SPECTRE_V3A);
}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
void kvm_arm_init_debug(void);
void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
#define kvm_vcpu_os_lock_enabled(vcpu) \
(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
struct kvm_arm_copy_mte_tags *copy_tags);
int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
struct kvm_arm_counter_offset *offset);
int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
struct reg_mask_range *range);
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
return (!has_vhe() && attr->exclude_host);
}
/* Flags for host debug state */
void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
#ifdef CONFIG_KVM
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
bool kvm_set_pmuserenr(u64 val);
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
static inline bool kvm_set_pmuserenr(u64 val)
{
return false;
}
#endif
void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
int __init kvm_set_ipa_limit(void);
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
#define kvm_vm_is_protected(kvm) ((kvm)->arch.pkvm.enabled)
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
#define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
#define kvm_has_mte(kvm) \
(system_supports_mte() && \
test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
#define kvm_supports_32bit_el0() \
(system_supports_32bit_el0() && \
!static_branch_unlikely(&arm64_mismatched_32bit_el0))
#define kvm_vm_has_ran_once(kvm) \
(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
{
return test_bit(feature, ka->vcpu_features);
}
#define vcpu_has_feature(v, f) __vcpu_has_feature(&(v)->kvm->arch, (f))
int kvm_trng_call(struct kvm_vcpu *vcpu);
#ifdef CONFIG_KVM
extern phys_addr_t hyp_mem_base;
extern phys_addr_t hyp_mem_size;
void __init kvm_hyp_reserve(void);
#else
static inline void kvm_hyp_reserve(void) { }
#endif
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
#endif /* __ARM64_KVM_HOST_H__ */