| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Copyright 2021 Google LLC |
| */ |
| /* |
| * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI |
| * instructions. It works on 8 blocks at a time, by precomputing the first 8 |
| * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation |
| * allows us to split finite field multiplication into two steps. |
| * |
| * In the first step, we consider h^i, m_i as normal polynomials of degree less |
| * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication |
| * is simply polynomial multiplication. |
| * |
| * In the second step, we compute the reduction of p(x) modulo the finite field |
| * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. |
| * |
| * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where |
| * multiplication is finite field multiplication. The advantage is that the |
| * two-step process only requires 1 finite field reduction for every 8 |
| * polynomial multiplications. Further parallelism is gained by interleaving the |
| * multiplications and polynomial reductions. |
| */ |
| |
| #include <linux/linkage.h> |
| #include <asm/frame.h> |
| |
| #define STRIDE_BLOCKS 8 |
| |
| #define GSTAR %xmm7 |
| #define PL %xmm8 |
| #define PH %xmm9 |
| #define TMP_XMM %xmm11 |
| #define LO %xmm12 |
| #define HI %xmm13 |
| #define MI %xmm14 |
| #define SUM %xmm15 |
| |
| #define KEY_POWERS %rdi |
| #define MSG %rsi |
| #define BLOCKS_LEFT %rdx |
| #define ACCUMULATOR %rcx |
| #define TMP %rax |
| |
| .section .rodata.cst16.gstar, "aM", @progbits, 16 |
| .align 16 |
| |
| .Lgstar: |
| .quad 0xc200000000000000, 0xc200000000000000 |
| |
| .text |
| |
| /* |
| * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length |
| * count pointed to by MSG and KEY_POWERS. |
| */ |
| .macro schoolbook1 count |
| .set i, 0 |
| .rept (\count) |
| schoolbook1_iteration i 0 |
| .set i, (i +1) |
| .endr |
| .endm |
| |
| /* |
| * Computes the product of two 128-bit polynomials at the memory locations |
| * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of |
| * the 256-bit product into LO, MI, HI. |
| * |
| * Given: |
| * X = [X_1 : X_0] |
| * Y = [Y_1 : Y_0] |
| * |
| * We compute: |
| * LO += X_0 * Y_0 |
| * MI += X_0 * Y_1 + X_1 * Y_0 |
| * HI += X_1 * Y_1 |
| * |
| * Later, the 256-bit result can be extracted as: |
| * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] |
| * This step is done when computing the polynomial reduction for efficiency |
| * reasons. |
| * |
| * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an |
| * extra multiplication of SUM and h^8. |
| */ |
| .macro schoolbook1_iteration i xor_sum |
| movups (16*\i)(MSG), %xmm0 |
| .if (\i == 0 && \xor_sum == 1) |
| pxor SUM, %xmm0 |
| .endif |
| vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2 |
| vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1 |
| vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3 |
| vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4 |
| vpxor %xmm2, MI, MI |
| vpxor %xmm1, LO, LO |
| vpxor %xmm4, HI, HI |
| vpxor %xmm3, MI, MI |
| .endm |
| |
| /* |
| * Performs the same computation as schoolbook1_iteration, except we expect the |
| * arguments to already be loaded into xmm0 and xmm1 and we set the result |
| * registers LO, MI, and HI directly rather than XOR'ing into them. |
| */ |
| .macro schoolbook1_noload |
| vpclmulqdq $0x01, %xmm0, %xmm1, MI |
| vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2 |
| vpclmulqdq $0x00, %xmm0, %xmm1, LO |
| vpclmulqdq $0x11, %xmm0, %xmm1, HI |
| vpxor %xmm2, MI, MI |
| .endm |
| |
| /* |
| * Computes the 256-bit polynomial represented by LO, HI, MI. Stores |
| * the result in PL, PH. |
| * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] |
| */ |
| .macro schoolbook2 |
| vpslldq $8, MI, PL |
| vpsrldq $8, MI, PH |
| pxor LO, PL |
| pxor HI, PH |
| .endm |
| |
| /* |
| * Computes the 128-bit reduction of PH : PL. Stores the result in dest. |
| * |
| * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = |
| * x^128 + x^127 + x^126 + x^121 + 1. |
| * |
| * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the |
| * product of two 128-bit polynomials in Montgomery form. We need to reduce it |
| * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor |
| * of x^128, this product has two extra factors of x^128. To get it back into |
| * Montgomery form, we need to remove one of these factors by dividing by x^128. |
| * |
| * To accomplish both of these goals, we add multiples of g(x) that cancel out |
| * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low |
| * bits are zero, the polynomial division by x^128 can be done by right shifting. |
| * |
| * Since the only nonzero term in the low 64 bits of g(x) is the constant term, |
| * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can |
| * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + |
| * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to |
| * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T |
| * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. |
| * |
| * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits |
| * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 |
| * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * |
| * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : |
| * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). |
| * |
| * So our final computation is: |
| * T = T_1 : T_0 = g*(x) * P_0 |
| * V = V_1 : V_0 = g*(x) * (P_1 + T_0) |
| * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 |
| * |
| * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 |
| * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : |
| * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V. |
| */ |
| .macro montgomery_reduction dest |
| vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x) |
| pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1 |
| pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1 |
| pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 |
| pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)] |
| vpxor TMP_XMM, PH, \dest |
| .endm |
| |
| /* |
| * Compute schoolbook multiplication for 8 blocks |
| * m_0h^8 + ... + m_7h^1 |
| * |
| * If reduce is set, also computes the montgomery reduction of the |
| * previous full_stride call and XORs with the first message block. |
| * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. |
| * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. |
| */ |
| .macro full_stride reduce |
| pxor LO, LO |
| pxor HI, HI |
| pxor MI, MI |
| |
| schoolbook1_iteration 7 0 |
| .if \reduce |
| vpclmulqdq $0x00, PL, GSTAR, TMP_XMM |
| .endif |
| |
| schoolbook1_iteration 6 0 |
| .if \reduce |
| pshufd $0b01001110, TMP_XMM, TMP_XMM |
| .endif |
| |
| schoolbook1_iteration 5 0 |
| .if \reduce |
| pxor PL, TMP_XMM |
| .endif |
| |
| schoolbook1_iteration 4 0 |
| .if \reduce |
| pxor TMP_XMM, PH |
| .endif |
| |
| schoolbook1_iteration 3 0 |
| .if \reduce |
| pclmulqdq $0x11, GSTAR, TMP_XMM |
| .endif |
| |
| schoolbook1_iteration 2 0 |
| .if \reduce |
| vpxor TMP_XMM, PH, SUM |
| .endif |
| |
| schoolbook1_iteration 1 0 |
| |
| schoolbook1_iteration 0 1 |
| |
| addq $(8*16), MSG |
| schoolbook2 |
| .endm |
| |
| /* |
| * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS |
| */ |
| .macro partial_stride |
| mov BLOCKS_LEFT, TMP |
| shlq $4, TMP |
| addq $(16*STRIDE_BLOCKS), KEY_POWERS |
| subq TMP, KEY_POWERS |
| |
| movups (MSG), %xmm0 |
| pxor SUM, %xmm0 |
| movaps (KEY_POWERS), %xmm1 |
| schoolbook1_noload |
| dec BLOCKS_LEFT |
| addq $16, MSG |
| addq $16, KEY_POWERS |
| |
| test $4, BLOCKS_LEFT |
| jz .Lpartial4BlocksDone |
| schoolbook1 4 |
| addq $(4*16), MSG |
| addq $(4*16), KEY_POWERS |
| .Lpartial4BlocksDone: |
| test $2, BLOCKS_LEFT |
| jz .Lpartial2BlocksDone |
| schoolbook1 2 |
| addq $(2*16), MSG |
| addq $(2*16), KEY_POWERS |
| .Lpartial2BlocksDone: |
| test $1, BLOCKS_LEFT |
| jz .LpartialDone |
| schoolbook1 1 |
| .LpartialDone: |
| schoolbook2 |
| montgomery_reduction SUM |
| .endm |
| |
| /* |
| * Perform montgomery multiplication in GF(2^128) and store result in op1. |
| * |
| * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1 |
| * If op1, op2 are in montgomery form, this computes the montgomery |
| * form of op1*op2. |
| * |
| * void clmul_polyval_mul(u8 *op1, const u8 *op2); |
| */ |
| SYM_FUNC_START(clmul_polyval_mul) |
| FRAME_BEGIN |
| vmovdqa .Lgstar(%rip), GSTAR |
| movups (%rdi), %xmm0 |
| movups (%rsi), %xmm1 |
| schoolbook1_noload |
| schoolbook2 |
| montgomery_reduction SUM |
| movups SUM, (%rdi) |
| FRAME_END |
| RET |
| SYM_FUNC_END(clmul_polyval_mul) |
| |
| /* |
| * Perform polynomial evaluation as specified by POLYVAL. This computes: |
| * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} |
| * where n=nblocks, h is the hash key, and m_i are the message blocks. |
| * |
| * rdi - pointer to precomputed key powers h^8 ... h^1 |
| * rsi - pointer to message blocks |
| * rdx - number of blocks to hash |
| * rcx - pointer to the accumulator |
| * |
| * void clmul_polyval_update(const struct polyval_tfm_ctx *keys, |
| * const u8 *in, size_t nblocks, u8 *accumulator); |
| */ |
| SYM_FUNC_START(clmul_polyval_update) |
| FRAME_BEGIN |
| vmovdqa .Lgstar(%rip), GSTAR |
| movups (ACCUMULATOR), SUM |
| subq $STRIDE_BLOCKS, BLOCKS_LEFT |
| js .LstrideLoopExit |
| full_stride 0 |
| subq $STRIDE_BLOCKS, BLOCKS_LEFT |
| js .LstrideLoopExitReduce |
| .LstrideLoop: |
| full_stride 1 |
| subq $STRIDE_BLOCKS, BLOCKS_LEFT |
| jns .LstrideLoop |
| .LstrideLoopExitReduce: |
| montgomery_reduction SUM |
| .LstrideLoopExit: |
| add $STRIDE_BLOCKS, BLOCKS_LEFT |
| jz .LskipPartial |
| partial_stride |
| .LskipPartial: |
| movups SUM, (ACCUMULATOR) |
| FRAME_END |
| RET |
| SYM_FUNC_END(clmul_polyval_update) |