| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * SGI NMI support routines |
| * |
| * (C) Copyright 2020 Hewlett Packard Enterprise Development LP |
| * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved. |
| * Copyright (c) Mike Travis |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/kdb.h> |
| #include <linux/kexec.h> |
| #include <linux/kgdb.h> |
| #include <linux/moduleparam.h> |
| #include <linux/nmi.h> |
| #include <linux/sched.h> |
| #include <linux/sched/debug.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/clocksource.h> |
| |
| #include <asm/apic.h> |
| #include <asm/current.h> |
| #include <asm/kdebug.h> |
| #include <asm/local64.h> |
| #include <asm/nmi.h> |
| #include <asm/reboot.h> |
| #include <asm/traps.h> |
| #include <asm/uv/uv.h> |
| #include <asm/uv/uv_hub.h> |
| #include <asm/uv/uv_mmrs.h> |
| |
| /* |
| * UV handler for NMI |
| * |
| * Handle system-wide NMI events generated by the global 'power nmi' command. |
| * |
| * Basic operation is to field the NMI interrupt on each CPU and wait |
| * until all CPU's have arrived into the nmi handler. If some CPU's do not |
| * make it into the handler, try and force them in with the IPI(NMI) signal. |
| * |
| * We also have to lessen UV Hub MMR accesses as much as possible as this |
| * disrupts the UV Hub's primary mission of directing NumaLink traffic and |
| * can cause system problems to occur. |
| * |
| * To do this we register our primary NMI notifier on the NMI_UNKNOWN |
| * chain. This reduces the number of false NMI calls when the perf |
| * tools are running which generate an enormous number of NMIs per |
| * second (~4M/s for 1024 CPU threads). Our secondary NMI handler is |
| * very short as it only checks that if it has been "pinged" with the |
| * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR. |
| * |
| */ |
| |
| static struct uv_hub_nmi_s **uv_hub_nmi_list; |
| |
| DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); |
| |
| /* Newer SMM NMI handler, not present in all systems */ |
| static unsigned long uvh_nmi_mmrx; /* UVH_EVENT_OCCURRED0/1 */ |
| static unsigned long uvh_nmi_mmrx_clear; /* UVH_EVENT_OCCURRED0/1_ALIAS */ |
| static int uvh_nmi_mmrx_shift; /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */ |
| static char *uvh_nmi_mmrx_type; /* "EXTIO_INT0" */ |
| |
| /* Non-zero indicates newer SMM NMI handler present */ |
| static unsigned long uvh_nmi_mmrx_supported; /* UVH_EXTIO_INT0_BROADCAST */ |
| |
| /* Indicates to BIOS that we want to use the newer SMM NMI handler */ |
| static unsigned long uvh_nmi_mmrx_req; /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */ |
| static int uvh_nmi_mmrx_req_shift; /* 62 */ |
| |
| /* UV hubless values */ |
| #define NMI_CONTROL_PORT 0x70 |
| #define NMI_DUMMY_PORT 0x71 |
| #define PAD_OWN_GPP_D_0 0x2c |
| #define GPI_NMI_STS_GPP_D_0 0x164 |
| #define GPI_NMI_ENA_GPP_D_0 0x174 |
| #define STS_GPP_D_0_MASK 0x1 |
| #define PAD_CFG_DW0_GPP_D_0 0x4c0 |
| #define GPIROUTNMI (1ul << 17) |
| #define PCH_PCR_GPIO_1_BASE 0xfdae0000ul |
| #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset)) |
| |
| static u64 *pch_base; |
| static unsigned long nmi_mmr; |
| static unsigned long nmi_mmr_clear; |
| static unsigned long nmi_mmr_pending; |
| |
| static atomic_t uv_in_nmi; |
| static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1); |
| static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1); |
| static atomic_t uv_nmi_slave_continue; |
| static cpumask_var_t uv_nmi_cpu_mask; |
| |
| static atomic_t uv_nmi_kexec_failed; |
| |
| /* Values for uv_nmi_slave_continue */ |
| #define SLAVE_CLEAR 0 |
| #define SLAVE_CONTINUE 1 |
| #define SLAVE_EXIT 2 |
| |
| /* |
| * Default is all stack dumps go to the console and buffer. |
| * Lower level to send to log buffer only. |
| */ |
| static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; |
| module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644); |
| |
| /* |
| * The following values show statistics on how perf events are affecting |
| * this system. |
| */ |
| static int param_get_local64(char *buffer, const struct kernel_param *kp) |
| { |
| return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg)); |
| } |
| |
| static int param_set_local64(const char *val, const struct kernel_param *kp) |
| { |
| /* Clear on any write */ |
| local64_set((local64_t *)kp->arg, 0); |
| return 0; |
| } |
| |
| static const struct kernel_param_ops param_ops_local64 = { |
| .get = param_get_local64, |
| .set = param_set_local64, |
| }; |
| #define param_check_local64(name, p) __param_check(name, p, local64_t) |
| |
| static local64_t uv_nmi_count; |
| module_param_named(nmi_count, uv_nmi_count, local64, 0644); |
| |
| static local64_t uv_nmi_misses; |
| module_param_named(nmi_misses, uv_nmi_misses, local64, 0644); |
| |
| static local64_t uv_nmi_ping_count; |
| module_param_named(ping_count, uv_nmi_ping_count, local64, 0644); |
| |
| static local64_t uv_nmi_ping_misses; |
| module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644); |
| |
| /* |
| * Following values allow tuning for large systems under heavy loading |
| */ |
| static int uv_nmi_initial_delay = 100; |
| module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644); |
| |
| static int uv_nmi_slave_delay = 100; |
| module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644); |
| |
| static int uv_nmi_loop_delay = 100; |
| module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644); |
| |
| static int uv_nmi_trigger_delay = 10000; |
| module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644); |
| |
| static int uv_nmi_wait_count = 100; |
| module_param_named(wait_count, uv_nmi_wait_count, int, 0644); |
| |
| static int uv_nmi_retry_count = 500; |
| module_param_named(retry_count, uv_nmi_retry_count, int, 0644); |
| |
| static bool uv_pch_intr_enable = true; |
| static bool uv_pch_intr_now_enabled; |
| module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644); |
| |
| static bool uv_pch_init_enable = true; |
| module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644); |
| |
| static int uv_nmi_debug; |
| module_param_named(debug, uv_nmi_debug, int, 0644); |
| |
| #define nmi_debug(fmt, ...) \ |
| do { \ |
| if (uv_nmi_debug) \ |
| pr_info(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| /* Valid NMI Actions */ |
| enum action_t { |
| nmi_act_kdump, |
| nmi_act_dump, |
| nmi_act_ips, |
| nmi_act_kdb, |
| nmi_act_kgdb, |
| nmi_act_health, |
| nmi_act_max |
| }; |
| |
| static const char * const actions[nmi_act_max] = { |
| [nmi_act_kdump] = "kdump", |
| [nmi_act_dump] = "dump", |
| [nmi_act_ips] = "ips", |
| [nmi_act_kdb] = "kdb", |
| [nmi_act_kgdb] = "kgdb", |
| [nmi_act_health] = "health", |
| }; |
| |
| static const char * const actions_desc[nmi_act_max] = { |
| [nmi_act_kdump] = "do kernel crash dump", |
| [nmi_act_dump] = "dump process stack for each cpu", |
| [nmi_act_ips] = "dump Inst Ptr info for each cpu", |
| [nmi_act_kdb] = "enter KDB (needs kgdboc= assignment)", |
| [nmi_act_kgdb] = "enter KGDB (needs gdb target remote)", |
| [nmi_act_health] = "check if CPUs respond to NMI", |
| }; |
| |
| static enum action_t uv_nmi_action = nmi_act_dump; |
| |
| static int param_get_action(char *buffer, const struct kernel_param *kp) |
| { |
| return sprintf(buffer, "%s\n", actions[uv_nmi_action]); |
| } |
| |
| static int param_set_action(const char *val, const struct kernel_param *kp) |
| { |
| int i, n = ARRAY_SIZE(actions); |
| |
| i = sysfs_match_string(actions, val); |
| if (i >= 0) { |
| uv_nmi_action = i; |
| pr_info("UV: New NMI action:%s\n", actions[i]); |
| return 0; |
| } |
| |
| pr_err("UV: Invalid NMI action. Valid actions are:\n"); |
| for (i = 0; i < n; i++) |
| pr_err("UV: %-8s - %s\n", actions[i], actions_desc[i]); |
| |
| return -EINVAL; |
| } |
| |
| static const struct kernel_param_ops param_ops_action = { |
| .get = param_get_action, |
| .set = param_set_action, |
| }; |
| #define param_check_action(name, p) __param_check(name, p, enum action_t) |
| |
| module_param_named(action, uv_nmi_action, action, 0644); |
| |
| /* Setup which NMI support is present in system */ |
| static void uv_nmi_setup_mmrs(void) |
| { |
| bool new_nmi_method_only = false; |
| |
| /* First determine arch specific MMRs to handshake with BIOS */ |
| if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) { /* UV2,3,4 setup */ |
| uvh_nmi_mmrx = UVH_EVENT_OCCURRED0; |
| uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS; |
| uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT; |
| uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0"; |
| |
| uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST; |
| uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2; |
| uvh_nmi_mmrx_req_shift = 62; |
| |
| } else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */ |
| uvh_nmi_mmrx = UVH_EVENT_OCCURRED1; |
| uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS; |
| uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT; |
| uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0"; |
| |
| new_nmi_method_only = true; /* Newer nmi always valid on UV5+ */ |
| uvh_nmi_mmrx_req = 0; /* no request bit to clear */ |
| |
| } else { |
| pr_err("UV:%s:NMI support not available on this system\n", __func__); |
| return; |
| } |
| |
| /* Then find out if new NMI is supported */ |
| if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) { |
| if (uvh_nmi_mmrx_req) |
| uv_write_local_mmr(uvh_nmi_mmrx_req, |
| 1UL << uvh_nmi_mmrx_req_shift); |
| nmi_mmr = uvh_nmi_mmrx; |
| nmi_mmr_clear = uvh_nmi_mmrx_clear; |
| nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift; |
| pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type); |
| } else { |
| nmi_mmr = UVH_NMI_MMR; |
| nmi_mmr_clear = UVH_NMI_MMR_CLEAR; |
| nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT; |
| pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE); |
| } |
| } |
| |
| /* Read NMI MMR and check if NMI flag was set by BMC. */ |
| static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi) |
| { |
| hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr); |
| atomic_inc(&hub_nmi->read_mmr_count); |
| return !!(hub_nmi->nmi_value & nmi_mmr_pending); |
| } |
| |
| static inline void uv_local_mmr_clear_nmi(void) |
| { |
| uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending); |
| } |
| |
| /* |
| * UV hubless NMI handler functions |
| */ |
| static inline void uv_reassert_nmi(void) |
| { |
| /* (from arch/x86/include/asm/mach_traps.h) */ |
| outb(0x8f, NMI_CONTROL_PORT); |
| inb(NMI_DUMMY_PORT); /* dummy read */ |
| outb(0x0f, NMI_CONTROL_PORT); |
| inb(NMI_DUMMY_PORT); /* dummy read */ |
| } |
| |
| static void uv_init_hubless_pch_io(int offset, int mask, int data) |
| { |
| int *addr = PCH_PCR_GPIO_ADDRESS(offset); |
| int readd = readl(addr); |
| |
| if (mask) { /* OR in new data */ |
| int writed = (readd & ~mask) | data; |
| |
| nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n", |
| addr, readd, ~mask, data, writed); |
| writel(writed, addr); |
| } else if (readd & data) { /* clear status bit */ |
| nmi_debug("UV:PCH: %p = %x\n", addr, data); |
| writel(data, addr); |
| } |
| |
| (void)readl(addr); /* flush write data */ |
| } |
| |
| static void uv_nmi_setup_hubless_intr(void) |
| { |
| uv_pch_intr_now_enabled = uv_pch_intr_enable; |
| |
| uv_init_hubless_pch_io( |
| PAD_CFG_DW0_GPP_D_0, GPIROUTNMI, |
| uv_pch_intr_now_enabled ? GPIROUTNMI : 0); |
| |
| nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n", |
| uv_pch_intr_now_enabled ? "enabled" : "disabled"); |
| } |
| |
| static struct init_nmi { |
| unsigned int offset; |
| unsigned int mask; |
| unsigned int data; |
| } init_nmi[] = { |
| { /* HOSTSW_OWN_GPP_D_0 */ |
| .offset = 0x84, |
| .mask = 0x1, |
| .data = 0x0, /* ACPI Mode */ |
| }, |
| |
| /* Clear status: */ |
| { /* GPI_INT_STS_GPP_D_0 */ |
| .offset = 0x104, |
| .mask = 0x0, |
| .data = 0x1, /* Clear Status */ |
| }, |
| { /* GPI_GPE_STS_GPP_D_0 */ |
| .offset = 0x124, |
| .mask = 0x0, |
| .data = 0x1, /* Clear Status */ |
| }, |
| { /* GPI_SMI_STS_GPP_D_0 */ |
| .offset = 0x144, |
| .mask = 0x0, |
| .data = 0x1, /* Clear Status */ |
| }, |
| { /* GPI_NMI_STS_GPP_D_0 */ |
| .offset = 0x164, |
| .mask = 0x0, |
| .data = 0x1, /* Clear Status */ |
| }, |
| |
| /* Disable interrupts: */ |
| { /* GPI_INT_EN_GPP_D_0 */ |
| .offset = 0x114, |
| .mask = 0x1, |
| .data = 0x0, /* Disable interrupt generation */ |
| }, |
| { /* GPI_GPE_EN_GPP_D_0 */ |
| .offset = 0x134, |
| .mask = 0x1, |
| .data = 0x0, /* Disable interrupt generation */ |
| }, |
| { /* GPI_SMI_EN_GPP_D_0 */ |
| .offset = 0x154, |
| .mask = 0x1, |
| .data = 0x0, /* Disable interrupt generation */ |
| }, |
| { /* GPI_NMI_EN_GPP_D_0 */ |
| .offset = 0x174, |
| .mask = 0x1, |
| .data = 0x0, /* Disable interrupt generation */ |
| }, |
| |
| /* Setup GPP_D_0 Pad Config: */ |
| { /* PAD_CFG_DW0_GPP_D_0 */ |
| .offset = 0x4c0, |
| .mask = 0xffffffff, |
| .data = 0x82020100, |
| /* |
| * 31:30 Pad Reset Config (PADRSTCFG): = 2h # PLTRST# (default) |
| * |
| * 29 RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly |
| * from RX buffer (default) |
| * |
| * 28 RX Raw Override to '1' (RXRAW1): = 0 # No Override |
| * |
| * 26:25 RX Level/Edge Configuration (RXEVCFG): |
| * = 0h # Level |
| * = 1h # Edge |
| * |
| * 23 RX Invert (RXINV): = 0 # No Inversion (signal active high) |
| * |
| * 20 GPIO Input Route IOxAPIC (GPIROUTIOXAPIC): |
| * = 0 # Routing does not cause peripheral IRQ... |
| * # (we want an NMI not an IRQ) |
| * |
| * 19 GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI. |
| * 18 GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI. |
| * 17 GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI. |
| * |
| * 11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad. |
| * 9 GPIO RX Disable (GPIORXDIS): |
| * = 0 # Enable the input buffer (active low enable) |
| * |
| * 8 GPIO TX Disable (GPIOTXDIS): |
| * = 1 # Disable the output buffer; i.e. Hi-Z |
| * |
| * 1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state.. |
| * 0 GPIO TX State (GPIOTXSTATE): |
| * = 0 # (Leave at default) |
| */ |
| }, |
| |
| /* Pad Config DW1 */ |
| { /* PAD_CFG_DW1_GPP_D_0 */ |
| .offset = 0x4c4, |
| .mask = 0x3c00, |
| .data = 0, /* Termination = none (default) */ |
| }, |
| }; |
| |
| static void uv_init_hubless_pch_d0(void) |
| { |
| int i, read; |
| |
| read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0); |
| if (read != 0) { |
| pr_info("UV: Hubless NMI already configured\n"); |
| return; |
| } |
| |
| nmi_debug("UV: Initializing UV Hubless NMI on PCH\n"); |
| for (i = 0; i < ARRAY_SIZE(init_nmi); i++) { |
| uv_init_hubless_pch_io(init_nmi[i].offset, |
| init_nmi[i].mask, |
| init_nmi[i].data); |
| } |
| } |
| |
| static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi) |
| { |
| int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0); |
| int status = *pstat; |
| |
| hub_nmi->nmi_value = status; |
| atomic_inc(&hub_nmi->read_mmr_count); |
| |
| if (!(status & STS_GPP_D_0_MASK)) /* Not a UV external NMI */ |
| return 0; |
| |
| *pstat = STS_GPP_D_0_MASK; /* Is a UV NMI: clear GPP_D_0 status */ |
| (void)*pstat; /* Flush write */ |
| |
| return 1; |
| } |
| |
| static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi) |
| { |
| if (hub_nmi->hub_present) |
| return uv_nmi_test_mmr(hub_nmi); |
| |
| if (hub_nmi->pch_owner) /* Only PCH owner can check status */ |
| return uv_nmi_test_hubless(hub_nmi); |
| |
| return -1; |
| } |
| |
| /* |
| * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and |
| * return true. If first CPU in on the system, set global "in_nmi" flag. |
| */ |
| static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi) |
| { |
| int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1); |
| |
| if (first) { |
| atomic_set(&hub_nmi->cpu_owner, cpu); |
| if (atomic_add_unless(&uv_in_nmi, 1, 1)) |
| atomic_set(&uv_nmi_cpu, cpu); |
| |
| atomic_inc(&hub_nmi->nmi_count); |
| } |
| return first; |
| } |
| |
| /* Check if this is a system NMI event */ |
| static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi) |
| { |
| int cpu = smp_processor_id(); |
| int nmi = 0; |
| int nmi_detected = 0; |
| |
| local64_inc(&uv_nmi_count); |
| this_cpu_inc(uv_cpu_nmi.queries); |
| |
| do { |
| nmi = atomic_read(&hub_nmi->in_nmi); |
| if (nmi) |
| break; |
| |
| if (raw_spin_trylock(&hub_nmi->nmi_lock)) { |
| nmi_detected = uv_test_nmi(hub_nmi); |
| |
| /* Check flag for UV external NMI */ |
| if (nmi_detected > 0) { |
| uv_set_in_nmi(cpu, hub_nmi); |
| nmi = 1; |
| break; |
| } |
| |
| /* A non-PCH node in a hubless system waits for NMI */ |
| else if (nmi_detected < 0) |
| goto slave_wait; |
| |
| /* MMR/PCH NMI flag is clear */ |
| raw_spin_unlock(&hub_nmi->nmi_lock); |
| |
| } else { |
| |
| /* Wait a moment for the HUB NMI locker to set flag */ |
| slave_wait: cpu_relax(); |
| udelay(uv_nmi_slave_delay); |
| |
| /* Re-check hub in_nmi flag */ |
| nmi = atomic_read(&hub_nmi->in_nmi); |
| if (nmi) |
| break; |
| } |
| |
| /* |
| * Check if this BMC missed setting the MMR NMI flag (or) |
| * UV hubless system where only PCH owner can check flag |
| */ |
| if (!nmi) { |
| nmi = atomic_read(&uv_in_nmi); |
| if (nmi) |
| uv_set_in_nmi(cpu, hub_nmi); |
| } |
| |
| /* If we're holding the hub lock, release it now */ |
| if (nmi_detected < 0) |
| raw_spin_unlock(&hub_nmi->nmi_lock); |
| |
| } while (0); |
| |
| if (!nmi) |
| local64_inc(&uv_nmi_misses); |
| |
| return nmi; |
| } |
| |
| /* Need to reset the NMI MMR register, but only once per hub. */ |
| static inline void uv_clear_nmi(int cpu) |
| { |
| struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; |
| |
| if (cpu == atomic_read(&hub_nmi->cpu_owner)) { |
| atomic_set(&hub_nmi->cpu_owner, -1); |
| atomic_set(&hub_nmi->in_nmi, 0); |
| if (hub_nmi->hub_present) |
| uv_local_mmr_clear_nmi(); |
| else |
| uv_reassert_nmi(); |
| raw_spin_unlock(&hub_nmi->nmi_lock); |
| } |
| } |
| |
| /* Ping non-responding CPU's attempting to force them into the NMI handler */ |
| static void uv_nmi_nr_cpus_ping(void) |
| { |
| int cpu; |
| |
| for_each_cpu(cpu, uv_nmi_cpu_mask) |
| uv_cpu_nmi_per(cpu).pinging = 1; |
| |
| __apic_send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI); |
| } |
| |
| /* Clean up flags for CPU's that ignored both NMI and ping */ |
| static void uv_nmi_cleanup_mask(void) |
| { |
| int cpu; |
| |
| for_each_cpu(cpu, uv_nmi_cpu_mask) { |
| uv_cpu_nmi_per(cpu).pinging = 0; |
| uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT; |
| cpumask_clear_cpu(cpu, uv_nmi_cpu_mask); |
| } |
| } |
| |
| /* Loop waiting as CPU's enter NMI handler */ |
| static int uv_nmi_wait_cpus(int first) |
| { |
| int i, j, k, n = num_online_cpus(); |
| int last_k = 0, waiting = 0; |
| int cpu = smp_processor_id(); |
| |
| if (first) { |
| cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask); |
| k = 0; |
| } else { |
| k = n - cpumask_weight(uv_nmi_cpu_mask); |
| } |
| |
| /* PCH NMI causes only one CPU to respond */ |
| if (first && uv_pch_intr_now_enabled) { |
| cpumask_clear_cpu(cpu, uv_nmi_cpu_mask); |
| return n - k - 1; |
| } |
| |
| udelay(uv_nmi_initial_delay); |
| for (i = 0; i < uv_nmi_retry_count; i++) { |
| int loop_delay = uv_nmi_loop_delay; |
| |
| for_each_cpu(j, uv_nmi_cpu_mask) { |
| if (uv_cpu_nmi_per(j).state) { |
| cpumask_clear_cpu(j, uv_nmi_cpu_mask); |
| if (++k >= n) |
| break; |
| } |
| } |
| if (k >= n) { /* all in? */ |
| k = n; |
| break; |
| } |
| if (last_k != k) { /* abort if no new CPU's coming in */ |
| last_k = k; |
| waiting = 0; |
| } else if (++waiting > uv_nmi_wait_count) |
| break; |
| |
| /* Extend delay if waiting only for CPU 0: */ |
| if (waiting && (n - k) == 1 && |
| cpumask_test_cpu(0, uv_nmi_cpu_mask)) |
| loop_delay *= 100; |
| |
| udelay(loop_delay); |
| } |
| atomic_set(&uv_nmi_cpus_in_nmi, k); |
| return n - k; |
| } |
| |
| /* Wait until all slave CPU's have entered UV NMI handler */ |
| static void uv_nmi_wait(int master) |
| { |
| /* Indicate this CPU is in: */ |
| this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN); |
| |
| /* If not the first CPU in (the master), then we are a slave CPU */ |
| if (!master) |
| return; |
| |
| do { |
| /* Wait for all other CPU's to gather here */ |
| if (!uv_nmi_wait_cpus(1)) |
| break; |
| |
| /* If not all made it in, send IPI NMI to them */ |
| pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n", |
| cpumask_weight(uv_nmi_cpu_mask), |
| cpumask_pr_args(uv_nmi_cpu_mask)); |
| |
| uv_nmi_nr_cpus_ping(); |
| |
| /* If all CPU's are in, then done */ |
| if (!uv_nmi_wait_cpus(0)) |
| break; |
| |
| pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n", |
| cpumask_weight(uv_nmi_cpu_mask), |
| cpumask_pr_args(uv_nmi_cpu_mask)); |
| } while (0); |
| |
| pr_alert("UV: %d of %d CPUs in NMI\n", |
| atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus()); |
| } |
| |
| /* Dump Instruction Pointer header */ |
| static void uv_nmi_dump_cpu_ip_hdr(void) |
| { |
| pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n", |
| "CPU", "PID", "COMMAND", "IP"); |
| } |
| |
| /* Dump Instruction Pointer info */ |
| static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs) |
| { |
| pr_info("UV: %4d %6d %-32.32s %pS", |
| cpu, current->pid, current->comm, (void *)regs->ip); |
| } |
| |
| /* |
| * Dump this CPU's state. If action was set to "kdump" and the crash_kexec |
| * failed, then we provide "dump" as an alternate action. Action "dump" now |
| * also includes the show "ips" (instruction pointers) action whereas the |
| * action "ips" only displays instruction pointers for the non-idle CPU's. |
| * This is an abbreviated form of the "ps" command. |
| */ |
| static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs) |
| { |
| const char *dots = " ................................. "; |
| |
| if (cpu == 0) |
| uv_nmi_dump_cpu_ip_hdr(); |
| |
| if (current->pid != 0 || uv_nmi_action != nmi_act_ips) |
| uv_nmi_dump_cpu_ip(cpu, regs); |
| |
| if (uv_nmi_action == nmi_act_dump) { |
| pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu); |
| show_regs(regs); |
| } |
| |
| this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE); |
| } |
| |
| /* Trigger a slave CPU to dump its state */ |
| static void uv_nmi_trigger_dump(int cpu) |
| { |
| int retry = uv_nmi_trigger_delay; |
| |
| if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN) |
| return; |
| |
| uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP; |
| do { |
| cpu_relax(); |
| udelay(10); |
| if (uv_cpu_nmi_per(cpu).state |
| != UV_NMI_STATE_DUMP) |
| return; |
| } while (--retry > 0); |
| |
| pr_crit("UV: CPU %d stuck in process dump function\n", cpu); |
| uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE; |
| } |
| |
| /* Wait until all CPU's ready to exit */ |
| static void uv_nmi_sync_exit(int master) |
| { |
| atomic_dec(&uv_nmi_cpus_in_nmi); |
| if (master) { |
| while (atomic_read(&uv_nmi_cpus_in_nmi) > 0) |
| cpu_relax(); |
| atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR); |
| } else { |
| while (atomic_read(&uv_nmi_slave_continue)) |
| cpu_relax(); |
| } |
| } |
| |
| /* Current "health" check is to check which CPU's are responsive */ |
| static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master) |
| { |
| if (master) { |
| int in = atomic_read(&uv_nmi_cpus_in_nmi); |
| int out = num_online_cpus() - in; |
| |
| pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out); |
| atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); |
| } else { |
| while (!atomic_read(&uv_nmi_slave_continue)) |
| cpu_relax(); |
| } |
| uv_nmi_sync_exit(master); |
| } |
| |
| /* Walk through CPU list and dump state of each */ |
| static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master) |
| { |
| if (master) { |
| int tcpu; |
| int ignored = 0; |
| int saved_console_loglevel = console_loglevel; |
| |
| pr_alert("UV: tracing %s for %d CPUs from CPU %d\n", |
| uv_nmi_action == nmi_act_ips ? "IPs" : "processes", |
| atomic_read(&uv_nmi_cpus_in_nmi), cpu); |
| |
| console_loglevel = uv_nmi_loglevel; |
| atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); |
| for_each_online_cpu(tcpu) { |
| if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask)) |
| ignored++; |
| else if (tcpu == cpu) |
| uv_nmi_dump_state_cpu(tcpu, regs); |
| else |
| uv_nmi_trigger_dump(tcpu); |
| } |
| if (ignored) |
| pr_alert("UV: %d CPUs ignored NMI\n", ignored); |
| |
| console_loglevel = saved_console_loglevel; |
| pr_alert("UV: process trace complete\n"); |
| } else { |
| while (!atomic_read(&uv_nmi_slave_continue)) |
| cpu_relax(); |
| while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP) |
| cpu_relax(); |
| uv_nmi_dump_state_cpu(cpu, regs); |
| } |
| uv_nmi_sync_exit(master); |
| } |
| |
| static void uv_nmi_touch_watchdogs(void) |
| { |
| touch_softlockup_watchdog_sync(); |
| clocksource_touch_watchdog(); |
| rcu_cpu_stall_reset(); |
| touch_nmi_watchdog(); |
| } |
| |
| static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs) |
| { |
| /* Check if kdump kernel loaded for both main and secondary CPUs */ |
| if (!kexec_crash_image) { |
| if (main) |
| pr_err("UV: NMI error: kdump kernel not loaded\n"); |
| return; |
| } |
| |
| /* Call crash to dump system state */ |
| if (main) { |
| pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu); |
| crash_kexec(regs); |
| |
| pr_emerg("UV: crash_kexec unexpectedly returned\n"); |
| atomic_set(&uv_nmi_kexec_failed, 1); |
| |
| } else { /* secondary */ |
| |
| /* If kdump kernel fails, secondaries will exit this loop */ |
| while (atomic_read(&uv_nmi_kexec_failed) == 0) { |
| |
| /* Once shootdown cpus starts, they do not return */ |
| run_crash_ipi_callback(regs); |
| |
| mdelay(10); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_KGDB |
| #ifdef CONFIG_KGDB_KDB |
| static inline int uv_nmi_kdb_reason(void) |
| { |
| return KDB_REASON_SYSTEM_NMI; |
| } |
| #else /* !CONFIG_KGDB_KDB */ |
| static inline int uv_nmi_kdb_reason(void) |
| { |
| /* Ensure user is expecting to attach gdb remote */ |
| if (uv_nmi_action == nmi_act_kgdb) |
| return 0; |
| |
| pr_err("UV: NMI error: KDB is not enabled in this kernel\n"); |
| return -1; |
| } |
| #endif /* CONFIG_KGDB_KDB */ |
| |
| /* |
| * Call KGDB/KDB from NMI handler |
| * |
| * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or |
| * 'kdb' has no affect on which is used. See the KGDB documentation for further |
| * information. |
| */ |
| static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) |
| { |
| if (master) { |
| int reason = uv_nmi_kdb_reason(); |
| int ret; |
| |
| if (reason < 0) |
| return; |
| |
| /* Call KGDB NMI handler as MASTER */ |
| ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason, |
| &uv_nmi_slave_continue); |
| if (ret) { |
| pr_alert("KGDB returned error, is kgdboc set?\n"); |
| atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); |
| } |
| } else { |
| /* Wait for KGDB signal that it's ready for slaves to enter */ |
| int sig; |
| |
| do { |
| cpu_relax(); |
| sig = atomic_read(&uv_nmi_slave_continue); |
| } while (!sig); |
| |
| /* Call KGDB as slave */ |
| if (sig == SLAVE_CONTINUE) |
| kgdb_nmicallback(cpu, regs); |
| } |
| uv_nmi_sync_exit(master); |
| } |
| |
| #else /* !CONFIG_KGDB */ |
| static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) |
| { |
| pr_err("UV: NMI error: KGDB is not enabled in this kernel\n"); |
| } |
| #endif /* !CONFIG_KGDB */ |
| |
| /* |
| * UV NMI handler |
| */ |
| static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs) |
| { |
| struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; |
| int cpu = smp_processor_id(); |
| int master = 0; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| /* If not a UV System NMI, ignore */ |
| if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) { |
| local_irq_restore(flags); |
| return NMI_DONE; |
| } |
| |
| /* Indicate we are the first CPU into the NMI handler */ |
| master = (atomic_read(&uv_nmi_cpu) == cpu); |
| |
| /* If NMI action is "kdump", then attempt to do it */ |
| if (uv_nmi_action == nmi_act_kdump) { |
| uv_nmi_kdump(cpu, master, regs); |
| |
| /* Unexpected return, revert action to "dump" */ |
| if (master) |
| uv_nmi_action = nmi_act_dump; |
| } |
| |
| /* Pause as all CPU's enter the NMI handler */ |
| uv_nmi_wait(master); |
| |
| /* Process actions other than "kdump": */ |
| switch (uv_nmi_action) { |
| case nmi_act_health: |
| uv_nmi_action_health(cpu, regs, master); |
| break; |
| case nmi_act_ips: |
| case nmi_act_dump: |
| uv_nmi_dump_state(cpu, regs, master); |
| break; |
| case nmi_act_kdb: |
| case nmi_act_kgdb: |
| uv_call_kgdb_kdb(cpu, regs, master); |
| break; |
| default: |
| if (master) |
| pr_alert("UV: unknown NMI action: %d\n", uv_nmi_action); |
| uv_nmi_sync_exit(master); |
| break; |
| } |
| |
| /* Clear per_cpu "in_nmi" flag */ |
| this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT); |
| |
| /* Clear MMR NMI flag on each hub */ |
| uv_clear_nmi(cpu); |
| |
| /* Clear global flags */ |
| if (master) { |
| if (!cpumask_empty(uv_nmi_cpu_mask)) |
| uv_nmi_cleanup_mask(); |
| atomic_set(&uv_nmi_cpus_in_nmi, -1); |
| atomic_set(&uv_nmi_cpu, -1); |
| atomic_set(&uv_in_nmi, 0); |
| atomic_set(&uv_nmi_kexec_failed, 0); |
| atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR); |
| } |
| |
| uv_nmi_touch_watchdogs(); |
| local_irq_restore(flags); |
| |
| return NMI_HANDLED; |
| } |
| |
| /* |
| * NMI handler for pulling in CPU's when perf events are grabbing our NMI |
| */ |
| static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs) |
| { |
| int ret; |
| |
| this_cpu_inc(uv_cpu_nmi.queries); |
| if (!this_cpu_read(uv_cpu_nmi.pinging)) { |
| local64_inc(&uv_nmi_ping_misses); |
| return NMI_DONE; |
| } |
| |
| this_cpu_inc(uv_cpu_nmi.pings); |
| local64_inc(&uv_nmi_ping_count); |
| ret = uv_handle_nmi(reason, regs); |
| this_cpu_write(uv_cpu_nmi.pinging, 0); |
| return ret; |
| } |
| |
| static void uv_register_nmi_notifier(void) |
| { |
| if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv")) |
| pr_warn("UV: NMI handler failed to register\n"); |
| |
| if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping")) |
| pr_warn("UV: PING NMI handler failed to register\n"); |
| } |
| |
| void uv_nmi_init(void) |
| { |
| unsigned int value; |
| |
| /* |
| * Unmask NMI on all CPU's |
| */ |
| value = apic_read(APIC_LVT1) | APIC_DM_NMI; |
| value &= ~APIC_LVT_MASKED; |
| apic_write(APIC_LVT1, value); |
| } |
| |
| /* Setup HUB NMI info */ |
| static void __init uv_nmi_setup_common(bool hubbed) |
| { |
| int size = sizeof(void *) * (1 << NODES_SHIFT); |
| int cpu; |
| |
| uv_hub_nmi_list = kzalloc(size, GFP_KERNEL); |
| nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size); |
| BUG_ON(!uv_hub_nmi_list); |
| size = sizeof(struct uv_hub_nmi_s); |
| for_each_present_cpu(cpu) { |
| int nid = cpu_to_node(cpu); |
| if (uv_hub_nmi_list[nid] == NULL) { |
| uv_hub_nmi_list[nid] = kzalloc_node(size, |
| GFP_KERNEL, nid); |
| BUG_ON(!uv_hub_nmi_list[nid]); |
| raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock)); |
| atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1); |
| uv_hub_nmi_list[nid]->hub_present = hubbed; |
| uv_hub_nmi_list[nid]->pch_owner = (nid == 0); |
| } |
| uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid]; |
| } |
| BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL)); |
| } |
| |
| /* Setup for UV Hub systems */ |
| void __init uv_nmi_setup(void) |
| { |
| uv_nmi_setup_mmrs(); |
| uv_nmi_setup_common(true); |
| uv_register_nmi_notifier(); |
| pr_info("UV: Hub NMI enabled\n"); |
| } |
| |
| /* Setup for UV Hubless systems */ |
| void __init uv_nmi_setup_hubless(void) |
| { |
| uv_nmi_setup_common(false); |
| pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE); |
| nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n", |
| pch_base, PCH_PCR_GPIO_1_BASE); |
| if (uv_pch_init_enable) |
| uv_init_hubless_pch_d0(); |
| uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0, |
| STS_GPP_D_0_MASK, STS_GPP_D_0_MASK); |
| uv_nmi_setup_hubless_intr(); |
| /* Ensure NMI enabled in Processor Interface Reg: */ |
| uv_reassert_nmi(); |
| uv_register_nmi_notifier(); |
| pr_info("UV: PCH NMI enabled\n"); |
| } |