| /* |
| * Copyright (c) 2007-2014 Nicira, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA |
| */ |
| |
| #include <linux/uaccess.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <net/llc_pdu.h> |
| #include <linux/kernel.h> |
| #include <linux/jhash.h> |
| #include <linux/jiffies.h> |
| #include <linux/llc.h> |
| #include <linux/module.h> |
| #include <linux/in.h> |
| #include <linux/rcupdate.h> |
| #include <linux/cpumask.h> |
| #include <linux/if_arp.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/mpls.h> |
| #include <linux/sctp.h> |
| #include <linux/smp.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/icmp.h> |
| #include <linux/icmpv6.h> |
| #include <linux/rculist.h> |
| #include <net/ip.h> |
| #include <net/ip_tunnels.h> |
| #include <net/ipv6.h> |
| #include <net/mpls.h> |
| #include <net/ndisc.h> |
| #include <net/nsh.h> |
| |
| #include "conntrack.h" |
| #include "datapath.h" |
| #include "flow.h" |
| #include "flow_netlink.h" |
| #include "vport.h" |
| |
| u64 ovs_flow_used_time(unsigned long flow_jiffies) |
| { |
| struct timespec64 cur_ts; |
| u64 cur_ms, idle_ms; |
| |
| ktime_get_ts64(&cur_ts); |
| idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); |
| cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC + |
| cur_ts.tv_nsec / NSEC_PER_MSEC; |
| |
| return cur_ms - idle_ms; |
| } |
| |
| #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) |
| |
| void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, |
| const struct sk_buff *skb) |
| { |
| struct flow_stats *stats; |
| unsigned int cpu = smp_processor_id(); |
| int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); |
| |
| stats = rcu_dereference(flow->stats[cpu]); |
| |
| /* Check if already have CPU-specific stats. */ |
| if (likely(stats)) { |
| spin_lock(&stats->lock); |
| /* Mark if we write on the pre-allocated stats. */ |
| if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) |
| flow->stats_last_writer = cpu; |
| } else { |
| stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ |
| spin_lock(&stats->lock); |
| |
| /* If the current CPU is the only writer on the |
| * pre-allocated stats keep using them. |
| */ |
| if (unlikely(flow->stats_last_writer != cpu)) { |
| /* A previous locker may have already allocated the |
| * stats, so we need to check again. If CPU-specific |
| * stats were already allocated, we update the pre- |
| * allocated stats as we have already locked them. |
| */ |
| if (likely(flow->stats_last_writer != -1) && |
| likely(!rcu_access_pointer(flow->stats[cpu]))) { |
| /* Try to allocate CPU-specific stats. */ |
| struct flow_stats *new_stats; |
| |
| new_stats = |
| kmem_cache_alloc_node(flow_stats_cache, |
| GFP_NOWAIT | |
| __GFP_THISNODE | |
| __GFP_NOWARN | |
| __GFP_NOMEMALLOC, |
| numa_node_id()); |
| if (likely(new_stats)) { |
| new_stats->used = jiffies; |
| new_stats->packet_count = 1; |
| new_stats->byte_count = len; |
| new_stats->tcp_flags = tcp_flags; |
| spin_lock_init(&new_stats->lock); |
| |
| rcu_assign_pointer(flow->stats[cpu], |
| new_stats); |
| cpumask_set_cpu(cpu, &flow->cpu_used_mask); |
| goto unlock; |
| } |
| } |
| flow->stats_last_writer = cpu; |
| } |
| } |
| |
| stats->used = jiffies; |
| stats->packet_count++; |
| stats->byte_count += len; |
| stats->tcp_flags |= tcp_flags; |
| unlock: |
| spin_unlock(&stats->lock); |
| } |
| |
| /* Must be called with rcu_read_lock or ovs_mutex. */ |
| void ovs_flow_stats_get(const struct sw_flow *flow, |
| struct ovs_flow_stats *ovs_stats, |
| unsigned long *used, __be16 *tcp_flags) |
| { |
| int cpu; |
| |
| *used = 0; |
| *tcp_flags = 0; |
| memset(ovs_stats, 0, sizeof(*ovs_stats)); |
| |
| /* We open code this to make sure cpu 0 is always considered */ |
| for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { |
| struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); |
| |
| if (stats) { |
| /* Local CPU may write on non-local stats, so we must |
| * block bottom-halves here. |
| */ |
| spin_lock_bh(&stats->lock); |
| if (!*used || time_after(stats->used, *used)) |
| *used = stats->used; |
| *tcp_flags |= stats->tcp_flags; |
| ovs_stats->n_packets += stats->packet_count; |
| ovs_stats->n_bytes += stats->byte_count; |
| spin_unlock_bh(&stats->lock); |
| } |
| } |
| } |
| |
| /* Called with ovs_mutex. */ |
| void ovs_flow_stats_clear(struct sw_flow *flow) |
| { |
| int cpu; |
| |
| /* We open code this to make sure cpu 0 is always considered */ |
| for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { |
| struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]); |
| |
| if (stats) { |
| spin_lock_bh(&stats->lock); |
| stats->used = 0; |
| stats->packet_count = 0; |
| stats->byte_count = 0; |
| stats->tcp_flags = 0; |
| spin_unlock_bh(&stats->lock); |
| } |
| } |
| } |
| |
| static int check_header(struct sk_buff *skb, int len) |
| { |
| if (unlikely(skb->len < len)) |
| return -EINVAL; |
| if (unlikely(!pskb_may_pull(skb, len))) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static bool arphdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_network_offset(skb) + |
| sizeof(struct arp_eth_header)); |
| } |
| |
| static int check_iphdr(struct sk_buff *skb) |
| { |
| unsigned int nh_ofs = skb_network_offset(skb); |
| unsigned int ip_len; |
| int err; |
| |
| err = check_header(skb, nh_ofs + sizeof(struct iphdr)); |
| if (unlikely(err)) |
| return err; |
| |
| ip_len = ip_hdrlen(skb); |
| if (unlikely(ip_len < sizeof(struct iphdr) || |
| skb->len < nh_ofs + ip_len)) |
| return -EINVAL; |
| |
| skb_set_transport_header(skb, nh_ofs + ip_len); |
| return 0; |
| } |
| |
| static bool tcphdr_ok(struct sk_buff *skb) |
| { |
| int th_ofs = skb_transport_offset(skb); |
| int tcp_len; |
| |
| if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) |
| return false; |
| |
| tcp_len = tcp_hdrlen(skb); |
| if (unlikely(tcp_len < sizeof(struct tcphdr) || |
| skb->len < th_ofs + tcp_len)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool udphdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_transport_offset(skb) + |
| sizeof(struct udphdr)); |
| } |
| |
| static bool sctphdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_transport_offset(skb) + |
| sizeof(struct sctphdr)); |
| } |
| |
| static bool icmphdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_transport_offset(skb) + |
| sizeof(struct icmphdr)); |
| } |
| |
| static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| unsigned short frag_off; |
| unsigned int payload_ofs = 0; |
| unsigned int nh_ofs = skb_network_offset(skb); |
| unsigned int nh_len; |
| struct ipv6hdr *nh; |
| int err, nexthdr, flags = 0; |
| |
| err = check_header(skb, nh_ofs + sizeof(*nh)); |
| if (unlikely(err)) |
| return err; |
| |
| nh = ipv6_hdr(skb); |
| |
| key->ip.proto = NEXTHDR_NONE; |
| key->ip.tos = ipv6_get_dsfield(nh); |
| key->ip.ttl = nh->hop_limit; |
| key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); |
| key->ipv6.addr.src = nh->saddr; |
| key->ipv6.addr.dst = nh->daddr; |
| |
| nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); |
| if (flags & IP6_FH_F_FRAG) { |
| if (frag_off) { |
| key->ip.frag = OVS_FRAG_TYPE_LATER; |
| key->ip.proto = nexthdr; |
| return 0; |
| } |
| key->ip.frag = OVS_FRAG_TYPE_FIRST; |
| } else { |
| key->ip.frag = OVS_FRAG_TYPE_NONE; |
| } |
| |
| /* Delayed handling of error in ipv6_find_hdr() as it |
| * always sets flags and frag_off to a valid value which may be |
| * used to set key->ip.frag above. |
| */ |
| if (unlikely(nexthdr < 0)) |
| return -EPROTO; |
| |
| nh_len = payload_ofs - nh_ofs; |
| skb_set_transport_header(skb, nh_ofs + nh_len); |
| key->ip.proto = nexthdr; |
| return nh_len; |
| } |
| |
| static bool icmp6hdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_transport_offset(skb) + |
| sizeof(struct icmp6hdr)); |
| } |
| |
| /** |
| * Parse vlan tag from vlan header. |
| * Returns ERROR on memory error. |
| * Returns 0 if it encounters a non-vlan or incomplete packet. |
| * Returns 1 after successfully parsing vlan tag. |
| */ |
| static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, |
| bool untag_vlan) |
| { |
| struct vlan_head *vh = (struct vlan_head *)skb->data; |
| |
| if (likely(!eth_type_vlan(vh->tpid))) |
| return 0; |
| |
| if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) |
| return 0; |
| |
| if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + |
| sizeof(__be16)))) |
| return -ENOMEM; |
| |
| vh = (struct vlan_head *)skb->data; |
| key_vh->tci = vh->tci | htons(VLAN_CFI_MASK); |
| key_vh->tpid = vh->tpid; |
| |
| if (unlikely(untag_vlan)) { |
| int offset = skb->data - skb_mac_header(skb); |
| u16 tci; |
| int err; |
| |
| __skb_push(skb, offset); |
| err = __skb_vlan_pop(skb, &tci); |
| __skb_pull(skb, offset); |
| if (err) |
| return err; |
| __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); |
| } else { |
| __skb_pull(skb, sizeof(struct vlan_head)); |
| } |
| return 1; |
| } |
| |
| static void clear_vlan(struct sw_flow_key *key) |
| { |
| key->eth.vlan.tci = 0; |
| key->eth.vlan.tpid = 0; |
| key->eth.cvlan.tci = 0; |
| key->eth.cvlan.tpid = 0; |
| } |
| |
| static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| int res; |
| |
| if (skb_vlan_tag_present(skb)) { |
| key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK); |
| key->eth.vlan.tpid = skb->vlan_proto; |
| } else { |
| /* Parse outer vlan tag in the non-accelerated case. */ |
| res = parse_vlan_tag(skb, &key->eth.vlan, true); |
| if (res <= 0) |
| return res; |
| } |
| |
| /* Parse inner vlan tag. */ |
| res = parse_vlan_tag(skb, &key->eth.cvlan, false); |
| if (res <= 0) |
| return res; |
| |
| return 0; |
| } |
| |
| static __be16 parse_ethertype(struct sk_buff *skb) |
| { |
| struct llc_snap_hdr { |
| u8 dsap; /* Always 0xAA */ |
| u8 ssap; /* Always 0xAA */ |
| u8 ctrl; |
| u8 oui[3]; |
| __be16 ethertype; |
| }; |
| struct llc_snap_hdr *llc; |
| __be16 proto; |
| |
| proto = *(__be16 *) skb->data; |
| __skb_pull(skb, sizeof(__be16)); |
| |
| if (eth_proto_is_802_3(proto)) |
| return proto; |
| |
| if (skb->len < sizeof(struct llc_snap_hdr)) |
| return htons(ETH_P_802_2); |
| |
| if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) |
| return htons(0); |
| |
| llc = (struct llc_snap_hdr *) skb->data; |
| if (llc->dsap != LLC_SAP_SNAP || |
| llc->ssap != LLC_SAP_SNAP || |
| (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) |
| return htons(ETH_P_802_2); |
| |
| __skb_pull(skb, sizeof(struct llc_snap_hdr)); |
| |
| if (eth_proto_is_802_3(llc->ethertype)) |
| return llc->ethertype; |
| |
| return htons(ETH_P_802_2); |
| } |
| |
| static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, |
| int nh_len) |
| { |
| struct icmp6hdr *icmp = icmp6_hdr(skb); |
| |
| /* The ICMPv6 type and code fields use the 16-bit transport port |
| * fields, so we need to store them in 16-bit network byte order. |
| */ |
| key->tp.src = htons(icmp->icmp6_type); |
| key->tp.dst = htons(icmp->icmp6_code); |
| memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); |
| |
| if (icmp->icmp6_code == 0 && |
| (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || |
| icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { |
| int icmp_len = skb->len - skb_transport_offset(skb); |
| struct nd_msg *nd; |
| int offset; |
| |
| /* In order to process neighbor discovery options, we need the |
| * entire packet. |
| */ |
| if (unlikely(icmp_len < sizeof(*nd))) |
| return 0; |
| |
| if (unlikely(skb_linearize(skb))) |
| return -ENOMEM; |
| |
| nd = (struct nd_msg *)skb_transport_header(skb); |
| key->ipv6.nd.target = nd->target; |
| |
| icmp_len -= sizeof(*nd); |
| offset = 0; |
| while (icmp_len >= 8) { |
| struct nd_opt_hdr *nd_opt = |
| (struct nd_opt_hdr *)(nd->opt + offset); |
| int opt_len = nd_opt->nd_opt_len * 8; |
| |
| if (unlikely(!opt_len || opt_len > icmp_len)) |
| return 0; |
| |
| /* Store the link layer address if the appropriate |
| * option is provided. It is considered an error if |
| * the same link layer option is specified twice. |
| */ |
| if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR |
| && opt_len == 8) { |
| if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) |
| goto invalid; |
| ether_addr_copy(key->ipv6.nd.sll, |
| &nd->opt[offset+sizeof(*nd_opt)]); |
| } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR |
| && opt_len == 8) { |
| if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) |
| goto invalid; |
| ether_addr_copy(key->ipv6.nd.tll, |
| &nd->opt[offset+sizeof(*nd_opt)]); |
| } |
| |
| icmp_len -= opt_len; |
| offset += opt_len; |
| } |
| } |
| |
| return 0; |
| |
| invalid: |
| memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); |
| memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); |
| memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); |
| |
| return 0; |
| } |
| |
| static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| struct nshhdr *nh; |
| unsigned int nh_ofs = skb_network_offset(skb); |
| u8 version, length; |
| int err; |
| |
| err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN); |
| if (unlikely(err)) |
| return err; |
| |
| nh = nsh_hdr(skb); |
| version = nsh_get_ver(nh); |
| length = nsh_hdr_len(nh); |
| |
| if (version != 0) |
| return -EINVAL; |
| |
| err = check_header(skb, nh_ofs + length); |
| if (unlikely(err)) |
| return err; |
| |
| nh = nsh_hdr(skb); |
| key->nsh.base.flags = nsh_get_flags(nh); |
| key->nsh.base.ttl = nsh_get_ttl(nh); |
| key->nsh.base.mdtype = nh->mdtype; |
| key->nsh.base.np = nh->np; |
| key->nsh.base.path_hdr = nh->path_hdr; |
| switch (key->nsh.base.mdtype) { |
| case NSH_M_TYPE1: |
| if (length != NSH_M_TYPE1_LEN) |
| return -EINVAL; |
| memcpy(key->nsh.context, nh->md1.context, |
| sizeof(nh->md1)); |
| break; |
| case NSH_M_TYPE2: |
| memset(key->nsh.context, 0, |
| sizeof(nh->md1)); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * key_extract - extracts a flow key from an Ethernet frame. |
| * @skb: sk_buff that contains the frame, with skb->data pointing to the |
| * Ethernet header |
| * @key: output flow key |
| * |
| * The caller must ensure that skb->len >= ETH_HLEN. |
| * |
| * Returns 0 if successful, otherwise a negative errno value. |
| * |
| * Initializes @skb header fields as follows: |
| * |
| * - skb->mac_header: the L2 header. |
| * |
| * - skb->network_header: just past the L2 header, or just past the |
| * VLAN header, to the first byte of the L2 payload. |
| * |
| * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 |
| * on output, then just past the IP header, if one is present and |
| * of a correct length, otherwise the same as skb->network_header. |
| * For other key->eth.type values it is left untouched. |
| * |
| * - skb->protocol: the type of the data starting at skb->network_header. |
| * Equals to key->eth.type. |
| */ |
| static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| int error; |
| struct ethhdr *eth; |
| |
| /* Flags are always used as part of stats */ |
| key->tp.flags = 0; |
| |
| skb_reset_mac_header(skb); |
| |
| /* Link layer. */ |
| clear_vlan(key); |
| if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { |
| if (unlikely(eth_type_vlan(skb->protocol))) |
| return -EINVAL; |
| |
| skb_reset_network_header(skb); |
| key->eth.type = skb->protocol; |
| } else { |
| eth = eth_hdr(skb); |
| ether_addr_copy(key->eth.src, eth->h_source); |
| ether_addr_copy(key->eth.dst, eth->h_dest); |
| |
| __skb_pull(skb, 2 * ETH_ALEN); |
| /* We are going to push all headers that we pull, so no need to |
| * update skb->csum here. |
| */ |
| |
| if (unlikely(parse_vlan(skb, key))) |
| return -ENOMEM; |
| |
| key->eth.type = parse_ethertype(skb); |
| if (unlikely(key->eth.type == htons(0))) |
| return -ENOMEM; |
| |
| /* Multiple tagged packets need to retain TPID to satisfy |
| * skb_vlan_pop(), which will later shift the ethertype into |
| * skb->protocol. |
| */ |
| if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK)) |
| skb->protocol = key->eth.cvlan.tpid; |
| else |
| skb->protocol = key->eth.type; |
| |
| skb_reset_network_header(skb); |
| __skb_push(skb, skb->data - skb_mac_header(skb)); |
| } |
| skb_reset_mac_len(skb); |
| |
| /* Network layer. */ |
| if (key->eth.type == htons(ETH_P_IP)) { |
| struct iphdr *nh; |
| __be16 offset; |
| |
| error = check_iphdr(skb); |
| if (unlikely(error)) { |
| memset(&key->ip, 0, sizeof(key->ip)); |
| memset(&key->ipv4, 0, sizeof(key->ipv4)); |
| if (error == -EINVAL) { |
| skb->transport_header = skb->network_header; |
| error = 0; |
| } |
| return error; |
| } |
| |
| nh = ip_hdr(skb); |
| key->ipv4.addr.src = nh->saddr; |
| key->ipv4.addr.dst = nh->daddr; |
| |
| key->ip.proto = nh->protocol; |
| key->ip.tos = nh->tos; |
| key->ip.ttl = nh->ttl; |
| |
| offset = nh->frag_off & htons(IP_OFFSET); |
| if (offset) { |
| key->ip.frag = OVS_FRAG_TYPE_LATER; |
| return 0; |
| } |
| if (nh->frag_off & htons(IP_MF) || |
| skb_shinfo(skb)->gso_type & SKB_GSO_UDP) |
| key->ip.frag = OVS_FRAG_TYPE_FIRST; |
| else |
| key->ip.frag = OVS_FRAG_TYPE_NONE; |
| |
| /* Transport layer. */ |
| if (key->ip.proto == IPPROTO_TCP) { |
| if (tcphdr_ok(skb)) { |
| struct tcphdr *tcp = tcp_hdr(skb); |
| key->tp.src = tcp->source; |
| key->tp.dst = tcp->dest; |
| key->tp.flags = TCP_FLAGS_BE16(tcp); |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| |
| } else if (key->ip.proto == IPPROTO_UDP) { |
| if (udphdr_ok(skb)) { |
| struct udphdr *udp = udp_hdr(skb); |
| key->tp.src = udp->source; |
| key->tp.dst = udp->dest; |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| } else if (key->ip.proto == IPPROTO_SCTP) { |
| if (sctphdr_ok(skb)) { |
| struct sctphdr *sctp = sctp_hdr(skb); |
| key->tp.src = sctp->source; |
| key->tp.dst = sctp->dest; |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| } else if (key->ip.proto == IPPROTO_ICMP) { |
| if (icmphdr_ok(skb)) { |
| struct icmphdr *icmp = icmp_hdr(skb); |
| /* The ICMP type and code fields use the 16-bit |
| * transport port fields, so we need to store |
| * them in 16-bit network byte order. */ |
| key->tp.src = htons(icmp->type); |
| key->tp.dst = htons(icmp->code); |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| } |
| |
| } else if (key->eth.type == htons(ETH_P_ARP) || |
| key->eth.type == htons(ETH_P_RARP)) { |
| struct arp_eth_header *arp; |
| bool arp_available = arphdr_ok(skb); |
| |
| arp = (struct arp_eth_header *)skb_network_header(skb); |
| |
| if (arp_available && |
| arp->ar_hrd == htons(ARPHRD_ETHER) && |
| arp->ar_pro == htons(ETH_P_IP) && |
| arp->ar_hln == ETH_ALEN && |
| arp->ar_pln == 4) { |
| |
| /* We only match on the lower 8 bits of the opcode. */ |
| if (ntohs(arp->ar_op) <= 0xff) |
| key->ip.proto = ntohs(arp->ar_op); |
| else |
| key->ip.proto = 0; |
| |
| memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); |
| memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); |
| ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); |
| ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); |
| } else { |
| memset(&key->ip, 0, sizeof(key->ip)); |
| memset(&key->ipv4, 0, sizeof(key->ipv4)); |
| } |
| } else if (eth_p_mpls(key->eth.type)) { |
| size_t stack_len = MPLS_HLEN; |
| |
| skb_set_inner_network_header(skb, skb->mac_len); |
| while (1) { |
| __be32 lse; |
| |
| error = check_header(skb, skb->mac_len + stack_len); |
| if (unlikely(error)) |
| return 0; |
| |
| memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); |
| |
| if (stack_len == MPLS_HLEN) |
| memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); |
| |
| skb_set_inner_network_header(skb, skb->mac_len + stack_len); |
| if (lse & htonl(MPLS_LS_S_MASK)) |
| break; |
| |
| stack_len += MPLS_HLEN; |
| } |
| } else if (key->eth.type == htons(ETH_P_IPV6)) { |
| int nh_len; /* IPv6 Header + Extensions */ |
| |
| nh_len = parse_ipv6hdr(skb, key); |
| if (unlikely(nh_len < 0)) { |
| switch (nh_len) { |
| case -EINVAL: |
| memset(&key->ip, 0, sizeof(key->ip)); |
| memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); |
| /* fall-through */ |
| case -EPROTO: |
| skb->transport_header = skb->network_header; |
| error = 0; |
| break; |
| default: |
| error = nh_len; |
| } |
| return error; |
| } |
| |
| if (key->ip.frag == OVS_FRAG_TYPE_LATER) |
| return 0; |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) |
| key->ip.frag = OVS_FRAG_TYPE_FIRST; |
| |
| /* Transport layer. */ |
| if (key->ip.proto == NEXTHDR_TCP) { |
| if (tcphdr_ok(skb)) { |
| struct tcphdr *tcp = tcp_hdr(skb); |
| key->tp.src = tcp->source; |
| key->tp.dst = tcp->dest; |
| key->tp.flags = TCP_FLAGS_BE16(tcp); |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| } else if (key->ip.proto == NEXTHDR_UDP) { |
| if (udphdr_ok(skb)) { |
| struct udphdr *udp = udp_hdr(skb); |
| key->tp.src = udp->source; |
| key->tp.dst = udp->dest; |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| } else if (key->ip.proto == NEXTHDR_SCTP) { |
| if (sctphdr_ok(skb)) { |
| struct sctphdr *sctp = sctp_hdr(skb); |
| key->tp.src = sctp->source; |
| key->tp.dst = sctp->dest; |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| } else if (key->ip.proto == NEXTHDR_ICMP) { |
| if (icmp6hdr_ok(skb)) { |
| error = parse_icmpv6(skb, key, nh_len); |
| if (error) |
| return error; |
| } else { |
| memset(&key->tp, 0, sizeof(key->tp)); |
| } |
| } |
| } else if (key->eth.type == htons(ETH_P_NSH)) { |
| error = parse_nsh(skb, key); |
| if (error) |
| return error; |
| } |
| return 0; |
| } |
| |
| int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| int res; |
| |
| res = key_extract(skb, key); |
| if (!res) |
| key->mac_proto &= ~SW_FLOW_KEY_INVALID; |
| |
| return res; |
| } |
| |
| static int key_extract_mac_proto(struct sk_buff *skb) |
| { |
| switch (skb->dev->type) { |
| case ARPHRD_ETHER: |
| return MAC_PROTO_ETHERNET; |
| case ARPHRD_NONE: |
| if (skb->protocol == htons(ETH_P_TEB)) |
| return MAC_PROTO_ETHERNET; |
| return MAC_PROTO_NONE; |
| } |
| WARN_ON_ONCE(1); |
| return -EINVAL; |
| } |
| |
| int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, |
| struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| int res, err; |
| |
| /* Extract metadata from packet. */ |
| if (tun_info) { |
| key->tun_proto = ip_tunnel_info_af(tun_info); |
| memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); |
| |
| if (tun_info->options_len) { |
| BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * |
| 8)) - 1 |
| > sizeof(key->tun_opts)); |
| |
| ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), |
| tun_info); |
| key->tun_opts_len = tun_info->options_len; |
| } else { |
| key->tun_opts_len = 0; |
| } |
| } else { |
| key->tun_proto = 0; |
| key->tun_opts_len = 0; |
| memset(&key->tun_key, 0, sizeof(key->tun_key)); |
| } |
| |
| key->phy.priority = skb->priority; |
| key->phy.in_port = OVS_CB(skb)->input_vport->port_no; |
| key->phy.skb_mark = skb->mark; |
| key->ovs_flow_hash = 0; |
| res = key_extract_mac_proto(skb); |
| if (res < 0) |
| return res; |
| key->mac_proto = res; |
| key->recirc_id = 0; |
| |
| err = key_extract(skb, key); |
| if (!err) |
| ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */ |
| return err; |
| } |
| |
| int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, |
| struct sk_buff *skb, |
| struct sw_flow_key *key, bool log) |
| { |
| const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| u64 attrs = 0; |
| int err; |
| |
| err = parse_flow_nlattrs(attr, a, &attrs, log); |
| if (err) |
| return -EINVAL; |
| |
| /* Extract metadata from netlink attributes. */ |
| err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); |
| if (err) |
| return err; |
| |
| /* key_extract assumes that skb->protocol is set-up for |
| * layer 3 packets which is the case for other callers, |
| * in particular packets received from the network stack. |
| * Here the correct value can be set from the metadata |
| * extracted above. |
| * For L2 packet key eth type would be zero. skb protocol |
| * would be set to correct value later during key-extact. |
| */ |
| |
| skb->protocol = key->eth.type; |
| err = key_extract(skb, key); |
| if (err) |
| return err; |
| |
| /* Check that we have conntrack original direction tuple metadata only |
| * for packets for which it makes sense. Otherwise the key may be |
| * corrupted due to overlapping key fields. |
| */ |
| if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && |
| key->eth.type != htons(ETH_P_IP)) |
| return -EINVAL; |
| if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && |
| (key->eth.type != htons(ETH_P_IPV6) || |
| sw_flow_key_is_nd(key))) |
| return -EINVAL; |
| |
| return 0; |
| } |