blob: 2ae9669eb22c82fde4a1fe84727de289fea469ce [file] [log] [blame]
===================================
Documentation for /proc/sys/kernel/
===================================
.. See scripts/check-sysctl-docs to keep this up to date
Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
Copyright (c) 2009, Shen Feng<shen@cn.fujitsu.com>
For general info and legal blurb, please look in :doc:`index`.
------------------------------------------------------------------------------
This file contains documentation for the sysctl files in
``/proc/sys/kernel/`` and is valid for Linux kernel version 2.2.
The files in this directory can be used to tune and monitor
miscellaneous and general things in the operation of the Linux
kernel. Since some of the files *can* be used to screw up your
system, it is advisable to read both documentation and source
before actually making adjustments.
Currently, these files might (depending on your configuration)
show up in ``/proc/sys/kernel``:
.. contents:: :local:
acct
====
::
highwater lowwater frequency
If BSD-style process accounting is enabled these values control
its behaviour. If free space on filesystem where the log lives
goes below ``lowwater``% accounting suspends. If free space gets
above ``highwater``% accounting resumes. ``frequency`` determines
how often do we check the amount of free space (value is in
seconds). Default:
::
4 2 30
That is, suspend accounting if free space drops below 2%; resume it
if it increases to at least 4%; consider information about amount of
free space valid for 30 seconds.
acpi_video_flags
================
See :doc:`/power/video`. This allows the video resume mode to be set,
in a similar fashion to the ``acpi_sleep`` kernel parameter, by
combining the following values:
= =======
1 s3_bios
2 s3_mode
4 s3_beep
= =======
auto_msgmni
===========
This variable has no effect and may be removed in future kernel
releases. Reading it always returns 0.
Up to Linux 3.17, it enabled/disabled automatic recomputing of
`msgmni`_
upon memory add/remove or upon IPC namespace creation/removal.
Echoing "1" into this file enabled msgmni automatic recomputing.
Echoing "0" turned it off. The default value was 1.
bootloader_type (x86 only)
==========================
This gives the bootloader type number as indicated by the bootloader,
shifted left by 4, and OR'd with the low four bits of the bootloader
version. The reason for this encoding is that this used to match the
``type_of_loader`` field in the kernel header; the encoding is kept for
backwards compatibility. That is, if the full bootloader type number
is 0x15 and the full version number is 0x234, this file will contain
the value 340 = 0x154.
See the ``type_of_loader`` and ``ext_loader_type`` fields in
:doc:`/x86/boot` for additional information.
bootloader_version (x86 only)
=============================
The complete bootloader version number. In the example above, this
file will contain the value 564 = 0x234.
See the ``type_of_loader`` and ``ext_loader_ver`` fields in
:doc:`/x86/boot` for additional information.
bpf_stats_enabled
=================
Controls whether the kernel should collect statistics on BPF programs
(total time spent running, number of times run...). Enabling
statistics causes a slight reduction in performance on each program
run. The statistics can be seen using ``bpftool``.
= ===================================
0 Don't collect statistics (default).
1 Collect statistics.
= ===================================
cad_pid
=======
This is the pid which will be signalled on reboot (notably, by
Ctrl-Alt-Delete). Writing a value to this file which doesn't
correspond to a running process will result in ``-ESRCH``.
See also `ctrl-alt-del`_.
cap_last_cap
============
Highest valid capability of the running kernel. Exports
``CAP_LAST_CAP`` from the kernel.
core_pattern
============
``core_pattern`` is used to specify a core dumpfile pattern name.
* max length 127 characters; default value is "core"
* ``core_pattern`` is used as a pattern template for the output
filename; certain string patterns (beginning with '%') are
substituted with their actual values.
* backward compatibility with ``core_uses_pid``:
If ``core_pattern`` does not include "%p" (default does not)
and ``core_uses_pid`` is set, then .PID will be appended to
the filename.
* corename format specifiers
======== ==========================================
%<NUL> '%' is dropped
%% output one '%'
%p pid
%P global pid (init PID namespace)
%i tid
%I global tid (init PID namespace)
%u uid (in initial user namespace)
%g gid (in initial user namespace)
%d dump mode, matches ``PR_SET_DUMPABLE`` and
``/proc/sys/fs/suid_dumpable``
%s signal number
%t UNIX time of dump
%h hostname
%e executable filename (may be shortened)
%E executable path
%c maximum size of core file by resource limit RLIMIT_CORE
%<OTHER> both are dropped
======== ==========================================
* If the first character of the pattern is a '|', the kernel will treat
the rest of the pattern as a command to run. The core dump will be
written to the standard input of that program instead of to a file.
core_pipe_limit
===============
This sysctl is only applicable when `core_pattern`_ is configured to
pipe core files to a user space helper (when the first character of
``core_pattern`` is a '|', see above).
When collecting cores via a pipe to an application, it is occasionally
useful for the collecting application to gather data about the
crashing process from its ``/proc/pid`` directory.
In order to do this safely, the kernel must wait for the collecting
process to exit, so as not to remove the crashing processes proc files
prematurely.
This in turn creates the possibility that a misbehaving userspace
collecting process can block the reaping of a crashed process simply
by never exiting.
This sysctl defends against that.
It defines how many concurrent crashing processes may be piped to user
space applications in parallel.
If this value is exceeded, then those crashing processes above that
value are noted via the kernel log and their cores are skipped.
0 is a special value, indicating that unlimited processes may be
captured in parallel, but that no waiting will take place (i.e. the
collecting process is not guaranteed access to ``/proc/<crashing
pid>/``).
This value defaults to 0.
core_uses_pid
=============
The default coredump filename is "core". By setting
``core_uses_pid`` to 1, the coredump filename becomes core.PID.
If `core_pattern`_ does not include "%p" (default does not)
and ``core_uses_pid`` is set, then .PID will be appended to
the filename.
ctrl-alt-del
============
When the value in this file is 0, ctrl-alt-del is trapped and
sent to the ``init(1)`` program to handle a graceful restart.
When, however, the value is > 0, Linux's reaction to a Vulcan
Nerve Pinch (tm) will be an immediate reboot, without even
syncing its dirty buffers.
Note:
when a program (like dosemu) has the keyboard in 'raw'
mode, the ctrl-alt-del is intercepted by the program before it
ever reaches the kernel tty layer, and it's up to the program
to decide what to do with it.
dmesg_restrict
==============
This toggle indicates whether unprivileged users are prevented
from using ``dmesg(8)`` to view messages from the kernel's log
buffer.
When ``dmesg_restrict`` is set to 0 there are no restrictions.
When ``dmesg_restrict`` is set to 1, users must have
``CAP_SYSLOG`` to use ``dmesg(8)``.
The kernel config option ``CONFIG_SECURITY_DMESG_RESTRICT`` sets the
default value of ``dmesg_restrict``.
domainname & hostname
=====================
These files can be used to set the NIS/YP domainname and the
hostname of your box in exactly the same way as the commands
domainname and hostname, i.e.::
# echo "darkstar" > /proc/sys/kernel/hostname
# echo "mydomain" > /proc/sys/kernel/domainname
has the same effect as::
# hostname "darkstar"
# domainname "mydomain"
Note, however, that the classic darkstar.frop.org has the
hostname "darkstar" and DNS (Internet Domain Name Server)
domainname "frop.org", not to be confused with the NIS (Network
Information Service) or YP (Yellow Pages) domainname. These two
domain names are in general different. For a detailed discussion
see the ``hostname(1)`` man page.
firmware_config
===============
See :doc:`/driver-api/firmware/fallback-mechanisms`.
The entries in this directory allow the firmware loader helper
fallback to be controlled:
* ``force_sysfs_fallback``, when set to 1, forces the use of the
fallback;
* ``ignore_sysfs_fallback``, when set to 1, ignores any fallback.
ftrace_dump_on_oops
===================
Determines whether ``ftrace_dump()`` should be called on an oops (or
kernel panic). This will output the contents of the ftrace buffers to
the console. This is very useful for capturing traces that lead to
crashes and outputting them to a serial console.
= ===================================================
0 Disabled (default).
1 Dump buffers of all CPUs.
2 Dump the buffer of the CPU that triggered the oops.
= ===================================================
ftrace_enabled, stack_tracer_enabled
====================================
See :doc:`/trace/ftrace`.
hardlockup_all_cpu_backtrace
============================
This value controls the hard lockup detector behavior when a hard
lockup condition is detected as to whether or not to gather further
debug information. If enabled, arch-specific all-CPU stack dumping
will be initiated.
= ============================================
0 Do nothing. This is the default behavior.
1 On detection capture more debug information.
= ============================================
hardlockup_panic
================
This parameter can be used to control whether the kernel panics
when a hard lockup is detected.
= ===========================
0 Don't panic on hard lockup.
1 Panic on hard lockup.
= ===========================
See :doc:`/admin-guide/lockup-watchdogs` for more information.
This can also be set using the nmi_watchdog kernel parameter.
hotplug
=======
Path for the hotplug policy agent.
Default value is "``/sbin/hotplug``".
hung_task_all_cpu_backtrace
===========================
If this option is set, the kernel will send an NMI to all CPUs to dump
their backtraces when a hung task is detected. This file shows up if
CONFIG_DETECT_HUNG_TASK and CONFIG_SMP are enabled.
0: Won't show all CPUs backtraces when a hung task is detected.
This is the default behavior.
1: Will non-maskably interrupt all CPUs and dump their backtraces when
a hung task is detected.
hung_task_panic
===============
Controls the kernel's behavior when a hung task is detected.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
= =================================================
0 Continue operation. This is the default behavior.
1 Panic immediately.
= =================================================
hung_task_check_count
=====================
The upper bound on the number of tasks that are checked.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
hung_task_timeout_secs
======================
When a task in D state did not get scheduled
for more than this value report a warning.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
0 means infinite timeout, no checking is done.
Possible values to set are in range {0:``LONG_MAX``/``HZ``}.
hung_task_check_interval_secs
=============================
Hung task check interval. If hung task checking is enabled
(see `hung_task_timeout_secs`_), the check is done every
``hung_task_check_interval_secs`` seconds.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
0 (default) means use ``hung_task_timeout_secs`` as checking
interval.
Possible values to set are in range {0:``LONG_MAX``/``HZ``}.
hung_task_warnings
==================
The maximum number of warnings to report. During a check interval
if a hung task is detected, this value is decreased by 1.
When this value reaches 0, no more warnings will be reported.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-1: report an infinite number of warnings.
hyperv_record_panic_msg
=======================
Controls whether the panic kmsg data should be reported to Hyper-V.
= =========================================================
0 Do not report panic kmsg data.
1 Report the panic kmsg data. This is the default behavior.
= =========================================================
ignore-unaligned-usertrap
=========================
On architectures where unaligned accesses cause traps, and where this
feature is supported (``CONFIG_SYSCTL_ARCH_UNALIGN_NO_WARN``;
currently, ``arc`` and ``ia64``), controls whether all unaligned traps
are logged.
= =============================================================
0 Log all unaligned accesses.
1 Only warn the first time a process traps. This is the default
setting.
= =============================================================
See also `unaligned-trap`_ and `unaligned-dump-stack`_. On ``ia64``,
this allows system administrators to override the
``IA64_THREAD_UAC_NOPRINT`` ``prctl`` and avoid logs being flooded.
kexec_load_disabled
===================
A toggle indicating if the ``kexec_load`` syscall has been disabled.
This value defaults to 0 (false: ``kexec_load`` enabled), but can be
set to 1 (true: ``kexec_load`` disabled).
Once true, kexec can no longer be used, and the toggle cannot be set
back to false.
This allows a kexec image to be loaded before disabling the syscall,
allowing a system to set up (and later use) an image without it being
altered.
Generally used together with the `modules_disabled`_ sysctl.
kptr_restrict
=============
This toggle indicates whether restrictions are placed on
exposing kernel addresses via ``/proc`` and other interfaces.
When ``kptr_restrict`` is set to 0 (the default) the address is hashed
before printing.
(This is the equivalent to %p.)
When ``kptr_restrict`` is set to 1, kernel pointers printed using the
%pK format specifier will be replaced with 0s unless the user has
``CAP_SYSLOG`` and effective user and group ids are equal to the real
ids.
This is because %pK checks are done at read() time rather than open()
time, so if permissions are elevated between the open() and the read()
(e.g via a setuid binary) then %pK will not leak kernel pointers to
unprivileged users.
Note, this is a temporary solution only.
The correct long-term solution is to do the permission checks at
open() time.
Consider removing world read permissions from files that use %pK, and
using `dmesg_restrict`_ to protect against uses of %pK in ``dmesg(8)``
if leaking kernel pointer values to unprivileged users is a concern.
When ``kptr_restrict`` is set to 2, kernel pointers printed using
%pK will be replaced with 0s regardless of privileges.
modprobe
========
The full path to the usermode helper for autoloading kernel modules,
by default "/sbin/modprobe". This binary is executed when the kernel
requests a module. For example, if userspace passes an unknown
filesystem type to mount(), then the kernel will automatically request
the corresponding filesystem module by executing this usermode helper.
This usermode helper should insert the needed module into the kernel.
This sysctl only affects module autoloading. It has no effect on the
ability to explicitly insert modules.
This sysctl can be used to debug module loading requests::
echo '#! /bin/sh' > /tmp/modprobe
echo 'echo "$@" >> /tmp/modprobe.log' >> /tmp/modprobe
echo 'exec /sbin/modprobe "$@"' >> /tmp/modprobe
chmod a+x /tmp/modprobe
echo /tmp/modprobe > /proc/sys/kernel/modprobe
Alternatively, if this sysctl is set to the empty string, then module
autoloading is completely disabled. The kernel will not try to
execute a usermode helper at all, nor will it call the
kernel_module_request LSM hook.
If CONFIG_STATIC_USERMODEHELPER=y is set in the kernel configuration,
then the configured static usermode helper overrides this sysctl,
except that the empty string is still accepted to completely disable
module autoloading as described above.
modules_disabled
================
A toggle value indicating if modules are allowed to be loaded
in an otherwise modular kernel. This toggle defaults to off
(0), but can be set true (1). Once true, modules can be
neither loaded nor unloaded, and the toggle cannot be set back
to false. Generally used with the `kexec_load_disabled`_ toggle.
.. _msgmni:
msgmax, msgmnb, and msgmni
==========================
``msgmax`` is the maximum size of an IPC message, in bytes. 8192 by
default (``MSGMAX``).
``msgmnb`` is the maximum size of an IPC queue, in bytes. 16384 by
default (``MSGMNB``).
``msgmni`` is the maximum number of IPC queues. 32000 by default
(``MSGMNI``).
msg_next_id, sem_next_id, and shm_next_id (System V IPC)
========================================================
These three toggles allows to specify desired id for next allocated IPC
object: message, semaphore or shared memory respectively.
By default they are equal to -1, which means generic allocation logic.
Possible values to set are in range {0:``INT_MAX``}.
Notes:
1) kernel doesn't guarantee, that new object will have desired id. So,
it's up to userspace, how to handle an object with "wrong" id.
2) Toggle with non-default value will be set back to -1 by kernel after
successful IPC object allocation. If an IPC object allocation syscall
fails, it is undefined if the value remains unmodified or is reset to -1.
ngroups_max
===========
Maximum number of supplementary groups, _i.e._ the maximum size which
``setgroups`` will accept. Exports ``NGROUPS_MAX`` from the kernel.
nmi_watchdog
============
This parameter can be used to control the NMI watchdog
(i.e. the hard lockup detector) on x86 systems.
= =================================
0 Disable the hard lockup detector.
1 Enable the hard lockup detector.
= =================================
The hard lockup detector monitors each CPU for its ability to respond to
timer interrupts. The mechanism utilizes CPU performance counter registers
that are programmed to generate Non-Maskable Interrupts (NMIs) periodically
while a CPU is busy. Hence, the alternative name 'NMI watchdog'.
The NMI watchdog is disabled by default if the kernel is running as a guest
in a KVM virtual machine. This default can be overridden by adding::
nmi_watchdog=1
to the guest kernel command line (see :doc:`/admin-guide/kernel-parameters`).
numa_balancing
==============
Enables/disables automatic page fault based NUMA memory
balancing. Memory is moved automatically to nodes
that access it often.
Enables/disables automatic NUMA memory balancing. On NUMA machines, there
is a performance penalty if remote memory is accessed by a CPU. When this
feature is enabled the kernel samples what task thread is accessing memory
by periodically unmapping pages and later trapping a page fault. At the
time of the page fault, it is determined if the data being accessed should
be migrated to a local memory node.
The unmapping of pages and trapping faults incur additional overhead that
ideally is offset by improved memory locality but there is no universal
guarantee. If the target workload is already bound to NUMA nodes then this
feature should be disabled. Otherwise, if the system overhead from the
feature is too high then the rate the kernel samples for NUMA hinting
faults may be controlled by the `numa_balancing_scan_period_min_ms,
numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
numa_balancing_scan_size_mb`_, and numa_balancing_settle_count sysctls.
numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
===============================================================================================================================
Automatic NUMA balancing scans tasks address space and unmaps pages to
detect if pages are properly placed or if the data should be migrated to a
memory node local to where the task is running. Every "scan delay" the task
scans the next "scan size" number of pages in its address space. When the
end of the address space is reached the scanner restarts from the beginning.
In combination, the "scan delay" and "scan size" determine the scan rate.
When "scan delay" decreases, the scan rate increases. The scan delay and
hence the scan rate of every task is adaptive and depends on historical
behaviour. If pages are properly placed then the scan delay increases,
otherwise the scan delay decreases. The "scan size" is not adaptive but
the higher the "scan size", the higher the scan rate.
Higher scan rates incur higher system overhead as page faults must be
trapped and potentially data must be migrated. However, the higher the scan
rate, the more quickly a tasks memory is migrated to a local node if the
workload pattern changes and minimises performance impact due to remote
memory accesses. These sysctls control the thresholds for scan delays and
the number of pages scanned.
``numa_balancing_scan_period_min_ms`` is the minimum time in milliseconds to
scan a tasks virtual memory. It effectively controls the maximum scanning
rate for each task.
``numa_balancing_scan_delay_ms`` is the starting "scan delay" used for a task
when it initially forks.
``numa_balancing_scan_period_max_ms`` is the maximum time in milliseconds to
scan a tasks virtual memory. It effectively controls the minimum scanning
rate for each task.
``numa_balancing_scan_size_mb`` is how many megabytes worth of pages are
scanned for a given scan.
oops_all_cpu_backtrace
======================
If this option is set, the kernel will send an NMI to all CPUs to dump
their backtraces when an oops event occurs. It should be used as a last
resort in case a panic cannot be triggered (to protect VMs running, for
example) or kdump can't be collected. This file shows up if CONFIG_SMP
is enabled.
0: Won't show all CPUs backtraces when an oops is detected.
This is the default behavior.
1: Will non-maskably interrupt all CPUs and dump their backtraces when
an oops event is detected.
osrelease, ostype & version
===========================
::
# cat osrelease
2.1.88
# cat ostype
Linux
# cat version
#5 Wed Feb 25 21:49:24 MET 1998
The files ``osrelease`` and ``ostype`` should be clear enough.
``version``
needs a little more clarification however. The '#5' means that
this is the fifth kernel built from this source base and the
date behind it indicates the time the kernel was built.
The only way to tune these values is to rebuild the kernel :-)
overflowgid & overflowuid
=========================
if your architecture did not always support 32-bit UIDs (i.e. arm,
i386, m68k, sh, and sparc32), a fixed UID and GID will be returned to
applications that use the old 16-bit UID/GID system calls, if the
actual UID or GID would exceed 65535.
These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.
panic
=====
The value in this file determines the behaviour of the kernel on a
panic:
* if zero, the kernel will loop forever;
* if negative, the kernel will reboot immediately;
* if positive, the kernel will reboot after the corresponding number
of seconds.
When you use the software watchdog, the recommended setting is 60.
panic_on_io_nmi
===============
Controls the kernel's behavior when a CPU receives an NMI caused by
an IO error.
= ==================================================================
0 Try to continue operation (default).
1 Panic immediately. The IO error triggered an NMI. This indicates a
serious system condition which could result in IO data corruption.
Rather than continuing, panicking might be a better choice. Some
servers issue this sort of NMI when the dump button is pushed,
and you can use this option to take a crash dump.
= ==================================================================
panic_on_oops
=============
Controls the kernel's behaviour when an oops or BUG is encountered.
= ===================================================================
0 Try to continue operation.
1 Panic immediately. If the `panic` sysctl is also non-zero then the
machine will be rebooted.
= ===================================================================
panic_on_stackoverflow
======================
Controls the kernel's behavior when detecting the overflows of
kernel, IRQ and exception stacks except a user stack.
This file shows up if ``CONFIG_DEBUG_STACKOVERFLOW`` is enabled.
= ==========================
0 Try to continue operation.
1 Panic immediately.
= ==========================
panic_on_unrecovered_nmi
========================
The default Linux behaviour on an NMI of either memory or unknown is
to continue operation. For many environments such as scientific
computing it is preferable that the box is taken out and the error
dealt with than an uncorrected parity/ECC error get propagated.
A small number of systems do generate NMIs for bizarre random reasons
such as power management so the default is off. That sysctl works like
the existing panic controls already in that directory.
panic_on_warn
=============
Calls panic() in the WARN() path when set to 1. This is useful to avoid
a kernel rebuild when attempting to kdump at the location of a WARN().
= ================================================
0 Only WARN(), default behaviour.
1 Call panic() after printing out WARN() location.
= ================================================
panic_print
===========
Bitmask for printing system info when panic happens. User can chose
combination of the following bits:
===== ============================================
bit 0 print all tasks info
bit 1 print system memory info
bit 2 print timer info
bit 3 print locks info if ``CONFIG_LOCKDEP`` is on
bit 4 print ftrace buffer
===== ============================================
So for example to print tasks and memory info on panic, user can::
echo 3 > /proc/sys/kernel/panic_print
panic_on_rcu_stall
==================
When set to 1, calls panic() after RCU stall detection messages. This
is useful to define the root cause of RCU stalls using a vmcore.
= ============================================================
0 Do not panic() when RCU stall takes place, default behavior.
1 panic() after printing RCU stall messages.
= ============================================================
perf_cpu_time_max_percent
=========================
Hints to the kernel how much CPU time it should be allowed to
use to handle perf sampling events. If the perf subsystem
is informed that its samples are exceeding this limit, it
will drop its sampling frequency to attempt to reduce its CPU
usage.
Some perf sampling happens in NMIs. If these samples
unexpectedly take too long to execute, the NMIs can become
stacked up next to each other so much that nothing else is
allowed to execute.
===== ========================================================
0 Disable the mechanism. Do not monitor or correct perf's
sampling rate no matter how CPU time it takes.
1-100 Attempt to throttle perf's sample rate to this
percentage of CPU. Note: the kernel calculates an
"expected" length of each sample event. 100 here means
100% of that expected length. Even if this is set to
100, you may still see sample throttling if this
length is exceeded. Set to 0 if you truly do not care
how much CPU is consumed.
===== ========================================================
perf_event_paranoid
===================
Controls use of the performance events system by unprivileged
users (without CAP_PERFMON). The default value is 2.
For backward compatibility reasons access to system performance
monitoring and observability remains open for CAP_SYS_ADMIN
privileged processes but CAP_SYS_ADMIN usage for secure system
performance monitoring and observability operations is discouraged
with respect to CAP_PERFMON use cases.
=== ==================================================================
-1 Allow use of (almost) all events by all users.
Ignore mlock limit after perf_event_mlock_kb without
``CAP_IPC_LOCK``.
>=0 Disallow ftrace function tracepoint by users without
``CAP_PERFMON``.
Disallow raw tracepoint access by users without ``CAP_PERFMON``.
>=1 Disallow CPU event access by users without ``CAP_PERFMON``.
>=2 Disallow kernel profiling by users without ``CAP_PERFMON``.
=== ==================================================================
perf_event_max_stack
====================
Controls maximum number of stack frames to copy for (``attr.sample_type &
PERF_SAMPLE_CALLCHAIN``) configured events, for instance, when using
'``perf record -g``' or '``perf trace --call-graph fp``'.
This can only be done when no events are in use that have callchains
enabled, otherwise writing to this file will return ``-EBUSY``.
The default value is 127.
perf_event_mlock_kb
===================
Control size of per-cpu ring buffer not counted agains mlock limit.
The default value is 512 + 1 page
perf_event_max_contexts_per_stack
=================================
Controls maximum number of stack frame context entries for
(``attr.sample_type & PERF_SAMPLE_CALLCHAIN``) configured events, for
instance, when using '``perf record -g``' or '``perf trace --call-graph fp``'.
This can only be done when no events are in use that have callchains
enabled, otherwise writing to this file will return ``-EBUSY``.
The default value is 8.
pid_max
=======
PID allocation wrap value. When the kernel's next PID value
reaches this value, it wraps back to a minimum PID value.
PIDs of value ``pid_max`` or larger are not allocated.
ns_last_pid
===========
The last pid allocated in the current (the one task using this sysctl
lives in) pid namespace. When selecting a pid for a next task on fork
kernel tries to allocate a number starting from this one.
powersave-nap (PPC only)
========================
If set, Linux-PPC will use the 'nap' mode of powersaving,
otherwise the 'doze' mode will be used.
==============================================================
printk
======
The four values in printk denote: ``console_loglevel``,
``default_message_loglevel``, ``minimum_console_loglevel`` and
``default_console_loglevel`` respectively.
These values influence printk() behavior when printing or
logging error messages. See '``man 2 syslog``' for more info on
the different loglevels.
======================== =====================================
console_loglevel messages with a higher priority than
this will be printed to the console
default_message_loglevel messages without an explicit priority
will be printed with this priority
minimum_console_loglevel minimum (highest) value to which
console_loglevel can be set
default_console_loglevel default value for console_loglevel
======================== =====================================
printk_delay
============
Delay each printk message in ``printk_delay`` milliseconds
Value from 0 - 10000 is allowed.
printk_ratelimit
================
Some warning messages are rate limited. ``printk_ratelimit`` specifies
the minimum length of time between these messages (in seconds).
The default value is 5 seconds.
A value of 0 will disable rate limiting.
printk_ratelimit_burst
======================
While long term we enforce one message per `printk_ratelimit`_
seconds, we do allow a burst of messages to pass through.
``printk_ratelimit_burst`` specifies the number of messages we can
send before ratelimiting kicks in.
The default value is 10 messages.
printk_devkmsg
==============
Control the logging to ``/dev/kmsg`` from userspace:
========= =============================================
ratelimit default, ratelimited
on unlimited logging to /dev/kmsg from userspace
off logging to /dev/kmsg disabled
========= =============================================
The kernel command line parameter ``printk.devkmsg=`` overrides this and is
a one-time setting until next reboot: once set, it cannot be changed by
this sysctl interface anymore.
==============================================================
pty
===
See Documentation/filesystems/devpts.rst.
random
======
This is a directory, with the following entries:
* ``boot_id``: a UUID generated the first time this is retrieved, and
unvarying after that;
* ``entropy_avail``: the pool's entropy count, in bits;
* ``poolsize``: the entropy pool size, in bits;
* ``urandom_min_reseed_secs``: obsolete (used to determine the minimum
number of seconds between urandom pool reseeding).
* ``uuid``: a UUID generated every time this is retrieved (this can
thus be used to generate UUIDs at will);
* ``write_wakeup_threshold``: when the entropy count drops below this
(as a number of bits), processes waiting to write to ``/dev/random``
are woken up.
If ``drivers/char/random.c`` is built with ``ADD_INTERRUPT_BENCH``
defined, these additional entries are present:
* ``add_interrupt_avg_cycles``: the average number of cycles between
interrupts used to feed the pool;
* ``add_interrupt_avg_deviation``: the standard deviation seen on the
number of cycles between interrupts used to feed the pool.
randomize_va_space
==================
This option can be used to select the type of process address
space randomization that is used in the system, for architectures
that support this feature.
== ===========================================================================
0 Turn the process address space randomization off. This is the
default for architectures that do not support this feature anyways,
and kernels that are booted with the "norandmaps" parameter.
1 Make the addresses of mmap base, stack and VDSO page randomized.
This, among other things, implies that shared libraries will be
loaded to random addresses. Also for PIE-linked binaries, the
location of code start is randomized. This is the default if the
``CONFIG_COMPAT_BRK`` option is enabled.
2 Additionally enable heap randomization. This is the default if
``CONFIG_COMPAT_BRK`` is disabled.
There are a few legacy applications out there (such as some ancient
versions of libc.so.5 from 1996) that assume that brk area starts
just after the end of the code+bss. These applications break when
start of the brk area is randomized. There are however no known
non-legacy applications that would be broken this way, so for most
systems it is safe to choose full randomization.
Systems with ancient and/or broken binaries should be configured
with ``CONFIG_COMPAT_BRK`` enabled, which excludes the heap from process
address space randomization.
== ===========================================================================
real-root-dev
=============
See :doc:`/admin-guide/initrd`.
reboot-cmd (SPARC only)
=======================
??? This seems to be a way to give an argument to the Sparc
ROM/Flash boot loader. Maybe to tell it what to do after
rebooting. ???
sched_energy_aware
==================
Enables/disables Energy Aware Scheduling (EAS). EAS starts
automatically on platforms where it can run (that is,
platforms with asymmetric CPU topologies and having an Energy
Model available). If your platform happens to meet the
requirements for EAS but you do not want to use it, change
this value to 0.
sched_schedstats
================
Enables/disables scheduler statistics. Enabling this feature
incurs a small amount of overhead in the scheduler but is
useful for debugging and performance tuning.
sched_util_clamp_min:
=====================
Max allowed *minimum* utilization.
Default value is 1024, which is the maximum possible value.
It means that any requested uclamp.min value cannot be greater than
sched_util_clamp_min, i.e., it is restricted to the range
[0:sched_util_clamp_min].
sched_util_clamp_max:
=====================
Max allowed *maximum* utilization.
Default value is 1024, which is the maximum possible value.
It means that any requested uclamp.max value cannot be greater than
sched_util_clamp_max, i.e., it is restricted to the range
[0:sched_util_clamp_max].
sched_util_clamp_min_rt_default:
================================
By default Linux is tuned for performance. Which means that RT tasks always run
at the highest frequency and most capable (highest capacity) CPU (in
heterogeneous systems).
Uclamp achieves this by setting the requested uclamp.min of all RT tasks to
1024 by default, which effectively boosts the tasks to run at the highest
frequency and biases them to run on the biggest CPU.
This knob allows admins to change the default behavior when uclamp is being
used. In battery powered devices particularly, running at the maximum
capacity and frequency will increase energy consumption and shorten the battery
life.
This knob is only effective for RT tasks which the user hasn't modified their
requested uclamp.min value via sched_setattr() syscall.
This knob will not escape the range constraint imposed by sched_util_clamp_min
defined above.
For example if
sched_util_clamp_min_rt_default = 800
sched_util_clamp_min = 600
Then the boost will be clamped to 600 because 800 is outside of the permissible
range of [0:600]. This could happen for instance if a powersave mode will
restrict all boosts temporarily by modifying sched_util_clamp_min. As soon as
this restriction is lifted, the requested sched_util_clamp_min_rt_default
will take effect.
seccomp
=======
See :doc:`/userspace-api/seccomp_filter`.
sg-big-buff
===========
This file shows the size of the generic SCSI (sg) buffer.
You can't tune it just yet, but you could change it on
compile time by editing ``include/scsi/sg.h`` and changing
the value of ``SG_BIG_BUFF``.
There shouldn't be any reason to change this value. If
you can come up with one, you probably know what you
are doing anyway :)
shmall
======
This parameter sets the total amount of shared memory pages that
can be used system wide. Hence, ``shmall`` should always be at least
``ceil(shmmax/PAGE_SIZE)``.
If you are not sure what the default ``PAGE_SIZE`` is on your Linux
system, you can run the following command::
# getconf PAGE_SIZE
shmmax
======
This value can be used to query and set the run time limit
on the maximum shared memory segment size that can be created.
Shared memory segments up to 1Gb are now supported in the
kernel. This value defaults to ``SHMMAX``.
shmmni
======
This value determines the maximum number of shared memory segments.
4096 by default (``SHMMNI``).
shm_rmid_forced
===============
Linux lets you set resource limits, including how much memory one
process can consume, via ``setrlimit(2)``. Unfortunately, shared memory
segments are allowed to exist without association with any process, and
thus might not be counted against any resource limits. If enabled,
shared memory segments are automatically destroyed when their attach
count becomes zero after a detach or a process termination. It will
also destroy segments that were created, but never attached to, on exit
from the process. The only use left for ``IPC_RMID`` is to immediately
destroy an unattached segment. Of course, this breaks the way things are
defined, so some applications might stop working. Note that this
feature will do you no good unless you also configure your resource
limits (in particular, ``RLIMIT_AS`` and ``RLIMIT_NPROC``). Most systems don't
need this.
Note that if you change this from 0 to 1, already created segments
without users and with a dead originative process will be destroyed.
sysctl_writes_strict
====================
Control how file position affects the behavior of updating sysctl values
via the ``/proc/sys`` interface:
== ======================================================================
-1 Legacy per-write sysctl value handling, with no printk warnings.
Each write syscall must fully contain the sysctl value to be
written, and multiple writes on the same sysctl file descriptor
will rewrite the sysctl value, regardless of file position.
0 Same behavior as above, but warn about processes that perform writes
to a sysctl file descriptor when the file position is not 0.
1 (default) Respect file position when writing sysctl strings. Multiple
writes will append to the sysctl value buffer. Anything past the max
length of the sysctl value buffer will be ignored. Writes to numeric
sysctl entries must always be at file position 0 and the value must
be fully contained in the buffer sent in the write syscall.
== ======================================================================
softlockup_all_cpu_backtrace
============================
This value controls the soft lockup detector thread's behavior
when a soft lockup condition is detected as to whether or not
to gather further debug information. If enabled, each cpu will
be issued an NMI and instructed to capture stack trace.
This feature is only applicable for architectures which support
NMI.
= ============================================
0 Do nothing. This is the default behavior.
1 On detection capture more debug information.
= ============================================
softlockup_panic
=================
This parameter can be used to control whether the kernel panics
when a soft lockup is detected.
= ============================================
0 Don't panic on soft lockup.
1 Panic on soft lockup.
= ============================================
This can also be set using the softlockup_panic kernel parameter.
soft_watchdog
=============
This parameter can be used to control the soft lockup detector.
= =================================
0 Disable the soft lockup detector.
1 Enable the soft lockup detector.
= =================================
The soft lockup detector monitors CPUs for threads that are hogging the CPUs
without rescheduling voluntarily, and thus prevent the 'watchdog/N' threads
from running. The mechanism depends on the CPUs ability to respond to timer
interrupts which are needed for the 'watchdog/N' threads to be woken up by
the watchdog timer function, otherwise the NMI watchdog — if enabled — can
detect a hard lockup condition.
stack_erasing
=============
This parameter can be used to control kernel stack erasing at the end
of syscalls for kernels built with ``CONFIG_GCC_PLUGIN_STACKLEAK``.
That erasing reduces the information which kernel stack leak bugs
can reveal and blocks some uninitialized stack variable attacks.
The tradeoff is the performance impact: on a single CPU system kernel
compilation sees a 1% slowdown, other systems and workloads may vary.
= ====================================================================
0 Kernel stack erasing is disabled, STACKLEAK_METRICS are not updated.
1 Kernel stack erasing is enabled (default), it is performed before
returning to the userspace at the end of syscalls.
= ====================================================================
stop-a (SPARC only)
===================
Controls Stop-A:
= ====================================
0 Stop-A has no effect.
1 Stop-A breaks to the PROM (default).
= ====================================
Stop-A is always enabled on a panic, so that the user can return to
the boot PROM.
sysrq
=====
See :doc:`/admin-guide/sysrq`.
tainted
=======
Non-zero if the kernel has been tainted. Numeric values, which can be
ORed together. The letters are seen in "Tainted" line of Oops reports.
====== ===== ==============================================================
1 `(P)` proprietary module was loaded
2 `(F)` module was force loaded
4 `(S)` SMP kernel oops on an officially SMP incapable processor
8 `(R)` module was force unloaded
16 `(M)` processor reported a Machine Check Exception (MCE)
32 `(B)` bad page referenced or some unexpected page flags
64 `(U)` taint requested by userspace application
128 `(D)` kernel died recently, i.e. there was an OOPS or BUG
256 `(A)` an ACPI table was overridden by user
512 `(W)` kernel issued warning
1024 `(C)` staging driver was loaded
2048 `(I)` workaround for bug in platform firmware applied
4096 `(O)` externally-built ("out-of-tree") module was loaded
8192 `(E)` unsigned module was loaded
16384 `(L)` soft lockup occurred
32768 `(K)` kernel has been live patched
65536 `(X)` Auxiliary taint, defined and used by for distros
131072 `(T)` The kernel was built with the struct randomization plugin
====== ===== ==============================================================
See :doc:`/admin-guide/tainted-kernels` for more information.
Note:
writes to this sysctl interface will fail with ``EINVAL`` if the kernel is
booted with the command line option ``panic_on_taint=<bitmask>,nousertaint``
and any of the ORed together values being written to ``tainted`` match with
the bitmask declared on panic_on_taint.
See :doc:`/admin-guide/kernel-parameters` for more details on that particular
kernel command line option and its optional ``nousertaint`` switch.
threads-max
===========
This value controls the maximum number of threads that can be created
using ``fork()``.
During initialization the kernel sets this value such that even if the
maximum number of threads is created, the thread structures occupy only
a part (1/8th) of the available RAM pages.
The minimum value that can be written to ``threads-max`` is 1.
The maximum value that can be written to ``threads-max`` is given by the
constant ``FUTEX_TID_MASK`` (0x3fffffff).
If a value outside of this range is written to ``threads-max`` an
``EINVAL`` error occurs.
traceoff_on_warning
===================
When set, disables tracing (see :doc:`/trace/ftrace`) when a
``WARN()`` is hit.
tracepoint_printk
=================
When tracepoints are sent to printk() (enabled by the ``tp_printk``
boot parameter), this entry provides runtime control::
echo 0 > /proc/sys/kernel/tracepoint_printk
will stop tracepoints from being sent to printk(), and::
echo 1 > /proc/sys/kernel/tracepoint_printk
will send them to printk() again.
This only works if the kernel was booted with ``tp_printk`` enabled.
See :doc:`/admin-guide/kernel-parameters` and
:doc:`/trace/boottime-trace`.
.. _unaligned-dump-stack:
unaligned-dump-stack (ia64)
===========================
When logging unaligned accesses, controls whether the stack is
dumped.
= ===================================================
0 Do not dump the stack. This is the default setting.
1 Dump the stack.
= ===================================================
See also `ignore-unaligned-usertrap`_.
unaligned-trap
==============
On architectures where unaligned accesses cause traps, and where this
feature is supported (``CONFIG_SYSCTL_ARCH_UNALIGN_ALLOW``; currently,
``arc`` and ``parisc``), controls whether unaligned traps are caught
and emulated (instead of failing).
= ========================================================
0 Do not emulate unaligned accesses.
1 Emulate unaligned accesses. This is the default setting.
= ========================================================
See also `ignore-unaligned-usertrap`_.
unknown_nmi_panic
=================
The value in this file affects behavior of handling NMI. When the
value is non-zero, unknown NMI is trapped and then panic occurs. At
that time, kernel debugging information is displayed on console.
NMI switch that most IA32 servers have fires unknown NMI up, for
example. If a system hangs up, try pressing the NMI switch.
unprivileged_bpf_disabled
=========================
Writing 1 to this entry will disable unprivileged calls to ``bpf()``;
once disabled, calling ``bpf()`` without ``CAP_SYS_ADMIN`` will return
``-EPERM``.
Once set, this can't be cleared.
watchdog
========
This parameter can be used to disable or enable the soft lockup detector
*and* the NMI watchdog (i.e. the hard lockup detector) at the same time.
= ==============================
0 Disable both lockup detectors.
1 Enable both lockup detectors.
= ==============================
The soft lockup detector and the NMI watchdog can also be disabled or
enabled individually, using the ``soft_watchdog`` and ``nmi_watchdog``
parameters.
If the ``watchdog`` parameter is read, for example by executing::
cat /proc/sys/kernel/watchdog
the output of this command (0 or 1) shows the logical OR of
``soft_watchdog`` and ``nmi_watchdog``.
watchdog_cpumask
================
This value can be used to control on which cpus the watchdog may run.
The default cpumask is all possible cores, but if ``NO_HZ_FULL`` is
enabled in the kernel config, and cores are specified with the
``nohz_full=`` boot argument, those cores are excluded by default.
Offline cores can be included in this mask, and if the core is later
brought online, the watchdog will be started based on the mask value.
Typically this value would only be touched in the ``nohz_full`` case
to re-enable cores that by default were not running the watchdog,
if a kernel lockup was suspected on those cores.
The argument value is the standard cpulist format for cpumasks,
so for example to enable the watchdog on cores 0, 2, 3, and 4 you
might say::
echo 0,2-4 > /proc/sys/kernel/watchdog_cpumask
watchdog_thresh
===============
This value can be used to control the frequency of hrtimer and NMI
events and the soft and hard lockup thresholds. The default threshold
is 10 seconds.
The softlockup threshold is (``2 * watchdog_thresh``). Setting this
tunable to zero will disable lockup detection altogether.