| /* |
| * core.c -- Voltage/Current Regulator framework. |
| * |
| * Copyright 2007, 2008 Wolfson Microelectronics PLC. |
| * Copyright 2008 SlimLogic Ltd. |
| * |
| * Author: Liam Girdwood <lrg@slimlogic.co.uk> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/debugfs.h> |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/async.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| #include <linux/suspend.h> |
| #include <linux/delay.h> |
| #include <linux/gpio.h> |
| #include <linux/of.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/of_regulator.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/regulator/driver.h> |
| #include <linux/regulator/machine.h> |
| #include <linux/module.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/regulator.h> |
| |
| #include "dummy.h" |
| #include "internal.h" |
| |
| #define rdev_crit(rdev, fmt, ...) \ |
| pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
| #define rdev_err(rdev, fmt, ...) \ |
| pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
| #define rdev_warn(rdev, fmt, ...) \ |
| pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
| #define rdev_info(rdev, fmt, ...) \ |
| pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
| #define rdev_dbg(rdev, fmt, ...) \ |
| pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
| |
| static DEFINE_MUTEX(regulator_list_mutex); |
| static LIST_HEAD(regulator_list); |
| static LIST_HEAD(regulator_map_list); |
| static LIST_HEAD(regulator_ena_gpio_list); |
| static bool has_full_constraints; |
| static bool board_wants_dummy_regulator; |
| |
| static struct dentry *debugfs_root; |
| |
| /* |
| * struct regulator_map |
| * |
| * Used to provide symbolic supply names to devices. |
| */ |
| struct regulator_map { |
| struct list_head list; |
| const char *dev_name; /* The dev_name() for the consumer */ |
| const char *supply; |
| struct regulator_dev *regulator; |
| }; |
| |
| /* |
| * struct regulator_enable_gpio |
| * |
| * Management for shared enable GPIO pin |
| */ |
| struct regulator_enable_gpio { |
| struct list_head list; |
| int gpio; |
| u32 enable_count; /* a number of enabled shared GPIO */ |
| u32 request_count; /* a number of requested shared GPIO */ |
| unsigned int ena_gpio_invert:1; |
| }; |
| |
| static int _regulator_is_enabled(struct regulator_dev *rdev); |
| static int _regulator_disable(struct regulator_dev *rdev); |
| static int _regulator_get_voltage(struct regulator_dev *rdev); |
| static int _regulator_get_current_limit(struct regulator_dev *rdev); |
| static unsigned int _regulator_get_mode(struct regulator_dev *rdev); |
| static void _notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data); |
| static int _regulator_do_set_voltage(struct regulator_dev *rdev, |
| int min_uV, int max_uV); |
| static struct regulator *create_regulator(struct regulator_dev *rdev, |
| struct device *dev, |
| const char *supply_name); |
| |
| static const char *rdev_get_name(struct regulator_dev *rdev) |
| { |
| if (rdev->constraints && rdev->constraints->name) |
| return rdev->constraints->name; |
| else if (rdev->desc->name) |
| return rdev->desc->name; |
| else |
| return ""; |
| } |
| |
| /** |
| * of_get_regulator - get a regulator device node based on supply name |
| * @dev: Device pointer for the consumer (of regulator) device |
| * @supply: regulator supply name |
| * |
| * Extract the regulator device node corresponding to the supply name. |
| * returns the device node corresponding to the regulator if found, else |
| * returns NULL. |
| */ |
| static struct device_node *of_get_regulator(struct device *dev, const char *supply) |
| { |
| struct device_node *regnode = NULL; |
| char prop_name[32]; /* 32 is max size of property name */ |
| |
| dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); |
| |
| snprintf(prop_name, 32, "%s-supply", supply); |
| regnode = of_parse_phandle(dev->of_node, prop_name, 0); |
| |
| if (!regnode) { |
| dev_dbg(dev, "Looking up %s property in node %s failed", |
| prop_name, dev->of_node->full_name); |
| return NULL; |
| } |
| return regnode; |
| } |
| |
| static int _regulator_can_change_status(struct regulator_dev *rdev) |
| { |
| if (!rdev->constraints) |
| return 0; |
| |
| if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Platform voltage constraint check */ |
| static int regulator_check_voltage(struct regulator_dev *rdev, |
| int *min_uV, int *max_uV) |
| { |
| BUG_ON(*min_uV > *max_uV); |
| |
| if (!rdev->constraints) { |
| rdev_err(rdev, "no constraints\n"); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { |
| rdev_err(rdev, "operation not allowed\n"); |
| return -EPERM; |
| } |
| |
| if (*max_uV > rdev->constraints->max_uV) |
| *max_uV = rdev->constraints->max_uV; |
| if (*min_uV < rdev->constraints->min_uV) |
| *min_uV = rdev->constraints->min_uV; |
| |
| if (*min_uV > *max_uV) { |
| rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", |
| *min_uV, *max_uV); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Make sure we select a voltage that suits the needs of all |
| * regulator consumers |
| */ |
| static int regulator_check_consumers(struct regulator_dev *rdev, |
| int *min_uV, int *max_uV) |
| { |
| struct regulator *regulator; |
| |
| list_for_each_entry(regulator, &rdev->consumer_list, list) { |
| /* |
| * Assume consumers that didn't say anything are OK |
| * with anything in the constraint range. |
| */ |
| if (!regulator->min_uV && !regulator->max_uV) |
| continue; |
| |
| if (*max_uV > regulator->max_uV) |
| *max_uV = regulator->max_uV; |
| if (*min_uV < regulator->min_uV) |
| *min_uV = regulator->min_uV; |
| } |
| |
| if (*min_uV > *max_uV) { |
| rdev_err(rdev, "Restricting voltage, %u-%uuV\n", |
| *min_uV, *max_uV); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* current constraint check */ |
| static int regulator_check_current_limit(struct regulator_dev *rdev, |
| int *min_uA, int *max_uA) |
| { |
| BUG_ON(*min_uA > *max_uA); |
| |
| if (!rdev->constraints) { |
| rdev_err(rdev, "no constraints\n"); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { |
| rdev_err(rdev, "operation not allowed\n"); |
| return -EPERM; |
| } |
| |
| if (*max_uA > rdev->constraints->max_uA) |
| *max_uA = rdev->constraints->max_uA; |
| if (*min_uA < rdev->constraints->min_uA) |
| *min_uA = rdev->constraints->min_uA; |
| |
| if (*min_uA > *max_uA) { |
| rdev_err(rdev, "unsupportable current range: %d-%duA\n", |
| *min_uA, *max_uA); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* operating mode constraint check */ |
| static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) |
| { |
| switch (*mode) { |
| case REGULATOR_MODE_FAST: |
| case REGULATOR_MODE_NORMAL: |
| case REGULATOR_MODE_IDLE: |
| case REGULATOR_MODE_STANDBY: |
| break; |
| default: |
| rdev_err(rdev, "invalid mode %x specified\n", *mode); |
| return -EINVAL; |
| } |
| |
| if (!rdev->constraints) { |
| rdev_err(rdev, "no constraints\n"); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { |
| rdev_err(rdev, "operation not allowed\n"); |
| return -EPERM; |
| } |
| |
| /* The modes are bitmasks, the most power hungry modes having |
| * the lowest values. If the requested mode isn't supported |
| * try higher modes. */ |
| while (*mode) { |
| if (rdev->constraints->valid_modes_mask & *mode) |
| return 0; |
| *mode /= 2; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* dynamic regulator mode switching constraint check */ |
| static int regulator_check_drms(struct regulator_dev *rdev) |
| { |
| if (!rdev->constraints) { |
| rdev_err(rdev, "no constraints\n"); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { |
| rdev_err(rdev, "operation not allowed\n"); |
| return -EPERM; |
| } |
| return 0; |
| } |
| |
| static ssize_t regulator_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| ssize_t ret; |
| |
| mutex_lock(&rdev->mutex); |
| ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); |
| mutex_unlock(&rdev->mutex); |
| |
| return ret; |
| } |
| static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); |
| |
| static ssize_t regulator_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); |
| } |
| static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); |
| |
| static ssize_t name_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%s\n", rdev_get_name(rdev)); |
| } |
| static DEVICE_ATTR_RO(name); |
| |
| static ssize_t regulator_print_opmode(char *buf, int mode) |
| { |
| switch (mode) { |
| case REGULATOR_MODE_FAST: |
| return sprintf(buf, "fast\n"); |
| case REGULATOR_MODE_NORMAL: |
| return sprintf(buf, "normal\n"); |
| case REGULATOR_MODE_IDLE: |
| return sprintf(buf, "idle\n"); |
| case REGULATOR_MODE_STANDBY: |
| return sprintf(buf, "standby\n"); |
| } |
| return sprintf(buf, "unknown\n"); |
| } |
| |
| static ssize_t regulator_opmode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, _regulator_get_mode(rdev)); |
| } |
| static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); |
| |
| static ssize_t regulator_print_state(char *buf, int state) |
| { |
| if (state > 0) |
| return sprintf(buf, "enabled\n"); |
| else if (state == 0) |
| return sprintf(buf, "disabled\n"); |
| else |
| return sprintf(buf, "unknown\n"); |
| } |
| |
| static ssize_t regulator_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| ssize_t ret; |
| |
| mutex_lock(&rdev->mutex); |
| ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); |
| mutex_unlock(&rdev->mutex); |
| |
| return ret; |
| } |
| static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); |
| |
| static ssize_t regulator_status_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| int status; |
| char *label; |
| |
| status = rdev->desc->ops->get_status(rdev); |
| if (status < 0) |
| return status; |
| |
| switch (status) { |
| case REGULATOR_STATUS_OFF: |
| label = "off"; |
| break; |
| case REGULATOR_STATUS_ON: |
| label = "on"; |
| break; |
| case REGULATOR_STATUS_ERROR: |
| label = "error"; |
| break; |
| case REGULATOR_STATUS_FAST: |
| label = "fast"; |
| break; |
| case REGULATOR_STATUS_NORMAL: |
| label = "normal"; |
| break; |
| case REGULATOR_STATUS_IDLE: |
| label = "idle"; |
| break; |
| case REGULATOR_STATUS_STANDBY: |
| label = "standby"; |
| break; |
| case REGULATOR_STATUS_BYPASS: |
| label = "bypass"; |
| break; |
| case REGULATOR_STATUS_UNDEFINED: |
| label = "undefined"; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| return sprintf(buf, "%s\n", label); |
| } |
| static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); |
| |
| static ssize_t regulator_min_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->min_uA); |
| } |
| static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); |
| |
| static ssize_t regulator_max_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->max_uA); |
| } |
| static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); |
| |
| static ssize_t regulator_min_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->min_uV); |
| } |
| static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); |
| |
| static ssize_t regulator_max_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->max_uV); |
| } |
| static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); |
| |
| static ssize_t regulator_total_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| struct regulator *regulator; |
| int uA = 0; |
| |
| mutex_lock(&rdev->mutex); |
| list_for_each_entry(regulator, &rdev->consumer_list, list) |
| uA += regulator->uA_load; |
| mutex_unlock(&rdev->mutex); |
| return sprintf(buf, "%d\n", uA); |
| } |
| static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); |
| |
| static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| return sprintf(buf, "%d\n", rdev->use_count); |
| } |
| static DEVICE_ATTR_RO(num_users); |
| |
| static ssize_t type_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| switch (rdev->desc->type) { |
| case REGULATOR_VOLTAGE: |
| return sprintf(buf, "voltage\n"); |
| case REGULATOR_CURRENT: |
| return sprintf(buf, "current\n"); |
| } |
| return sprintf(buf, "unknown\n"); |
| } |
| static DEVICE_ATTR_RO(type); |
| |
| static ssize_t regulator_suspend_mem_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); |
| } |
| static DEVICE_ATTR(suspend_mem_microvolts, 0444, |
| regulator_suspend_mem_uV_show, NULL); |
| |
| static ssize_t regulator_suspend_disk_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); |
| } |
| static DEVICE_ATTR(suspend_disk_microvolts, 0444, |
| regulator_suspend_disk_uV_show, NULL); |
| |
| static ssize_t regulator_suspend_standby_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); |
| } |
| static DEVICE_ATTR(suspend_standby_microvolts, 0444, |
| regulator_suspend_standby_uV_show, NULL); |
| |
| static ssize_t regulator_suspend_mem_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_mem.mode); |
| } |
| static DEVICE_ATTR(suspend_mem_mode, 0444, |
| regulator_suspend_mem_mode_show, NULL); |
| |
| static ssize_t regulator_suspend_disk_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_disk.mode); |
| } |
| static DEVICE_ATTR(suspend_disk_mode, 0444, |
| regulator_suspend_disk_mode_show, NULL); |
| |
| static ssize_t regulator_suspend_standby_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_standby.mode); |
| } |
| static DEVICE_ATTR(suspend_standby_mode, 0444, |
| regulator_suspend_standby_mode_show, NULL); |
| |
| static ssize_t regulator_suspend_mem_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_mem.enabled); |
| } |
| static DEVICE_ATTR(suspend_mem_state, 0444, |
| regulator_suspend_mem_state_show, NULL); |
| |
| static ssize_t regulator_suspend_disk_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_disk.enabled); |
| } |
| static DEVICE_ATTR(suspend_disk_state, 0444, |
| regulator_suspend_disk_state_show, NULL); |
| |
| static ssize_t regulator_suspend_standby_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_standby.enabled); |
| } |
| static DEVICE_ATTR(suspend_standby_state, 0444, |
| regulator_suspend_standby_state_show, NULL); |
| |
| static ssize_t regulator_bypass_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| const char *report; |
| bool bypass; |
| int ret; |
| |
| ret = rdev->desc->ops->get_bypass(rdev, &bypass); |
| |
| if (ret != 0) |
| report = "unknown"; |
| else if (bypass) |
| report = "enabled"; |
| else |
| report = "disabled"; |
| |
| return sprintf(buf, "%s\n", report); |
| } |
| static DEVICE_ATTR(bypass, 0444, |
| regulator_bypass_show, NULL); |
| |
| /* |
| * These are the only attributes are present for all regulators. |
| * Other attributes are a function of regulator functionality. |
| */ |
| static struct attribute *regulator_dev_attrs[] = { |
| &dev_attr_name.attr, |
| &dev_attr_num_users.attr, |
| &dev_attr_type.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(regulator_dev); |
| |
| static void regulator_dev_release(struct device *dev) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| kfree(rdev); |
| } |
| |
| static struct class regulator_class = { |
| .name = "regulator", |
| .dev_release = regulator_dev_release, |
| .dev_groups = regulator_dev_groups, |
| }; |
| |
| /* Calculate the new optimum regulator operating mode based on the new total |
| * consumer load. All locks held by caller */ |
| static void drms_uA_update(struct regulator_dev *rdev) |
| { |
| struct regulator *sibling; |
| int current_uA = 0, output_uV, input_uV, err; |
| unsigned int mode; |
| |
| err = regulator_check_drms(rdev); |
| if (err < 0 || !rdev->desc->ops->get_optimum_mode || |
| (!rdev->desc->ops->get_voltage && |
| !rdev->desc->ops->get_voltage_sel) || |
| !rdev->desc->ops->set_mode) |
| return; |
| |
| /* get output voltage */ |
| output_uV = _regulator_get_voltage(rdev); |
| if (output_uV <= 0) |
| return; |
| |
| /* get input voltage */ |
| input_uV = 0; |
| if (rdev->supply) |
| input_uV = regulator_get_voltage(rdev->supply); |
| if (input_uV <= 0) |
| input_uV = rdev->constraints->input_uV; |
| if (input_uV <= 0) |
| return; |
| |
| /* calc total requested load */ |
| list_for_each_entry(sibling, &rdev->consumer_list, list) |
| current_uA += sibling->uA_load; |
| |
| /* now get the optimum mode for our new total regulator load */ |
| mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, |
| output_uV, current_uA); |
| |
| /* check the new mode is allowed */ |
| err = regulator_mode_constrain(rdev, &mode); |
| if (err == 0) |
| rdev->desc->ops->set_mode(rdev, mode); |
| } |
| |
| static int suspend_set_state(struct regulator_dev *rdev, |
| struct regulator_state *rstate) |
| { |
| int ret = 0; |
| |
| /* If we have no suspend mode configration don't set anything; |
| * only warn if the driver implements set_suspend_voltage or |
| * set_suspend_mode callback. |
| */ |
| if (!rstate->enabled && !rstate->disabled) { |
| if (rdev->desc->ops->set_suspend_voltage || |
| rdev->desc->ops->set_suspend_mode) |
| rdev_warn(rdev, "No configuration\n"); |
| return 0; |
| } |
| |
| if (rstate->enabled && rstate->disabled) { |
| rdev_err(rdev, "invalid configuration\n"); |
| return -EINVAL; |
| } |
| |
| if (rstate->enabled && rdev->desc->ops->set_suspend_enable) |
| ret = rdev->desc->ops->set_suspend_enable(rdev); |
| else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) |
| ret = rdev->desc->ops->set_suspend_disable(rdev); |
| else /* OK if set_suspend_enable or set_suspend_disable is NULL */ |
| ret = 0; |
| |
| if (ret < 0) { |
| rdev_err(rdev, "failed to enabled/disable\n"); |
| return ret; |
| } |
| |
| if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { |
| ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set voltage\n"); |
| return ret; |
| } |
| } |
| |
| if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { |
| ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set mode\n"); |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| /* locks held by caller */ |
| static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) |
| { |
| if (!rdev->constraints) |
| return -EINVAL; |
| |
| switch (state) { |
| case PM_SUSPEND_STANDBY: |
| return suspend_set_state(rdev, |
| &rdev->constraints->state_standby); |
| case PM_SUSPEND_MEM: |
| return suspend_set_state(rdev, |
| &rdev->constraints->state_mem); |
| case PM_SUSPEND_MAX: |
| return suspend_set_state(rdev, |
| &rdev->constraints->state_disk); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void print_constraints(struct regulator_dev *rdev) |
| { |
| struct regulation_constraints *constraints = rdev->constraints; |
| char buf[80] = ""; |
| int count = 0; |
| int ret; |
| |
| if (constraints->min_uV && constraints->max_uV) { |
| if (constraints->min_uV == constraints->max_uV) |
| count += sprintf(buf + count, "%d mV ", |
| constraints->min_uV / 1000); |
| else |
| count += sprintf(buf + count, "%d <--> %d mV ", |
| constraints->min_uV / 1000, |
| constraints->max_uV / 1000); |
| } |
| |
| if (!constraints->min_uV || |
| constraints->min_uV != constraints->max_uV) { |
| ret = _regulator_get_voltage(rdev); |
| if (ret > 0) |
| count += sprintf(buf + count, "at %d mV ", ret / 1000); |
| } |
| |
| if (constraints->uV_offset) |
| count += sprintf(buf, "%dmV offset ", |
| constraints->uV_offset / 1000); |
| |
| if (constraints->min_uA && constraints->max_uA) { |
| if (constraints->min_uA == constraints->max_uA) |
| count += sprintf(buf + count, "%d mA ", |
| constraints->min_uA / 1000); |
| else |
| count += sprintf(buf + count, "%d <--> %d mA ", |
| constraints->min_uA / 1000, |
| constraints->max_uA / 1000); |
| } |
| |
| if (!constraints->min_uA || |
| constraints->min_uA != constraints->max_uA) { |
| ret = _regulator_get_current_limit(rdev); |
| if (ret > 0) |
| count += sprintf(buf + count, "at %d mA ", ret / 1000); |
| } |
| |
| if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) |
| count += sprintf(buf + count, "fast "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) |
| count += sprintf(buf + count, "normal "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) |
| count += sprintf(buf + count, "idle "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) |
| count += sprintf(buf + count, "standby"); |
| |
| if (!count) |
| sprintf(buf, "no parameters"); |
| |
| rdev_info(rdev, "%s\n", buf); |
| |
| if ((constraints->min_uV != constraints->max_uV) && |
| !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) |
| rdev_warn(rdev, |
| "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); |
| } |
| |
| static int machine_constraints_voltage(struct regulator_dev *rdev, |
| struct regulation_constraints *constraints) |
| { |
| struct regulator_ops *ops = rdev->desc->ops; |
| int ret; |
| |
| /* do we need to apply the constraint voltage */ |
| if (rdev->constraints->apply_uV && |
| rdev->constraints->min_uV == rdev->constraints->max_uV) { |
| ret = _regulator_do_set_voltage(rdev, |
| rdev->constraints->min_uV, |
| rdev->constraints->max_uV); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to apply %duV constraint\n", |
| rdev->constraints->min_uV); |
| return ret; |
| } |
| } |
| |
| /* constrain machine-level voltage specs to fit |
| * the actual range supported by this regulator. |
| */ |
| if (ops->list_voltage && rdev->desc->n_voltages) { |
| int count = rdev->desc->n_voltages; |
| int i; |
| int min_uV = INT_MAX; |
| int max_uV = INT_MIN; |
| int cmin = constraints->min_uV; |
| int cmax = constraints->max_uV; |
| |
| /* it's safe to autoconfigure fixed-voltage supplies |
| and the constraints are used by list_voltage. */ |
| if (count == 1 && !cmin) { |
| cmin = 1; |
| cmax = INT_MAX; |
| constraints->min_uV = cmin; |
| constraints->max_uV = cmax; |
| } |
| |
| /* voltage constraints are optional */ |
| if ((cmin == 0) && (cmax == 0)) |
| return 0; |
| |
| /* else require explicit machine-level constraints */ |
| if (cmin <= 0 || cmax <= 0 || cmax < cmin) { |
| rdev_err(rdev, "invalid voltage constraints\n"); |
| return -EINVAL; |
| } |
| |
| /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ |
| for (i = 0; i < count; i++) { |
| int value; |
| |
| value = ops->list_voltage(rdev, i); |
| if (value <= 0) |
| continue; |
| |
| /* maybe adjust [min_uV..max_uV] */ |
| if (value >= cmin && value < min_uV) |
| min_uV = value; |
| if (value <= cmax && value > max_uV) |
| max_uV = value; |
| } |
| |
| /* final: [min_uV..max_uV] valid iff constraints valid */ |
| if (max_uV < min_uV) { |
| rdev_err(rdev, |
| "unsupportable voltage constraints %u-%uuV\n", |
| min_uV, max_uV); |
| return -EINVAL; |
| } |
| |
| /* use regulator's subset of machine constraints */ |
| if (constraints->min_uV < min_uV) { |
| rdev_dbg(rdev, "override min_uV, %d -> %d\n", |
| constraints->min_uV, min_uV); |
| constraints->min_uV = min_uV; |
| } |
| if (constraints->max_uV > max_uV) { |
| rdev_dbg(rdev, "override max_uV, %d -> %d\n", |
| constraints->max_uV, max_uV); |
| constraints->max_uV = max_uV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * set_machine_constraints - sets regulator constraints |
| * @rdev: regulator source |
| * @constraints: constraints to apply |
| * |
| * Allows platform initialisation code to define and constrain |
| * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: |
| * Constraints *must* be set by platform code in order for some |
| * regulator operations to proceed i.e. set_voltage, set_current_limit, |
| * set_mode. |
| */ |
| static int set_machine_constraints(struct regulator_dev *rdev, |
| const struct regulation_constraints *constraints) |
| { |
| int ret = 0; |
| struct regulator_ops *ops = rdev->desc->ops; |
| |
| if (constraints) |
| rdev->constraints = kmemdup(constraints, sizeof(*constraints), |
| GFP_KERNEL); |
| else |
| rdev->constraints = kzalloc(sizeof(*constraints), |
| GFP_KERNEL); |
| if (!rdev->constraints) |
| return -ENOMEM; |
| |
| ret = machine_constraints_voltage(rdev, rdev->constraints); |
| if (ret != 0) |
| goto out; |
| |
| /* do we need to setup our suspend state */ |
| if (rdev->constraints->initial_state) { |
| ret = suspend_prepare(rdev, rdev->constraints->initial_state); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set suspend state\n"); |
| goto out; |
| } |
| } |
| |
| if (rdev->constraints->initial_mode) { |
| if (!ops->set_mode) { |
| rdev_err(rdev, "no set_mode operation\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = ops->set_mode(rdev, rdev->constraints->initial_mode); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set initial mode: %d\n", ret); |
| goto out; |
| } |
| } |
| |
| /* If the constraints say the regulator should be on at this point |
| * and we have control then make sure it is enabled. |
| */ |
| if ((rdev->constraints->always_on || rdev->constraints->boot_on) && |
| ops->enable) { |
| ret = ops->enable(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to enable\n"); |
| goto out; |
| } |
| } |
| |
| if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) |
| && ops->set_ramp_delay) { |
| ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set ramp_delay\n"); |
| goto out; |
| } |
| } |
| |
| print_constraints(rdev); |
| return 0; |
| out: |
| kfree(rdev->constraints); |
| rdev->constraints = NULL; |
| return ret; |
| } |
| |
| /** |
| * set_supply - set regulator supply regulator |
| * @rdev: regulator name |
| * @supply_rdev: supply regulator name |
| * |
| * Called by platform initialisation code to set the supply regulator for this |
| * regulator. This ensures that a regulators supply will also be enabled by the |
| * core if it's child is enabled. |
| */ |
| static int set_supply(struct regulator_dev *rdev, |
| struct regulator_dev *supply_rdev) |
| { |
| int err; |
| |
| rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); |
| |
| rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); |
| if (rdev->supply == NULL) { |
| err = -ENOMEM; |
| return err; |
| } |
| supply_rdev->open_count++; |
| |
| return 0; |
| } |
| |
| /** |
| * set_consumer_device_supply - Bind a regulator to a symbolic supply |
| * @rdev: regulator source |
| * @consumer_dev_name: dev_name() string for device supply applies to |
| * @supply: symbolic name for supply |
| * |
| * Allows platform initialisation code to map physical regulator |
| * sources to symbolic names for supplies for use by devices. Devices |
| * should use these symbolic names to request regulators, avoiding the |
| * need to provide board-specific regulator names as platform data. |
| */ |
| static int set_consumer_device_supply(struct regulator_dev *rdev, |
| const char *consumer_dev_name, |
| const char *supply) |
| { |
| struct regulator_map *node; |
| int has_dev; |
| |
| if (supply == NULL) |
| return -EINVAL; |
| |
| if (consumer_dev_name != NULL) |
| has_dev = 1; |
| else |
| has_dev = 0; |
| |
| list_for_each_entry(node, ®ulator_map_list, list) { |
| if (node->dev_name && consumer_dev_name) { |
| if (strcmp(node->dev_name, consumer_dev_name) != 0) |
| continue; |
| } else if (node->dev_name || consumer_dev_name) { |
| continue; |
| } |
| |
| if (strcmp(node->supply, supply) != 0) |
| continue; |
| |
| pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", |
| consumer_dev_name, |
| dev_name(&node->regulator->dev), |
| node->regulator->desc->name, |
| supply, |
| dev_name(&rdev->dev), rdev_get_name(rdev)); |
| return -EBUSY; |
| } |
| |
| node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); |
| if (node == NULL) |
| return -ENOMEM; |
| |
| node->regulator = rdev; |
| node->supply = supply; |
| |
| if (has_dev) { |
| node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); |
| if (node->dev_name == NULL) { |
| kfree(node); |
| return -ENOMEM; |
| } |
| } |
| |
| list_add(&node->list, ®ulator_map_list); |
| return 0; |
| } |
| |
| static void unset_regulator_supplies(struct regulator_dev *rdev) |
| { |
| struct regulator_map *node, *n; |
| |
| list_for_each_entry_safe(node, n, ®ulator_map_list, list) { |
| if (rdev == node->regulator) { |
| list_del(&node->list); |
| kfree(node->dev_name); |
| kfree(node); |
| } |
| } |
| } |
| |
| #define REG_STR_SIZE 64 |
| |
| static struct regulator *create_regulator(struct regulator_dev *rdev, |
| struct device *dev, |
| const char *supply_name) |
| { |
| struct regulator *regulator; |
| char buf[REG_STR_SIZE]; |
| int err, size; |
| |
| regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); |
| if (regulator == NULL) |
| return NULL; |
| |
| mutex_lock(&rdev->mutex); |
| regulator->rdev = rdev; |
| list_add(®ulator->list, &rdev->consumer_list); |
| |
| if (dev) { |
| regulator->dev = dev; |
| |
| /* Add a link to the device sysfs entry */ |
| size = scnprintf(buf, REG_STR_SIZE, "%s-%s", |
| dev->kobj.name, supply_name); |
| if (size >= REG_STR_SIZE) |
| goto overflow_err; |
| |
| regulator->supply_name = kstrdup(buf, GFP_KERNEL); |
| if (regulator->supply_name == NULL) |
| goto overflow_err; |
| |
| err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, |
| buf); |
| if (err) { |
| rdev_warn(rdev, "could not add device link %s err %d\n", |
| dev->kobj.name, err); |
| /* non-fatal */ |
| } |
| } else { |
| regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); |
| if (regulator->supply_name == NULL) |
| goto overflow_err; |
| } |
| |
| regulator->debugfs = debugfs_create_dir(regulator->supply_name, |
| rdev->debugfs); |
| if (!regulator->debugfs) { |
| rdev_warn(rdev, "Failed to create debugfs directory\n"); |
| } else { |
| debugfs_create_u32("uA_load", 0444, regulator->debugfs, |
| ®ulator->uA_load); |
| debugfs_create_u32("min_uV", 0444, regulator->debugfs, |
| ®ulator->min_uV); |
| debugfs_create_u32("max_uV", 0444, regulator->debugfs, |
| ®ulator->max_uV); |
| } |
| |
| /* |
| * Check now if the regulator is an always on regulator - if |
| * it is then we don't need to do nearly so much work for |
| * enable/disable calls. |
| */ |
| if (!_regulator_can_change_status(rdev) && |
| _regulator_is_enabled(rdev)) |
| regulator->always_on = true; |
| |
| mutex_unlock(&rdev->mutex); |
| return regulator; |
| overflow_err: |
| list_del(®ulator->list); |
| kfree(regulator); |
| mutex_unlock(&rdev->mutex); |
| return NULL; |
| } |
| |
| static int _regulator_get_enable_time(struct regulator_dev *rdev) |
| { |
| if (!rdev->desc->ops->enable_time) |
| return rdev->desc->enable_time; |
| return rdev->desc->ops->enable_time(rdev); |
| } |
| |
| static struct regulator_dev *regulator_dev_lookup(struct device *dev, |
| const char *supply, |
| int *ret) |
| { |
| struct regulator_dev *r; |
| struct device_node *node; |
| struct regulator_map *map; |
| const char *devname = NULL; |
| |
| /* first do a dt based lookup */ |
| if (dev && dev->of_node) { |
| node = of_get_regulator(dev, supply); |
| if (node) { |
| list_for_each_entry(r, ®ulator_list, list) |
| if (r->dev.parent && |
| node == r->dev.of_node) |
| return r; |
| } else { |
| /* |
| * If we couldn't even get the node then it's |
| * not just that the device didn't register |
| * yet, there's no node and we'll never |
| * succeed. |
| */ |
| *ret = -ENODEV; |
| } |
| } |
| |
| /* if not found, try doing it non-dt way */ |
| if (dev) |
| devname = dev_name(dev); |
| |
| list_for_each_entry(r, ®ulator_list, list) |
| if (strcmp(rdev_get_name(r), supply) == 0) |
| return r; |
| |
| list_for_each_entry(map, ®ulator_map_list, list) { |
| /* If the mapping has a device set up it must match */ |
| if (map->dev_name && |
| (!devname || strcmp(map->dev_name, devname))) |
| continue; |
| |
| if (strcmp(map->supply, supply) == 0) |
| return map->regulator; |
| } |
| |
| |
| return NULL; |
| } |
| |
| /* Internal regulator request function */ |
| static struct regulator *_regulator_get(struct device *dev, const char *id, |
| bool exclusive) |
| { |
| struct regulator_dev *rdev; |
| struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); |
| const char *devname = NULL; |
| int ret = 0; |
| |
| if (id == NULL) { |
| pr_err("get() with no identifier\n"); |
| return regulator; |
| } |
| |
| if (dev) |
| devname = dev_name(dev); |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| rdev = regulator_dev_lookup(dev, id, &ret); |
| if (rdev) |
| goto found; |
| |
| /* |
| * If we have return value from dev_lookup fail, we do not expect to |
| * succeed, so, quit with appropriate error value |
| */ |
| if (ret) { |
| regulator = ERR_PTR(ret); |
| goto out; |
| } |
| |
| if (board_wants_dummy_regulator) { |
| rdev = dummy_regulator_rdev; |
| goto found; |
| } |
| |
| #ifdef CONFIG_REGULATOR_DUMMY |
| if (!devname) |
| devname = "deviceless"; |
| |
| /* If the board didn't flag that it was fully constrained then |
| * substitute in a dummy regulator so consumers can continue. |
| */ |
| if (!has_full_constraints) { |
| pr_warn("%s supply %s not found, using dummy regulator\n", |
| devname, id); |
| rdev = dummy_regulator_rdev; |
| goto found; |
| } |
| #endif |
| |
| mutex_unlock(®ulator_list_mutex); |
| return regulator; |
| |
| found: |
| if (rdev->exclusive) { |
| regulator = ERR_PTR(-EPERM); |
| goto out; |
| } |
| |
| if (exclusive && rdev->open_count) { |
| regulator = ERR_PTR(-EBUSY); |
| goto out; |
| } |
| |
| if (!try_module_get(rdev->owner)) |
| goto out; |
| |
| regulator = create_regulator(rdev, dev, id); |
| if (regulator == NULL) { |
| regulator = ERR_PTR(-ENOMEM); |
| module_put(rdev->owner); |
| goto out; |
| } |
| |
| rdev->open_count++; |
| if (exclusive) { |
| rdev->exclusive = 1; |
| |
| ret = _regulator_is_enabled(rdev); |
| if (ret > 0) |
| rdev->use_count = 1; |
| else |
| rdev->use_count = 0; |
| } |
| |
| out: |
| mutex_unlock(®ulator_list_mutex); |
| |
| return regulator; |
| } |
| |
| /** |
| * regulator_get - lookup and obtain a reference to a regulator. |
| * @dev: device for regulator "consumer" |
| * @id: Supply name or regulator ID. |
| * |
| * Returns a struct regulator corresponding to the regulator producer, |
| * or IS_ERR() condition containing errno. |
| * |
| * Use of supply names configured via regulator_set_device_supply() is |
| * strongly encouraged. It is recommended that the supply name used |
| * should match the name used for the supply and/or the relevant |
| * device pins in the datasheet. |
| */ |
| struct regulator *regulator_get(struct device *dev, const char *id) |
| { |
| return _regulator_get(dev, id, false); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get); |
| |
| /** |
| * regulator_get_exclusive - obtain exclusive access to a regulator. |
| * @dev: device for regulator "consumer" |
| * @id: Supply name or regulator ID. |
| * |
| * Returns a struct regulator corresponding to the regulator producer, |
| * or IS_ERR() condition containing errno. Other consumers will be |
| * unable to obtain this reference is held and the use count for the |
| * regulator will be initialised to reflect the current state of the |
| * regulator. |
| * |
| * This is intended for use by consumers which cannot tolerate shared |
| * use of the regulator such as those which need to force the |
| * regulator off for correct operation of the hardware they are |
| * controlling. |
| * |
| * Use of supply names configured via regulator_set_device_supply() is |
| * strongly encouraged. It is recommended that the supply name used |
| * should match the name used for the supply and/or the relevant |
| * device pins in the datasheet. |
| */ |
| struct regulator *regulator_get_exclusive(struct device *dev, const char *id) |
| { |
| return _regulator_get(dev, id, true); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_exclusive); |
| |
| /** |
| * regulator_get_optional - obtain optional access to a regulator. |
| * @dev: device for regulator "consumer" |
| * @id: Supply name or regulator ID. |
| * |
| * Returns a struct regulator corresponding to the regulator producer, |
| * or IS_ERR() condition containing errno. Other consumers will be |
| * unable to obtain this reference is held and the use count for the |
| * regulator will be initialised to reflect the current state of the |
| * regulator. |
| * |
| * This is intended for use by consumers for devices which can have |
| * some supplies unconnected in normal use, such as some MMC devices. |
| * It can allow the regulator core to provide stub supplies for other |
| * supplies requested using normal regulator_get() calls without |
| * disrupting the operation of drivers that can handle absent |
| * supplies. |
| * |
| * Use of supply names configured via regulator_set_device_supply() is |
| * strongly encouraged. It is recommended that the supply name used |
| * should match the name used for the supply and/or the relevant |
| * device pins in the datasheet. |
| */ |
| struct regulator *regulator_get_optional(struct device *dev, const char *id) |
| { |
| return _regulator_get(dev, id, 0); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_optional); |
| |
| /* Locks held by regulator_put() */ |
| static void _regulator_put(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev; |
| |
| if (regulator == NULL || IS_ERR(regulator)) |
| return; |
| |
| rdev = regulator->rdev; |
| |
| debugfs_remove_recursive(regulator->debugfs); |
| |
| /* remove any sysfs entries */ |
| if (regulator->dev) |
| sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); |
| kfree(regulator->supply_name); |
| list_del(®ulator->list); |
| kfree(regulator); |
| |
| rdev->open_count--; |
| rdev->exclusive = 0; |
| |
| module_put(rdev->owner); |
| } |
| |
| /** |
| * regulator_put - "free" the regulator source |
| * @regulator: regulator source |
| * |
| * Note: drivers must ensure that all regulator_enable calls made on this |
| * regulator source are balanced by regulator_disable calls prior to calling |
| * this function. |
| */ |
| void regulator_put(struct regulator *regulator) |
| { |
| mutex_lock(®ulator_list_mutex); |
| _regulator_put(regulator); |
| mutex_unlock(®ulator_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(regulator_put); |
| |
| /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ |
| static int regulator_ena_gpio_request(struct regulator_dev *rdev, |
| const struct regulator_config *config) |
| { |
| struct regulator_enable_gpio *pin; |
| int ret; |
| |
| list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { |
| if (pin->gpio == config->ena_gpio) { |
| rdev_dbg(rdev, "GPIO %d is already used\n", |
| config->ena_gpio); |
| goto update_ena_gpio_to_rdev; |
| } |
| } |
| |
| ret = gpio_request_one(config->ena_gpio, |
| GPIOF_DIR_OUT | config->ena_gpio_flags, |
| rdev_get_name(rdev)); |
| if (ret) |
| return ret; |
| |
| pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); |
| if (pin == NULL) { |
| gpio_free(config->ena_gpio); |
| return -ENOMEM; |
| } |
| |
| pin->gpio = config->ena_gpio; |
| pin->ena_gpio_invert = config->ena_gpio_invert; |
| list_add(&pin->list, ®ulator_ena_gpio_list); |
| |
| update_ena_gpio_to_rdev: |
| pin->request_count++; |
| rdev->ena_pin = pin; |
| return 0; |
| } |
| |
| static void regulator_ena_gpio_free(struct regulator_dev *rdev) |
| { |
| struct regulator_enable_gpio *pin, *n; |
| |
| if (!rdev->ena_pin) |
| return; |
| |
| /* Free the GPIO only in case of no use */ |
| list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { |
| if (pin->gpio == rdev->ena_pin->gpio) { |
| if (pin->request_count <= 1) { |
| pin->request_count = 0; |
| gpio_free(pin->gpio); |
| list_del(&pin->list); |
| kfree(pin); |
| } else { |
| pin->request_count--; |
| } |
| } |
| } |
| } |
| |
| /** |
| * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control |
| * @rdev: regulator_dev structure |
| * @enable: enable GPIO at initial use? |
| * |
| * GPIO is enabled in case of initial use. (enable_count is 0) |
| * GPIO is disabled when it is not shared any more. (enable_count <= 1) |
| */ |
| static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) |
| { |
| struct regulator_enable_gpio *pin = rdev->ena_pin; |
| |
| if (!pin) |
| return -EINVAL; |
| |
| if (enable) { |
| /* Enable GPIO at initial use */ |
| if (pin->enable_count == 0) |
| gpio_set_value_cansleep(pin->gpio, |
| !pin->ena_gpio_invert); |
| |
| pin->enable_count++; |
| } else { |
| if (pin->enable_count > 1) { |
| pin->enable_count--; |
| return 0; |
| } |
| |
| /* Disable GPIO if not used */ |
| if (pin->enable_count <= 1) { |
| gpio_set_value_cansleep(pin->gpio, |
| pin->ena_gpio_invert); |
| pin->enable_count = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int _regulator_do_enable(struct regulator_dev *rdev) |
| { |
| int ret, delay; |
| |
| /* Query before enabling in case configuration dependent. */ |
| ret = _regulator_get_enable_time(rdev); |
| if (ret >= 0) { |
| delay = ret; |
| } else { |
| rdev_warn(rdev, "enable_time() failed: %d\n", ret); |
| delay = 0; |
| } |
| |
| trace_regulator_enable(rdev_get_name(rdev)); |
| |
| if (rdev->ena_pin) { |
| ret = regulator_ena_gpio_ctrl(rdev, true); |
| if (ret < 0) |
| return ret; |
| rdev->ena_gpio_state = 1; |
| } else if (rdev->desc->ops->enable) { |
| ret = rdev->desc->ops->enable(rdev); |
| if (ret < 0) |
| return ret; |
| } else { |
| return -EINVAL; |
| } |
| |
| /* Allow the regulator to ramp; it would be useful to extend |
| * this for bulk operations so that the regulators can ramp |
| * together. */ |
| trace_regulator_enable_delay(rdev_get_name(rdev)); |
| |
| if (delay >= 1000) { |
| mdelay(delay / 1000); |
| udelay(delay % 1000); |
| } else if (delay) { |
| udelay(delay); |
| } |
| |
| trace_regulator_enable_complete(rdev_get_name(rdev)); |
| |
| return 0; |
| } |
| |
| /* locks held by regulator_enable() */ |
| static int _regulator_enable(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| /* check voltage and requested load before enabling */ |
| if (rdev->constraints && |
| (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) |
| drms_uA_update(rdev); |
| |
| if (rdev->use_count == 0) { |
| /* The regulator may on if it's not switchable or left on */ |
| ret = _regulator_is_enabled(rdev); |
| if (ret == -EINVAL || ret == 0) { |
| if (!_regulator_can_change_status(rdev)) |
| return -EPERM; |
| |
| ret = _regulator_do_enable(rdev); |
| if (ret < 0) |
| return ret; |
| |
| } else if (ret < 0) { |
| rdev_err(rdev, "is_enabled() failed: %d\n", ret); |
| return ret; |
| } |
| /* Fallthrough on positive return values - already enabled */ |
| } |
| |
| rdev->use_count++; |
| |
| return 0; |
| } |
| |
| /** |
| * regulator_enable - enable regulator output |
| * @regulator: regulator source |
| * |
| * Request that the regulator be enabled with the regulator output at |
| * the predefined voltage or current value. Calls to regulator_enable() |
| * must be balanced with calls to regulator_disable(). |
| * |
| * NOTE: the output value can be set by other drivers, boot loader or may be |
| * hardwired in the regulator. |
| */ |
| int regulator_enable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret = 0; |
| |
| if (regulator->always_on) |
| return 0; |
| |
| if (rdev->supply) { |
| ret = regulator_enable(rdev->supply); |
| if (ret != 0) |
| return ret; |
| } |
| |
| mutex_lock(&rdev->mutex); |
| ret = _regulator_enable(rdev); |
| mutex_unlock(&rdev->mutex); |
| |
| if (ret != 0 && rdev->supply) |
| regulator_disable(rdev->supply); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_enable); |
| |
| static int _regulator_do_disable(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| trace_regulator_disable(rdev_get_name(rdev)); |
| |
| if (rdev->ena_pin) { |
| ret = regulator_ena_gpio_ctrl(rdev, false); |
| if (ret < 0) |
| return ret; |
| rdev->ena_gpio_state = 0; |
| |
| } else if (rdev->desc->ops->disable) { |
| ret = rdev->desc->ops->disable(rdev); |
| if (ret != 0) |
| return ret; |
| } |
| |
| trace_regulator_disable_complete(rdev_get_name(rdev)); |
| |
| _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, |
| NULL); |
| return 0; |
| } |
| |
| /* locks held by regulator_disable() */ |
| static int _regulator_disable(struct regulator_dev *rdev) |
| { |
| int ret = 0; |
| |
| if (WARN(rdev->use_count <= 0, |
| "unbalanced disables for %s\n", rdev_get_name(rdev))) |
| return -EIO; |
| |
| /* are we the last user and permitted to disable ? */ |
| if (rdev->use_count == 1 && |
| (rdev->constraints && !rdev->constraints->always_on)) { |
| |
| /* we are last user */ |
| if (_regulator_can_change_status(rdev)) { |
| ret = _regulator_do_disable(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to disable\n"); |
| return ret; |
| } |
| } |
| |
| rdev->use_count = 0; |
| } else if (rdev->use_count > 1) { |
| |
| if (rdev->constraints && |
| (rdev->constraints->valid_ops_mask & |
| REGULATOR_CHANGE_DRMS)) |
| drms_uA_update(rdev); |
| |
| rdev->use_count--; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_disable - disable regulator output |
| * @regulator: regulator source |
| * |
| * Disable the regulator output voltage or current. Calls to |
| * regulator_enable() must be balanced with calls to |
| * regulator_disable(). |
| * |
| * NOTE: this will only disable the regulator output if no other consumer |
| * devices have it enabled, the regulator device supports disabling and |
| * machine constraints permit this operation. |
| */ |
| int regulator_disable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret = 0; |
| |
| if (regulator->always_on) |
| return 0; |
| |
| mutex_lock(&rdev->mutex); |
| ret = _regulator_disable(rdev); |
| mutex_unlock(&rdev->mutex); |
| |
| if (ret == 0 && rdev->supply) |
| regulator_disable(rdev->supply); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_disable); |
| |
| /* locks held by regulator_force_disable() */ |
| static int _regulator_force_disable(struct regulator_dev *rdev) |
| { |
| int ret = 0; |
| |
| /* force disable */ |
| if (rdev->desc->ops->disable) { |
| /* ah well, who wants to live forever... */ |
| ret = rdev->desc->ops->disable(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to force disable\n"); |
| return ret; |
| } |
| /* notify other consumers that power has been forced off */ |
| _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | |
| REGULATOR_EVENT_DISABLE, NULL); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_force_disable - force disable regulator output |
| * @regulator: regulator source |
| * |
| * Forcibly disable the regulator output voltage or current. |
| * NOTE: this *will* disable the regulator output even if other consumer |
| * devices have it enabled. This should be used for situations when device |
| * damage will likely occur if the regulator is not disabled (e.g. over temp). |
| */ |
| int regulator_force_disable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| regulator->uA_load = 0; |
| ret = _regulator_force_disable(regulator->rdev); |
| mutex_unlock(&rdev->mutex); |
| |
| if (rdev->supply) |
| while (rdev->open_count--) |
| regulator_disable(rdev->supply); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_force_disable); |
| |
| static void regulator_disable_work(struct work_struct *work) |
| { |
| struct regulator_dev *rdev = container_of(work, struct regulator_dev, |
| disable_work.work); |
| int count, i, ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| BUG_ON(!rdev->deferred_disables); |
| |
| count = rdev->deferred_disables; |
| rdev->deferred_disables = 0; |
| |
| for (i = 0; i < count; i++) { |
| ret = _regulator_disable(rdev); |
| if (ret != 0) |
| rdev_err(rdev, "Deferred disable failed: %d\n", ret); |
| } |
| |
| mutex_unlock(&rdev->mutex); |
| |
| if (rdev->supply) { |
| for (i = 0; i < count; i++) { |
| ret = regulator_disable(rdev->supply); |
| if (ret != 0) { |
| rdev_err(rdev, |
| "Supply disable failed: %d\n", ret); |
| } |
| } |
| } |
| } |
| |
| /** |
| * regulator_disable_deferred - disable regulator output with delay |
| * @regulator: regulator source |
| * @ms: miliseconds until the regulator is disabled |
| * |
| * Execute regulator_disable() on the regulator after a delay. This |
| * is intended for use with devices that require some time to quiesce. |
| * |
| * NOTE: this will only disable the regulator output if no other consumer |
| * devices have it enabled, the regulator device supports disabling and |
| * machine constraints permit this operation. |
| */ |
| int regulator_disable_deferred(struct regulator *regulator, int ms) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| if (regulator->always_on) |
| return 0; |
| |
| if (!ms) |
| return regulator_disable(regulator); |
| |
| mutex_lock(&rdev->mutex); |
| rdev->deferred_disables++; |
| mutex_unlock(&rdev->mutex); |
| |
| ret = queue_delayed_work(system_power_efficient_wq, |
| &rdev->disable_work, |
| msecs_to_jiffies(ms)); |
| if (ret < 0) |
| return ret; |
| else |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_disable_deferred); |
| |
| static int _regulator_is_enabled(struct regulator_dev *rdev) |
| { |
| /* A GPIO control always takes precedence */ |
| if (rdev->ena_pin) |
| return rdev->ena_gpio_state; |
| |
| /* If we don't know then assume that the regulator is always on */ |
| if (!rdev->desc->ops->is_enabled) |
| return 1; |
| |
| return rdev->desc->ops->is_enabled(rdev); |
| } |
| |
| /** |
| * regulator_is_enabled - is the regulator output enabled |
| * @regulator: regulator source |
| * |
| * Returns positive if the regulator driver backing the source/client |
| * has requested that the device be enabled, zero if it hasn't, else a |
| * negative errno code. |
| * |
| * Note that the device backing this regulator handle can have multiple |
| * users, so it might be enabled even if regulator_enable() was never |
| * called for this particular source. |
| */ |
| int regulator_is_enabled(struct regulator *regulator) |
| { |
| int ret; |
| |
| if (regulator->always_on) |
| return 1; |
| |
| mutex_lock(®ulator->rdev->mutex); |
| ret = _regulator_is_enabled(regulator->rdev); |
| mutex_unlock(®ulator->rdev->mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_is_enabled); |
| |
| /** |
| * regulator_can_change_voltage - check if regulator can change voltage |
| * @regulator: regulator source |
| * |
| * Returns positive if the regulator driver backing the source/client |
| * can change its voltage, false otherwise. Usefull for detecting fixed |
| * or dummy regulators and disabling voltage change logic in the client |
| * driver. |
| */ |
| int regulator_can_change_voltage(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| if (rdev->constraints && |
| (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { |
| if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) |
| return 1; |
| |
| if (rdev->desc->continuous_voltage_range && |
| rdev->constraints->min_uV && rdev->constraints->max_uV && |
| rdev->constraints->min_uV != rdev->constraints->max_uV) |
| return 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_can_change_voltage); |
| |
| /** |
| * regulator_count_voltages - count regulator_list_voltage() selectors |
| * @regulator: regulator source |
| * |
| * Returns number of selectors, or negative errno. Selectors are |
| * numbered starting at zero, and typically correspond to bitfields |
| * in hardware registers. |
| */ |
| int regulator_count_voltages(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| return rdev->desc->n_voltages ? : -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(regulator_count_voltages); |
| |
| /** |
| * regulator_list_voltage - enumerate supported voltages |
| * @regulator: regulator source |
| * @selector: identify voltage to list |
| * Context: can sleep |
| * |
| * Returns a voltage that can be passed to @regulator_set_voltage(), |
| * zero if this selector code can't be used on this system, or a |
| * negative errno. |
| */ |
| int regulator_list_voltage(struct regulator *regulator, unsigned selector) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct regulator_ops *ops = rdev->desc->ops; |
| int ret; |
| |
| if (!ops->list_voltage || selector >= rdev->desc->n_voltages) |
| return -EINVAL; |
| |
| mutex_lock(&rdev->mutex); |
| ret = ops->list_voltage(rdev, selector); |
| mutex_unlock(&rdev->mutex); |
| |
| if (ret > 0) { |
| if (ret < rdev->constraints->min_uV) |
| ret = 0; |
| else if (ret > rdev->constraints->max_uV) |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_list_voltage); |
| |
| /** |
| * regulator_get_linear_step - return the voltage step size between VSEL values |
| * @regulator: regulator source |
| * |
| * Returns the voltage step size between VSEL values for linear |
| * regulators, or return 0 if the regulator isn't a linear regulator. |
| */ |
| unsigned int regulator_get_linear_step(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| return rdev->desc->uV_step; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_linear_step); |
| |
| /** |
| * regulator_is_supported_voltage - check if a voltage range can be supported |
| * |
| * @regulator: Regulator to check. |
| * @min_uV: Minimum required voltage in uV. |
| * @max_uV: Maximum required voltage in uV. |
| * |
| * Returns a boolean or a negative error code. |
| */ |
| int regulator_is_supported_voltage(struct regulator *regulator, |
| int min_uV, int max_uV) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int i, voltages, ret; |
| |
| /* If we can't change voltage check the current voltage */ |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { |
| ret = regulator_get_voltage(regulator); |
| if (ret >= 0) |
| return (min_uV <= ret && ret <= max_uV); |
| else |
| return ret; |
| } |
| |
| /* Any voltage within constrains range is fine? */ |
| if (rdev->desc->continuous_voltage_range) |
| return min_uV >= rdev->constraints->min_uV && |
| max_uV <= rdev->constraints->max_uV; |
| |
| ret = regulator_count_voltages(regulator); |
| if (ret < 0) |
| return ret; |
| voltages = ret; |
| |
| for (i = 0; i < voltages; i++) { |
| ret = regulator_list_voltage(regulator, i); |
| |
| if (ret >= min_uV && ret <= max_uV) |
| return 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); |
| |
| static int _regulator_do_set_voltage(struct regulator_dev *rdev, |
| int min_uV, int max_uV) |
| { |
| int ret; |
| int delay = 0; |
| int best_val = 0; |
| unsigned int selector; |
| int old_selector = -1; |
| |
| trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); |
| |
| min_uV += rdev->constraints->uV_offset; |
| max_uV += rdev->constraints->uV_offset; |
| |
| /* |
| * If we can't obtain the old selector there is not enough |
| * info to call set_voltage_time_sel(). |
| */ |
| if (_regulator_is_enabled(rdev) && |
| rdev->desc->ops->set_voltage_time_sel && |
| rdev->desc->ops->get_voltage_sel) { |
| old_selector = rdev->desc->ops->get_voltage_sel(rdev); |
| if (old_selector < 0) |
| return old_selector; |
| } |
| |
| if (rdev->desc->ops->set_voltage) { |
| ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, |
| &selector); |
| |
| if (ret >= 0) { |
| if (rdev->desc->ops->list_voltage) |
| best_val = rdev->desc->ops->list_voltage(rdev, |
| selector); |
| else |
| best_val = _regulator_get_voltage(rdev); |
| } |
| |
| } else if (rdev->desc->ops->set_voltage_sel) { |
| if (rdev->desc->ops->map_voltage) { |
| ret = rdev->desc->ops->map_voltage(rdev, min_uV, |
| max_uV); |
| } else { |
| if (rdev->desc->ops->list_voltage == |
| regulator_list_voltage_linear) |
| ret = regulator_map_voltage_linear(rdev, |
| min_uV, max_uV); |
| else |
| ret = regulator_map_voltage_iterate(rdev, |
| min_uV, max_uV); |
| } |
| |
| if (ret >= 0) { |
| best_val = rdev->desc->ops->list_voltage(rdev, ret); |
| if (min_uV <= best_val && max_uV >= best_val) { |
| selector = ret; |
| if (old_selector == selector) |
| ret = 0; |
| else |
| ret = rdev->desc->ops->set_voltage_sel( |
| rdev, ret); |
| } else { |
| ret = -EINVAL; |
| } |
| } |
| } else { |
| ret = -EINVAL; |
| } |
| |
| /* Call set_voltage_time_sel if successfully obtained old_selector */ |
| if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 |
| && old_selector != selector) { |
| |
| delay = rdev->desc->ops->set_voltage_time_sel(rdev, |
| old_selector, selector); |
| if (delay < 0) { |
| rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", |
| delay); |
| delay = 0; |
| } |
| |
| /* Insert any necessary delays */ |
| if (delay >= 1000) { |
| mdelay(delay / 1000); |
| udelay(delay % 1000); |
| } else if (delay) { |
| udelay(delay); |
| } |
| } |
| |
| if (ret == 0 && best_val >= 0) { |
| unsigned long data = best_val; |
| |
| _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, |
| (void *)data); |
| } |
| |
| trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_set_voltage - set regulator output voltage |
| * @regulator: regulator source |
| * @min_uV: Minimum required voltage in uV |
| * @max_uV: Maximum acceptable voltage in uV |
| * |
| * Sets a voltage regulator to the desired output voltage. This can be set |
| * during any regulator state. IOW, regulator can be disabled or enabled. |
| * |
| * If the regulator is enabled then the voltage will change to the new value |
| * immediately otherwise if the regulator is disabled the regulator will |
| * output at the new voltage when enabled. |
| * |
| * NOTE: If the regulator is shared between several devices then the lowest |
| * request voltage that meets the system constraints will be used. |
| * Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret = 0; |
| int old_min_uV, old_max_uV; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* If we're setting the same range as last time the change |
| * should be a noop (some cpufreq implementations use the same |
| * voltage for multiple frequencies, for example). |
| */ |
| if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) |
| goto out; |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_voltage && |
| !rdev->desc->ops->set_voltage_sel) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* constraints check */ |
| ret = regulator_check_voltage(rdev, &min_uV, &max_uV); |
| if (ret < 0) |
| goto out; |
| |
| /* restore original values in case of error */ |
| old_min_uV = regulator->min_uV; |
| old_max_uV = regulator->max_uV; |
| regulator->min_uV = min_uV; |
| regulator->max_uV = max_uV; |
| |
| ret = regulator_check_consumers(rdev, &min_uV, &max_uV); |
| if (ret < 0) |
| goto out2; |
| |
| ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); |
| if (ret < 0) |
| goto out2; |
| |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| out2: |
| regulator->min_uV = old_min_uV; |
| regulator->max_uV = old_max_uV; |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage); |
| |
| /** |
| * regulator_set_voltage_time - get raise/fall time |
| * @regulator: regulator source |
| * @old_uV: starting voltage in microvolts |
| * @new_uV: target voltage in microvolts |
| * |
| * Provided with the starting and ending voltage, this function attempts to |
| * calculate the time in microseconds required to rise or fall to this new |
| * voltage. |
| */ |
| int regulator_set_voltage_time(struct regulator *regulator, |
| int old_uV, int new_uV) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct regulator_ops *ops = rdev->desc->ops; |
| int old_sel = -1; |
| int new_sel = -1; |
| int voltage; |
| int i; |
| |
| /* Currently requires operations to do this */ |
| if (!ops->list_voltage || !ops->set_voltage_time_sel |
| || !rdev->desc->n_voltages) |
| return -EINVAL; |
| |
| for (i = 0; i < rdev->desc->n_voltages; i++) { |
| /* We only look for exact voltage matches here */ |
| voltage = regulator_list_voltage(regulator, i); |
| if (voltage < 0) |
| return -EINVAL; |
| if (voltage == 0) |
| continue; |
| if (voltage == old_uV) |
| old_sel = i; |
| if (voltage == new_uV) |
| new_sel = i; |
| } |
| |
| if (old_sel < 0 || new_sel < 0) |
| return -EINVAL; |
| |
| return ops->set_voltage_time_sel(rdev, old_sel, new_sel); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_time); |
| |
| /** |
| * regulator_set_voltage_time_sel - get raise/fall time |
| * @rdev: regulator source device |
| * @old_selector: selector for starting voltage |
| * @new_selector: selector for target voltage |
| * |
| * Provided with the starting and target voltage selectors, this function |
| * returns time in microseconds required to rise or fall to this new voltage |
| * |
| * Drivers providing ramp_delay in regulation_constraints can use this as their |
| * set_voltage_time_sel() operation. |
| */ |
| int regulator_set_voltage_time_sel(struct regulator_dev *rdev, |
| unsigned int old_selector, |
| unsigned int new_selector) |
| { |
| unsigned int ramp_delay = 0; |
| int old_volt, new_volt; |
| |
| if (rdev->constraints->ramp_delay) |
| ramp_delay = rdev->constraints->ramp_delay; |
| else if (rdev->desc->ramp_delay) |
| ramp_delay = rdev->desc->ramp_delay; |
| |
| if (ramp_delay == 0) { |
| rdev_warn(rdev, "ramp_delay not set\n"); |
| return 0; |
| } |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->list_voltage) |
| return -EINVAL; |
| |
| old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); |
| new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); |
| |
| return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); |
| |
| /** |
| * regulator_sync_voltage - re-apply last regulator output voltage |
| * @regulator: regulator source |
| * |
| * Re-apply the last configured voltage. This is intended to be used |
| * where some external control source the consumer is cooperating with |
| * has caused the configured voltage to change. |
| */ |
| int regulator_sync_voltage(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret, min_uV, max_uV; |
| |
| mutex_lock(&rdev->mutex); |
| |
| if (!rdev->desc->ops->set_voltage && |
| !rdev->desc->ops->set_voltage_sel) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* This is only going to work if we've had a voltage configured. */ |
| if (!regulator->min_uV && !regulator->max_uV) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| min_uV = regulator->min_uV; |
| max_uV = regulator->max_uV; |
| |
| /* This should be a paranoia check... */ |
| ret = regulator_check_voltage(rdev, &min_uV, &max_uV); |
| if (ret < 0) |
| goto out; |
| |
| ret = regulator_check_consumers(rdev, &min_uV, &max_uV); |
| if (ret < 0) |
| goto out; |
| |
| ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); |
| |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_sync_voltage); |
| |
| static int _regulator_get_voltage(struct regulator_dev *rdev) |
| { |
| int sel, ret; |
| |
| if (rdev->desc->ops->get_voltage_sel) { |
| sel = rdev->desc->ops->get_voltage_sel(rdev); |
| if (sel < 0) |
| return sel; |
| ret = rdev->desc->ops->list_voltage(rdev, sel); |
| } else if (rdev->desc->ops->get_voltage) { |
| ret = rdev->desc->ops->get_voltage(rdev); |
| } else if (rdev->desc->ops->list_voltage) { |
| ret = rdev->desc->ops->list_voltage(rdev, 0); |
| } else { |
| return -EINVAL; |
| } |
| |
| if (ret < 0) |
| return ret; |
| return ret - rdev->constraints->uV_offset; |
| } |
| |
| /** |
| * regulator_get_voltage - get regulator output voltage |
| * @regulator: regulator source |
| * |
| * This returns the current regulator voltage in uV. |
| * |
| * NOTE: If the regulator is disabled it will return the voltage value. This |
| * function should not be used to determine regulator state. |
| */ |
| int regulator_get_voltage(struct regulator *regulator) |
| { |
| int ret; |
| |
| mutex_lock(®ulator->rdev->mutex); |
| |
| ret = _regulator_get_voltage(regulator->rdev); |
| |
| mutex_unlock(®ulator->rdev->mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_voltage); |
| |
| /** |
| * regulator_set_current_limit - set regulator output current limit |
| * @regulator: regulator source |
| * @min_uA: Minimum supported current in uA |
| * @max_uA: Maximum supported current in uA |
| * |
| * Sets current sink to the desired output current. This can be set during |
| * any regulator state. IOW, regulator can be disabled or enabled. |
| * |
| * If the regulator is enabled then the current will change to the new value |
| * immediately otherwise if the regulator is disabled the regulator will |
| * output at the new current when enabled. |
| * |
| * NOTE: Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_current_limit(struct regulator *regulator, |
| int min_uA, int max_uA) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_current_limit) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* constraints check */ |
| ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); |
| if (ret < 0) |
| goto out; |
| |
| ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_current_limit); |
| |
| static int _regulator_get_current_limit(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->get_current_limit) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = rdev->desc->ops->get_current_limit(rdev); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| |
| /** |
| * regulator_get_current_limit - get regulator output current |
| * @regulator: regulator source |
| * |
| * This returns the current supplied by the specified current sink in uA. |
| * |
| * NOTE: If the regulator is disabled it will return the current value. This |
| * function should not be used to determine regulator state. |
| */ |
| int regulator_get_current_limit(struct regulator *regulator) |
| { |
| return _regulator_get_current_limit(regulator->rdev); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_current_limit); |
| |
| /** |
| * regulator_set_mode - set regulator operating mode |
| * @regulator: regulator source |
| * @mode: operating mode - one of the REGULATOR_MODE constants |
| * |
| * Set regulator operating mode to increase regulator efficiency or improve |
| * regulation performance. |
| * |
| * NOTE: Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_mode(struct regulator *regulator, unsigned int mode) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| int regulator_curr_mode; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_mode) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* return if the same mode is requested */ |
| if (rdev->desc->ops->get_mode) { |
| regulator_curr_mode = rdev->desc->ops->get_mode(rdev); |
| if (regulator_curr_mode == mode) { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| /* constraints check */ |
| ret = regulator_mode_constrain(rdev, &mode); |
| if (ret < 0) |
| goto out; |
| |
| ret = rdev->desc->ops->set_mode(rdev, mode); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_mode); |
| |
| static unsigned int _regulator_get_mode(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->get_mode) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = rdev->desc->ops->get_mode(rdev); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| |
| /** |
| * regulator_get_mode - get regulator operating mode |
| * @regulator: regulator source |
| * |
| * Get the current regulator operating mode. |
| */ |
| unsigned int regulator_get_mode(struct regulator *regulator) |
| { |
| return _regulator_get_mode(regulator->rdev); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_mode); |
| |
| /** |
| * regulator_set_optimum_mode - set regulator optimum operating mode |
| * @regulator: regulator source |
| * @uA_load: load current |
| * |
| * Notifies the regulator core of a new device load. This is then used by |
| * DRMS (if enabled by constraints) to set the most efficient regulator |
| * operating mode for the new regulator loading. |
| * |
| * Consumer devices notify their supply regulator of the maximum power |
| * they will require (can be taken from device datasheet in the power |
| * consumption tables) when they change operational status and hence power |
| * state. Examples of operational state changes that can affect power |
| * consumption are :- |
| * |
| * o Device is opened / closed. |
| * o Device I/O is about to begin or has just finished. |
| * o Device is idling in between work. |
| * |
| * This information is also exported via sysfs to userspace. |
| * |
| * DRMS will sum the total requested load on the regulator and change |
| * to the most efficient operating mode if platform constraints allow. |
| * |
| * Returns the new regulator mode or error. |
| */ |
| int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct regulator *consumer; |
| int ret, output_uV, input_uV = 0, total_uA_load = 0; |
| unsigned int mode; |
| |
| if (rdev->supply) |
| input_uV = regulator_get_voltage(rdev->supply); |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* |
| * first check to see if we can set modes at all, otherwise just |
| * tell the consumer everything is OK. |
| */ |
| regulator->uA_load = uA_load; |
| ret = regulator_check_drms(rdev); |
| if (ret < 0) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (!rdev->desc->ops->get_optimum_mode) |
| goto out; |
| |
| /* |
| * we can actually do this so any errors are indicators of |
| * potential real failure. |
| */ |
| ret = -EINVAL; |
| |
| if (!rdev->desc->ops->set_mode) |
| goto out; |
| |
| /* get output voltage */ |
| output_uV = _regulator_get_voltage(rdev); |
| if (output_uV <= 0) { |
| rdev_err(rdev, "invalid output voltage found\n"); |
| goto out; |
| } |
| |
| /* No supply? Use constraint voltage */ |
| if (input_uV <= 0) |
| input_uV = rdev->constraints->input_uV; |
| if (input_uV <= 0) { |
| rdev_err(rdev, "invalid input voltage found\n"); |
| goto out; |
| } |
| |
| /* calc total requested load for this regulator */ |
| list_for_each_entry(consumer, &rdev->consumer_list, list) |
| total_uA_load += consumer->uA_load; |
| |
| mode = rdev->desc->ops->get_optimum_mode(rdev, |
| input_uV, output_uV, |
| total_uA_load); |
| ret = regulator_mode_constrain(rdev, &mode); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", |
| total_uA_load, input_uV, output_uV); |
| goto out; |
| } |
| |
| ret = rdev->desc->ops->set_mode(rdev, mode); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set optimum mode %x\n", mode); |
| goto out; |
| } |
| ret = mode; |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); |
| |
| /** |
| * regulator_allow_bypass - allow the regulator to go into bypass mode |
| * |
| * @regulator: Regulator to configure |
| * @enable: enable or disable bypass mode |
| * |
| * Allow the regulator to go into bypass mode if all other consumers |
| * for the regulator also enable bypass mode and the machine |
| * constraints allow this. Bypass mode means that the regulator is |
| * simply passing the input directly to the output with no regulation. |
| */ |
| int regulator_allow_bypass(struct regulator *regulator, bool enable) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret = 0; |
| |
| if (!rdev->desc->ops->set_bypass) |
| return 0; |
| |
| if (rdev->constraints && |
| !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) |
| return 0; |
| |
| mutex_lock(&rdev->mutex); |
| |
| if (enable && !regulator->bypass) { |
| rdev->bypass_count++; |
| |
| if (rdev->bypass_count == rdev->open_count) { |
| ret = rdev->desc->ops->set_bypass(rdev, enable); |
| if (ret != 0) |
| rdev->bypass_count--; |
| } |
| |
| } else if (!enable && regulator->bypass) { |
| rdev->bypass_count--; |
| |
| if (rdev->bypass_count != rdev->open_count) { |
| ret = rdev->desc->ops->set_bypass(rdev, enable); |
| if (ret != 0) |
| rdev->bypass_count++; |
| } |
| } |
| |
| if (ret == 0) |
| regulator->bypass = enable; |
| |
| mutex_unlock(&rdev->mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_allow_bypass); |
| |
| /** |
| * regulator_register_notifier - register regulator event notifier |
| * @regulator: regulator source |
| * @nb: notifier block |
| * |
| * Register notifier block to receive regulator events. |
| */ |
| int regulator_register_notifier(struct regulator *regulator, |
| struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_register(®ulator->rdev->notifier, |
| nb); |
| } |
| EXPORT_SYMBOL_GPL(regulator_register_notifier); |
| |
| /** |
| * regulator_unregister_notifier - unregister regulator event notifier |
| * @regulator: regulator source |
| * @nb: notifier block |
| * |
| * Unregister regulator event notifier block. |
| */ |
| int regulator_unregister_notifier(struct regulator *regulator, |
| struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_unregister(®ulator->rdev->notifier, |
| nb); |
| } |
| EXPORT_SYMBOL_GPL(regulator_unregister_notifier); |
| |
| /* notify regulator consumers and downstream regulator consumers. |
| * Note mutex must be held by caller. |
| */ |
| static void _notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data) |
| { |
| /* call rdev chain first */ |
| blocking_notifier_call_chain(&rdev->notifier, event, data); |
| } |
| |
| /** |
| * regulator_bulk_get - get multiple regulator consumers |
| * |
| * @dev: Device to supply |
| * @num_consumers: Number of consumers to register |
| * @consumers: Configuration of consumers; clients are stored here. |
| * |
| * @return 0 on success, an errno on failure. |
| * |
| * This helper function allows drivers to get several regulator |
| * consumers in one operation. If any of the regulators cannot be |
| * acquired then any regulators that were allocated will be freed |
| * before returning to the caller. |
| */ |
| int regulator_bulk_get(struct device *dev, int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < num_consumers; i++) |
| consumers[i].consumer = NULL; |
| |
| for (i = 0; i < num_consumers; i++) { |
| consumers[i].consumer = regulator_get(dev, |
| consumers[i].supply); |
| if (IS_ERR(consumers[i].consumer)) { |
| ret = PTR_ERR(consumers[i].consumer); |
| dev_err(dev, "Failed to get supply '%s': %d\n", |
| consumers[i].supply, ret); |
| consumers[i].consumer = NULL; |
| goto err; |
| } |
| } |
| |
| return 0; |
| |
| err: |
| while (--i >= 0) |
| regulator_put(consumers[i].consumer); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_get); |
| |
| static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) |
| { |
| struct regulator_bulk_data *bulk = data; |
| |
| bulk->ret = regulator_enable(bulk->consumer); |
| } |
| |
| /** |
| * regulator_bulk_enable - enable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to enable multiple regulator |
| * clients in a single API call. If any consumers cannot be enabled |
| * then any others that were enabled will be disabled again prior to |
| * return. |
| */ |
| int regulator_bulk_enable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| ASYNC_DOMAIN_EXCLUSIVE(async_domain); |
| int i; |
| int ret = 0; |
| |
| for (i = 0; i < num_consumers; i++) { |
| if (consumers[i].consumer->always_on) |
| consumers[i].ret = 0; |
| else |
| async_schedule_domain(regulator_bulk_enable_async, |
| &consumers[i], &async_domain); |
| } |
| |
| async_synchronize_full_domain(&async_domain); |
| |
| /* If any consumer failed we need to unwind any that succeeded */ |
| for (i = 0; i < num_consumers; i++) { |
| if (consumers[i].ret != 0) { |
| ret = consumers[i].ret; |
| goto err; |
| } |
| } |
| |
| return 0; |
| |
| err: |
| for (i = 0; i < num_consumers; i++) { |
| if (consumers[i].ret < 0) |
| pr_err("Failed to enable %s: %d\n", consumers[i].supply, |
| consumers[i].ret); |
| else |
| regulator_disable(consumers[i].consumer); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_enable); |
| |
| /** |
| * regulator_bulk_disable - disable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to disable multiple regulator |
| * clients in a single API call. If any consumers cannot be disabled |
| * then any others that were disabled will be enabled again prior to |
| * return. |
| */ |
| int regulator_bulk_disable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret, r; |
| |
| for (i = num_consumers - 1; i >= 0; --i) { |
| ret = regulator_disable(consumers[i].consumer); |
| if (ret != 0) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); |
| for (++i; i < num_consumers; ++i) { |
| r = regulator_enable(consumers[i].consumer); |
| if (r != 0) |
| pr_err("Failed to reename %s: %d\n", |
| consumers[i].supply, r); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_disable); |
| |
| /** |
| * regulator_bulk_force_disable - force disable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to forcibly disable multiple regulator |
| * clients in a single API call. |
| * NOTE: This should be used for situations when device damage will |
| * likely occur if the regulators are not disabled (e.g. over temp). |
| * Although regulator_force_disable function call for some consumers can |
| * return error numbers, the function is called for all consumers. |
| */ |
| int regulator_bulk_force_disable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < num_consumers; i++) |
| consumers[i].ret = |
| regulator_force_disable(consumers[i].consumer); |
| |
| for (i = 0; i < num_consumers; i++) { |
| if (consumers[i].ret != 0) { |
| ret = consumers[i].ret; |
| goto out; |
| } |
| } |
| |
| return 0; |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); |
| |
| /** |
| * regulator_bulk_free - free multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * |
| * This convenience API allows consumers to free multiple regulator |
| * clients in a single API call. |
| */ |
| void regulator_bulk_free(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| |
| for (i = 0; i < num_consumers; i++) { |
| regulator_put(consumers[i].consumer); |
| consumers[i].consumer = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_free); |
| |
| /** |
| * regulator_notifier_call_chain - call regulator event notifier |
| * @rdev: regulator source |
| * @event: notifier block |
| * @data: callback-specific data. |
| * |
| * Called by regulator drivers to notify clients a regulator event has |
| * occurred. We also notify regulator clients downstream. |
| * Note lock must be held by caller. |
| */ |
| int regulator_notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data) |
| { |
| _notifier_call_chain(rdev, event, data); |
| return NOTIFY_DONE; |
| |
| } |
| EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); |
| |
| /** |
| * regulator_mode_to_status - convert a regulator mode into a status |
| * |
| * @mode: Mode to convert |
| * |
| * Convert a regulator mode into a status. |
| */ |
| int regulator_mode_to_status(unsigned int mode) |
| { |
| switch (mode) { |
| case REGULATOR_MODE_FAST: |
| return REGULATOR_STATUS_FAST; |
| case REGULATOR_MODE_NORMAL: |
| return REGULATOR_STATUS_NORMAL; |
| case REGULATOR_MODE_IDLE: |
| return REGULATOR_STATUS_IDLE; |
| case REGULATOR_MODE_STANDBY: |
| return REGULATOR_STATUS_STANDBY; |
| default: |
| return REGULATOR_STATUS_UNDEFINED; |
| } |
| } |
| EXPORT_SYMBOL_GPL(regulator_mode_to_status); |
| |
| /* |
| * To avoid cluttering sysfs (and memory) with useless state, only |
| * create attributes that can be meaningfully displayed. |
| */ |
| static int add_regulator_attributes(struct regulator_dev *rdev) |
| { |
| struct device *dev = &rdev->dev; |
| struct regulator_ops *ops = rdev->desc->ops; |
| int status = 0; |
| |
| /* some attributes need specific methods to be displayed */ |
| if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || |
| (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || |
| (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { |
| status = device_create_file(dev, &dev_attr_microvolts); |
| if (status < 0) |
| return status; |
| } |
| if (ops->get_current_limit) { |
| status = device_create_file(dev, &dev_attr_microamps); |
| if (status < 0) |
| return status; |
| } |
| if (ops->get_mode) { |
| status = device_create_file(dev, &dev_attr_opmode); |
| if (status < 0) |
| return status; |
| } |
| if (rdev->ena_pin || ops->is_enabled) { |
| status = device_create_file(dev, &dev_attr_state); |
| if (status < 0) |
| return status; |
| } |
| if (ops->get_status) { |
| status = device_create_file(dev, &dev_attr_status); |
| if (status < 0) |
| return status; |
| } |
| if (ops->get_bypass) { |
| status = device_create_file(dev, &dev_attr_bypass); |
| if (status < 0) |
| return status; |
| } |
| |
| /* some attributes are type-specific */ |
| if (rdev->desc->type == REGULATOR_CURRENT) { |
| status = device_create_file(dev, &dev_attr_requested_microamps); |
| if (status < 0) |
| return status; |
| } |
| |
| /* all the other attributes exist to support constraints; |
| * don't show them if there are no constraints, or if the |
| * relevant supporting methods are missing. |
| */ |
| if (!rdev->constraints) |
| return status; |
| |
| /* constraints need specific supporting methods */ |
| if (ops->set_voltage || ops->set_voltage_sel) { |
| status = device_create_file(dev, &dev_attr_min_microvolts); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, &dev_attr_max_microvolts); |
| if (status < 0) |
| return status; |
| } |
| if (ops->set_current_limit) { |
| status = device_create_file(dev, &dev_attr_min_microamps); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, &dev_attr_max_microamps); |
| if (status < 0) |
| return status; |
| } |
| |
| status = device_create_file(dev, &dev_attr_suspend_standby_state); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, &dev_attr_suspend_mem_state); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, &dev_attr_suspend_disk_state); |
| if (status < 0) |
| return status; |
| |
| if (ops->set_suspend_voltage) { |
| status = device_create_file(dev, |
| &dev_attr_suspend_standby_microvolts); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, |
| &dev_attr_suspend_mem_microvolts); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, |
| &dev_attr_suspend_disk_microvolts); |
| if (status < 0) |
| return status; |
| } |
| |
| if (ops->set_suspend_mode) { |
| status = device_create_file(dev, |
| &dev_attr_suspend_standby_mode); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, |
| &dev_attr_suspend_mem_mode); |
| if (status < 0) |
| return status; |
| status = device_create_file(dev, |
| &dev_attr_suspend_disk_mode); |
| if (status < 0) |
| return status; |
| } |
| |
| return status; |
| } |
| |
| static void rdev_init_debugfs(struct regulator_dev *rdev) |
| { |
| rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); |
| if (!rdev->debugfs) { |
| rdev_warn(rdev, "Failed to create debugfs directory\n"); |
| return; |
| } |
| |
| debugfs_create_u32("use_count", 0444, rdev->debugfs, |
| &rdev->use_count); |
| debugfs_create_u32("open_count", 0444, rdev->debugfs, |
| &rdev->open_count); |
| debugfs_create_u32("bypass_count", 0444, rdev->debugfs, |
| &rdev->bypass_count); |
| } |
| |
| /** |
| * regulator_register - register regulator |
| * @regulator_desc: regulator to register |
| * @config: runtime configuration for regulator |
| * |
| * Called by regulator drivers to register a regulator. |
| * Returns a valid pointer to struct regulator_dev on success |
| * or an ERR_PTR() on error. |
| */ |
| struct regulator_dev * |
| regulator_register(const struct regulator_desc *regulator_desc, |
| const struct regulator_config *config) |
| { |
| const struct regulation_constraints *constraints = NULL; |
| const struct regulator_init_data *init_data; |
| static atomic_t regulator_no = ATOMIC_INIT(0); |
| struct regulator_dev *rdev; |
| struct device *dev; |
| int ret, i; |
| const char *supply = NULL; |
| |
| if (regulator_desc == NULL || config == NULL) |
| return ERR_PTR(-EINVAL); |
| |
| dev = config->dev; |
| WARN_ON(!dev); |
| |
| if (regulator_desc->name == NULL || regulator_desc->ops == NULL) |
| return ERR_PTR(-EINVAL); |
| |
| if (regulator_desc->type != REGULATOR_VOLTAGE && |
| regulator_desc->type != REGULATOR_CURRENT) |
| return ERR_PTR(-EINVAL); |
| |
| /* Only one of each should be implemented */ |
| WARN_ON(regulator_desc->ops->get_voltage && |
| regulator_desc->ops->get_voltage_sel); |
| WARN_ON(regulator_desc->ops->set_voltage && |
| regulator_desc->ops->set_voltage_sel); |
| |
| /* If we're using selectors we must implement list_voltage. */ |
| if (regulator_desc->ops->get_voltage_sel && |
| !regulator_desc->ops->list_voltage) { |
| return ERR_PTR(-EINVAL); |
| } |
| if (regulator_desc->ops->set_voltage_sel && |
| !regulator_desc->ops->list_voltage) { |
| return ERR_PTR(-EINVAL); |
| } |
| |
| init_data = config->init_data; |
| |
| rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); |
| if (rdev == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| mutex_init(&rdev->mutex); |
| rdev->reg_data = config->driver_data; |
| rdev->owner = regulator_desc->owner; |
| rdev->desc = regulator_desc; |
| if (config->regmap) |
| rdev->regmap = config->regmap; |
| else if (dev_get_regmap(dev, NULL)) |
| rdev->regmap = dev_get_regmap(dev, NULL); |
| else if (dev->parent) |
| rdev->regmap = dev_get_regmap(dev->parent, NULL); |
| INIT_LIST_HEAD(&rdev->consumer_list); |
| INIT_LIST_HEAD(&rdev->list); |
| BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); |
| INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); |
| |
| /* preform any regulator specific init */ |
| if (init_data && init_data->regulator_init) { |
| ret = init_data->regulator_init(rdev->reg_data); |
| if (ret < 0) |
| goto clean; |
| } |
| |
| /* register with sysfs */ |
| rdev->dev.class = ®ulator_class; |
| rdev->dev.of_node = config->of_node; |
| rdev->dev.parent = dev; |
| dev_set_name(&rdev->dev, "regulator.%d", |
| atomic_inc_return(®ulator_no) - 1); |
| ret = device_register(&rdev->dev); |
| if (ret != 0) { |
| put_device(&rdev->dev); |
| goto clean; |
| } |
| |
| dev_set_drvdata(&rdev->dev, rdev); |
| |
| if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { |
| ret = regulator_ena_gpio_request(rdev, config); |
| if (ret != 0) { |
| rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", |
| config->ena_gpio, ret); |
| goto wash; |
| } |
| |
| if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) |
| rdev->ena_gpio_state = 1; |
| |
| if (config->ena_gpio_invert) |
| rdev->ena_gpio_state = !rdev->ena_gpio_state; |
| } |
| |
| /* set regulator constraints */ |
| if (init_data) |
| constraints = &init_data->constraints; |
| |
| ret = set_machine_constraints(rdev, constraints); |
| if (ret < 0) |
| goto scrub; |
| |
| /* add attributes supported by this regulator */ |
| ret = add_regulator_attributes(rdev); |
| if (ret < 0) |
| goto scrub; |
| |
| if (init_data && init_data->supply_regulator) |
| supply = init_data->supply_regulator; |
| else if (regulator_desc->supply_name) |
| supply = regulator_desc->supply_name; |
| |
| if (supply) { |
| struct regulator_dev *r; |
| |
| r = regulator_dev_lookup(dev, supply, &ret); |
| |
| if (ret == -ENODEV) { |
| /* |
| * No supply was specified for this regulator and |
| * there will never be one. |
| */ |
| ret = 0; |
| goto add_dev; |
| } else if (!r) { |
| dev_err(dev, "Failed to find supply %s\n", supply); |
| ret = -EPROBE_DEFER; |
| goto scrub; |
| } |
| |
| ret = set_supply(rdev, r); |
| if (ret < 0) |
| goto scrub; |
| |
| /* Enable supply if rail is enabled */ |
| if (_regulator_is_enabled(rdev)) { |
| ret = regulator_enable(rdev->supply); |
| if (ret < 0) |
| goto scrub; |
| } |
| } |
| |
| add_dev: |
| /* add consumers devices */ |
| if (init_data) { |
| for (i = 0; i < init_data->num_consumer_supplies; i++) { |
| ret = set_consumer_device_supply(rdev, |
| init_data->consumer_supplies[i].dev_name, |
| init_data->consumer_supplies[i].supply); |
| if (ret < 0) { |
| dev_err(dev, "Failed to set supply %s\n", |
| init_data->consumer_supplies[i].supply); |
| goto unset_supplies; |
| } |
| } |
| } |
| |
| list_add(&rdev->list, ®ulator_list); |
| |
| rdev_init_debugfs(rdev); |
| out: |
| mutex_unlock(®ulator_list_mutex); |
| return rdev; |
| |
| unset_supplies: |
| unset_regulator_supplies(rdev); |
| |
| scrub: |
| if (rdev->supply) |
| _regulator_put(rdev->supply); |
| regulator_ena_gpio_free(rdev); |
| kfree(rdev->constraints); |
| wash: |
| device_unregister(&rdev->dev); |
| /* device core frees rdev */ |
| rdev = ERR_PTR(ret); |
| goto out; |
| |
| clean: |
| kfree(rdev); |
| rdev = ERR_PTR(ret); |
| goto out; |
| } |
| EXPORT_SYMBOL_GPL(regulator_register); |
| |
| /** |
| * regulator_unregister - unregister regulator |
| * @rdev: regulator to unregister |
| * |
| * Called by regulator drivers to unregister a regulator. |
| */ |
| void regulator_unregister(struct regulator_dev *rdev) |
| { |
| if (rdev == NULL) |
| return; |
| |
| if (rdev->supply) { |
| while (rdev->use_count--) |
| regulator_disable(rdev->supply); |
| regulator_put(rdev->supply); |
| } |
| mutex_lock(®ulator_list_mutex); |
| debugfs_remove_recursive(rdev->debugfs); |
| flush_work(&rdev->disable_work.work); |
| WARN_ON(rdev->open_count); |
| unset_regulator_supplies(rdev); |
| list_del(&rdev->list); |
| kfree(rdev->constraints); |
| regulator_ena_gpio_free(rdev); |
| device_unregister(&rdev->dev); |
| mutex_unlock(®ulator_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(regulator_unregister); |
| |
| /** |
| * regulator_suspend_prepare - prepare regulators for system wide suspend |
| * @state: system suspend state |
| * |
| * Configure each regulator with it's suspend operating parameters for state. |
| * This will usually be called by machine suspend code prior to supending. |
| */ |
| int regulator_suspend_prepare(suspend_state_t state) |
| { |
| struct regulator_dev *rdev; |
| int ret = 0; |
| |
| /* ON is handled by regulator active state */ |
| if (state == PM_SUSPEND_ON) |
| return -EINVAL; |
| |
| mutex_lock(®ulator_list_mutex); |
| list_for_each_entry(rdev, ®ulator_list, list) { |
| |
| mutex_lock(&rdev->mutex); |
| ret = suspend_prepare(rdev, state); |
| mutex_unlock(&rdev->mutex); |
| |
| if (ret < 0) { |
| rdev_err(rdev, "failed to prepare\n"); |
| goto out; |
| } |
| } |
| out: |
| mutex_unlock(®ulator_list_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_suspend_prepare); |
| |
| /** |
| * regulator_suspend_finish - resume regulators from system wide suspend |
| * |
| * Turn on regulators that might be turned off by regulator_suspend_prepare |
| * and that should be turned on according to the regulators properties. |
| */ |
| int regulator_suspend_finish(void) |
| { |
| struct regulator_dev *rdev; |
| int ret = 0, error; |
| |
| mutex_lock(®ulator_list_mutex); |
| list_for_each_entry(rdev, ®ulator_list, list) { |
| struct regulator_ops *ops = rdev->desc->ops; |
| |
| mutex_lock(&rdev->mutex); |
| if ((rdev->use_count > 0 || rdev->constraints->always_on) && |
| ops->enable) { |
| error = ops->enable(rdev); |
| if (error) |
| ret = error; |
| } else { |
| if (!has_full_constraints) |
| goto unlock; |
| if (!ops->disable) |
| goto unlock; |
| if (!_regulator_is_enabled(rdev)) |
| goto unlock; |
| |
| error = ops->disable(rdev); |
| if (error) |
| ret = error; |
| } |
| unlock: |
| mutex_unlock(&rdev->mutex); |
| } |
| mutex_unlock(®ulator_list_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_suspend_finish); |
| |
| /** |
| * regulator_has_full_constraints - the system has fully specified constraints |
| * |
| * Calling this function will cause the regulator API to disable all |
| * regulators which have a zero use count and don't have an always_on |
| * constraint in a late_initcall. |
| * |
| * The intention is that this will become the default behaviour in a |
| * future kernel release so users are encouraged to use this facility |
| * now. |
| */ |
| void regulator_has_full_constraints(void) |
| { |
| has_full_constraints = 1; |
| } |
| EXPORT_SYMBOL_GPL(regulator_has_full_constraints); |
| |
| /** |
| * regulator_use_dummy_regulator - Provide a dummy regulator when none is found |
| * |
| * Calling this function will cause the regulator API to provide a |
| * dummy regulator to consumers if no physical regulator is found, |
| * allowing most consumers to proceed as though a regulator were |
| * configured. This allows systems such as those with software |
| * controllable regulators for the CPU core only to be brought up more |
| * readily. |
| */ |
| void regulator_use_dummy_regulator(void) |
| { |
| board_wants_dummy_regulator = true; |
| } |
| EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); |
| |
| /** |
| * rdev_get_drvdata - get rdev regulator driver data |
| * @rdev: regulator |
| * |
| * Get rdev regulator driver private data. This call can be used in the |
| * regulator driver context. |
| */ |
| void *rdev_get_drvdata(struct regulator_dev *rdev) |
| { |
| return rdev->reg_data; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_drvdata); |
| |
| /** |
| * regulator_get_drvdata - get regulator driver data |
| * @regulator: regulator |
| * |
| * Get regulator driver private data. This call can be used in the consumer |
| * driver context when non API regulator specific functions need to be called. |
| */ |
| void *regulator_get_drvdata(struct regulator *regulator) |
| { |
| return regulator->rdev->reg_data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_drvdata); |
| |
| /** |
| * regulator_set_drvdata - set regulator driver data |
| * @regulator: regulator |
| * @data: data |
| */ |
| void regulator_set_drvdata(struct regulator *regulator, void *data) |
| { |
| regulator->rdev->reg_data = data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_drvdata); |
| |
| /** |
| * regulator_get_id - get regulator ID |
| * @rdev: regulator |
| */ |
| int rdev_get_id(struct regulator_dev *rdev) |
| { |
| return rdev->desc->id; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_id); |
| |
| struct device *rdev_get_dev(struct regulator_dev *rdev) |
| { |
| return &rdev->dev; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_dev); |
| |
| void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) |
| { |
| return reg_init_data->driver_data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); |
| |
| #ifdef CONFIG_DEBUG_FS |
| static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| ssize_t len, ret = 0; |
| struct regulator_map *map; |
| |
| if (!buf) |
| return -ENOMEM; |
| |
| list_for_each_entry(map, ®ulator_map_list, list) { |
| len = snprintf(buf + ret, PAGE_SIZE - ret, |
| "%s -> %s.%s\n", |
| rdev_get_name(map->regulator), map->dev_name, |
| map->supply); |
| if (len >= 0) |
| ret += len; |
| if (ret > PAGE_SIZE) { |
| ret = PAGE_SIZE; |
| break; |
| } |
| } |
| |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); |
| |
| kfree(buf); |
| |
| return ret; |
| } |
| #endif |
| |
| static const struct file_operations supply_map_fops = { |
| #ifdef CONFIG_DEBUG_FS |
| .read = supply_map_read_file, |
| .llseek = default_llseek, |
| #endif |
| }; |
| |
| static int __init regulator_init(void) |
| { |
| int ret; |
| |
| ret = class_register(®ulator_class); |
| |
| debugfs_root = debugfs_create_dir("regulator", NULL); |
| if (!debugfs_root) |
| pr_warn("regulator: Failed to create debugfs directory\n"); |
| |
| debugfs_create_file("supply_map", 0444, debugfs_root, NULL, |
| &supply_map_fops); |
| |
| regulator_dummy_init(); |
| |
| return ret; |
| } |
| |
| /* init early to allow our consumers to complete system booting */ |
| core_initcall(regulator_init); |
| |
| static int __init regulator_init_complete(void) |
| { |
| struct regulator_dev *rdev; |
| struct regulator_ops *ops; |
| struct regulation_constraints *c; |
| int enabled, ret; |
| |
| /* |
| * Since DT doesn't provide an idiomatic mechanism for |
| * enabling full constraints and since it's much more natural |
| * with DT to provide them just assume that a DT enabled |
| * system has full constraints. |
| */ |
| if (of_have_populated_dt()) |
| has_full_constraints = true; |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| /* If we have a full configuration then disable any regulators |
| * which are not in use or always_on. This will become the |
| * default behaviour in the future. |
| */ |
| list_for_each_entry(rdev, ®ulator_list, list) { |
| ops = rdev->desc->ops; |
| c = rdev->constraints; |
| |
| if (!ops->disable || (c && c->always_on)) |
| continue; |
| |
| mutex_lock(&rdev->mutex); |
| |
| if (rdev->use_count) |
| goto unlock; |
| |
| /* If we can't read the status assume it's on. */ |
| if (ops->is_enabled) |
| enabled = ops->is_enabled(rdev); |
| else |
| enabled = 1; |
| |
| if (!enabled) |
| goto unlock; |
| |
| if (has_full_constraints) { |
| /* We log since this may kill the system if it |
| * goes wrong. */ |
| rdev_info(rdev, "disabling\n"); |
| ret = ops->disable(rdev); |
| if (ret != 0) { |
| rdev_err(rdev, "couldn't disable: %d\n", ret); |
| } |
| } else { |
| /* The intention is that in future we will |
| * assume that full constraints are provided |
| * so warn even if we aren't going to do |
| * anything here. |
| */ |
| rdev_warn(rdev, "incomplete constraints, leaving on\n"); |
| } |
| |
| unlock: |
| mutex_unlock(&rdev->mutex); |
| } |
| |
| mutex_unlock(®ulator_list_mutex); |
| |
| return 0; |
| } |
| late_initcall(regulator_init_complete); |