| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright(C) 2015-2018 Linaro Limited. |
| * |
| * Author: Tor Jeremiassen <tor@ti.com> |
| * Author: Mathieu Poirier <mathieu.poirier@linaro.org> |
| */ |
| |
| #include <asm/bug.h> |
| #include <linux/coresight-pmu.h> |
| #include <linux/err.h> |
| #include <linux/list.h> |
| #include <linux/zalloc.h> |
| #include <stdlib.h> |
| #include <opencsd/c_api/opencsd_c_api.h> |
| |
| #include "cs-etm.h" |
| #include "cs-etm-decoder.h" |
| #include "debug.h" |
| #include "intlist.h" |
| |
| /* use raw logging */ |
| #ifdef CS_DEBUG_RAW |
| #define CS_LOG_RAW_FRAMES |
| #ifdef CS_RAW_PACKED |
| #define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT | \ |
| OCSD_DFRMTR_PACKED_RAW_OUT) |
| #else |
| #define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT) |
| #endif |
| #endif |
| |
| /* |
| * Assume a maximum of 0.1ns elapsed per instruction. This would be the |
| * case with a theoretical 10GHz core executing 1 instruction per cycle. |
| * Used to estimate the sample time for synthesized instructions because |
| * Coresight only emits a timestamp for a range of instructions rather |
| * than per instruction. |
| */ |
| const u32 INSTR_PER_NS = 10; |
| |
| struct cs_etm_decoder { |
| void *data; |
| void (*packet_printer)(const char *msg); |
| bool suppress_printing; |
| dcd_tree_handle_t dcd_tree; |
| cs_etm_mem_cb_type mem_access; |
| ocsd_datapath_resp_t prev_return; |
| const char *decoder_name; |
| }; |
| |
| static u32 |
| cs_etm_decoder__mem_access(const void *context, |
| const ocsd_vaddr_t address, |
| const ocsd_mem_space_acc_t mem_space __maybe_unused, |
| const u8 trace_chan_id, |
| const u32 req_size, |
| u8 *buffer) |
| { |
| struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context; |
| |
| return decoder->mem_access(decoder->data, trace_chan_id, |
| address, req_size, buffer); |
| } |
| |
| int cs_etm_decoder__add_mem_access_cb(struct cs_etm_decoder *decoder, |
| u64 start, u64 end, |
| cs_etm_mem_cb_type cb_func) |
| { |
| decoder->mem_access = cb_func; |
| |
| if (ocsd_dt_add_callback_trcid_mem_acc(decoder->dcd_tree, start, end, |
| OCSD_MEM_SPACE_ANY, |
| cs_etm_decoder__mem_access, |
| decoder)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cs_etm_decoder__reset(struct cs_etm_decoder *decoder) |
| { |
| ocsd_datapath_resp_t dp_ret; |
| |
| decoder->prev_return = OCSD_RESP_CONT; |
| decoder->suppress_printing = true; |
| dp_ret = ocsd_dt_process_data(decoder->dcd_tree, OCSD_OP_RESET, |
| 0, 0, NULL, NULL); |
| decoder->suppress_printing = false; |
| if (OCSD_DATA_RESP_IS_FATAL(dp_ret)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cs_etm_decoder__get_packet(struct cs_etm_packet_queue *packet_queue, |
| struct cs_etm_packet *packet) |
| { |
| if (!packet_queue || !packet) |
| return -EINVAL; |
| |
| /* Nothing to do, might as well just return */ |
| if (packet_queue->packet_count == 0) |
| return 0; |
| /* |
| * The queueing process in function cs_etm_decoder__buffer_packet() |
| * increments the tail *before* using it. This is somewhat counter |
| * intuitive but it has the advantage of centralizing tail management |
| * at a single location. Because of that we need to follow the same |
| * heuristic with the head, i.e we increment it before using its |
| * value. Otherwise the first element of the packet queue is not |
| * used. |
| */ |
| packet_queue->head = (packet_queue->head + 1) & |
| (CS_ETM_PACKET_MAX_BUFFER - 1); |
| |
| *packet = packet_queue->packet_buffer[packet_queue->head]; |
| |
| packet_queue->packet_count--; |
| |
| return 1; |
| } |
| |
| /* |
| * Calculate the number of nanoseconds elapsed. |
| * |
| * instr_count is updated in place with the remainder of the instructions |
| * which didn't make up a whole nanosecond. |
| */ |
| static u32 cs_etm_decoder__dec_instr_count_to_ns(u32 *instr_count) |
| { |
| const u32 instr_copy = *instr_count; |
| |
| *instr_count %= INSTR_PER_NS; |
| return instr_copy / INSTR_PER_NS; |
| } |
| |
| static int cs_etm_decoder__gen_etmv3_config(struct cs_etm_trace_params *params, |
| ocsd_etmv3_cfg *config) |
| { |
| config->reg_idr = params->etmv3.reg_idr; |
| config->reg_ctrl = params->etmv3.reg_ctrl; |
| config->reg_ccer = params->etmv3.reg_ccer; |
| config->reg_trc_id = params->etmv3.reg_trc_id; |
| config->arch_ver = ARCH_V7; |
| config->core_prof = profile_CortexA; |
| |
| return 0; |
| } |
| |
| #define TRCIDR1_TRCARCHMIN_SHIFT 4 |
| #define TRCIDR1_TRCARCHMIN_MASK GENMASK(7, 4) |
| #define TRCIDR1_TRCARCHMIN(x) (((x) & TRCIDR1_TRCARCHMIN_MASK) >> TRCIDR1_TRCARCHMIN_SHIFT) |
| |
| static enum _ocsd_arch_version cs_etm_decoder__get_etmv4_arch_ver(u32 reg_idr1) |
| { |
| /* |
| * For ETMv4 if the trace minor version is 4 or more then we can assume |
| * the architecture is ARCH_AA64 rather than just V8. |
| * ARCH_V8 = V8 architecture |
| * ARCH_AA64 = Min v8r3 plus additional AA64 PE features |
| */ |
| return TRCIDR1_TRCARCHMIN(reg_idr1) >= 4 ? ARCH_AA64 : ARCH_V8; |
| } |
| |
| static void cs_etm_decoder__gen_etmv4_config(struct cs_etm_trace_params *params, |
| ocsd_etmv4_cfg *config) |
| { |
| config->reg_configr = params->etmv4.reg_configr; |
| config->reg_traceidr = params->etmv4.reg_traceidr; |
| config->reg_idr0 = params->etmv4.reg_idr0; |
| config->reg_idr1 = params->etmv4.reg_idr1; |
| config->reg_idr2 = params->etmv4.reg_idr2; |
| config->reg_idr8 = params->etmv4.reg_idr8; |
| config->reg_idr9 = 0; |
| config->reg_idr10 = 0; |
| config->reg_idr11 = 0; |
| config->reg_idr12 = 0; |
| config->reg_idr13 = 0; |
| config->arch_ver = cs_etm_decoder__get_etmv4_arch_ver(params->etmv4.reg_idr1); |
| config->core_prof = profile_CortexA; |
| } |
| |
| static void cs_etm_decoder__gen_ete_config(struct cs_etm_trace_params *params, |
| ocsd_ete_cfg *config) |
| { |
| config->reg_configr = params->ete.reg_configr; |
| config->reg_traceidr = params->ete.reg_traceidr; |
| config->reg_idr0 = params->ete.reg_idr0; |
| config->reg_idr1 = params->ete.reg_idr1; |
| config->reg_idr2 = params->ete.reg_idr2; |
| config->reg_idr8 = params->ete.reg_idr8; |
| config->reg_devarch = params->ete.reg_devarch; |
| config->arch_ver = ARCH_AA64; |
| config->core_prof = profile_CortexA; |
| } |
| |
| static void cs_etm_decoder__print_str_cb(const void *p_context, |
| const char *msg, |
| const int str_len) |
| { |
| const struct cs_etm_decoder *decoder = p_context; |
| |
| if (p_context && str_len && !decoder->suppress_printing) |
| decoder->packet_printer(msg); |
| } |
| |
| static int |
| cs_etm_decoder__init_def_logger_printing(struct cs_etm_decoder_params *d_params, |
| struct cs_etm_decoder *decoder) |
| { |
| int ret = 0; |
| |
| if (d_params->packet_printer == NULL) |
| return -1; |
| |
| decoder->packet_printer = d_params->packet_printer; |
| |
| /* |
| * Set up a library default logger to process any printers |
| * (packet/raw frame) we add later. |
| */ |
| ret = ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1); |
| if (ret != 0) |
| return -1; |
| |
| /* no stdout / err / file output */ |
| ret = ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL); |
| if (ret != 0) |
| return -1; |
| |
| /* |
| * Set the string CB for the default logger, passes strings to |
| * perf print logger. |
| */ |
| ret = ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree, |
| (void *)decoder, |
| cs_etm_decoder__print_str_cb); |
| if (ret != 0) |
| ret = -1; |
| |
| return 0; |
| } |
| |
| #ifdef CS_LOG_RAW_FRAMES |
| static void |
| cs_etm_decoder__init_raw_frame_logging(struct cs_etm_decoder_params *d_params, |
| struct cs_etm_decoder *decoder) |
| { |
| /* Only log these during a --dump operation */ |
| if (d_params->operation == CS_ETM_OPERATION_PRINT) { |
| /* set up a library default logger to process the |
| * raw frame printer we add later |
| */ |
| ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1); |
| |
| /* no stdout / err / file output */ |
| ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL); |
| |
| /* set the string CB for the default logger, |
| * passes strings to perf print logger. |
| */ |
| ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree, |
| (void *)decoder, |
| cs_etm_decoder__print_str_cb); |
| |
| /* use the built in library printer for the raw frames */ |
| ocsd_dt_set_raw_frame_printer(decoder->dcd_tree, |
| CS_RAW_DEBUG_FLAGS); |
| } |
| } |
| #else |
| static void |
| cs_etm_decoder__init_raw_frame_logging( |
| struct cs_etm_decoder_params *d_params __maybe_unused, |
| struct cs_etm_decoder *decoder __maybe_unused) |
| { |
| } |
| #endif |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__do_soft_timestamp(struct cs_etm_queue *etmq, |
| struct cs_etm_packet_queue *packet_queue, |
| const uint8_t trace_chan_id) |
| { |
| u64 estimated_ts; |
| |
| /* No timestamp packet has been received, nothing to do */ |
| if (!packet_queue->next_cs_timestamp) |
| return OCSD_RESP_CONT; |
| |
| estimated_ts = packet_queue->cs_timestamp + |
| cs_etm_decoder__dec_instr_count_to_ns(&packet_queue->instr_count); |
| |
| /* Estimated TS can never be higher than the next real one in the trace */ |
| packet_queue->cs_timestamp = min(packet_queue->next_cs_timestamp, estimated_ts); |
| |
| /* Tell the front end which traceid_queue needs attention */ |
| cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id); |
| |
| return OCSD_RESP_WAIT; |
| } |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__do_hard_timestamp(struct cs_etm_queue *etmq, |
| const ocsd_generic_trace_elem *elem, |
| const uint8_t trace_chan_id, |
| const ocsd_trc_index_t indx) |
| { |
| struct cs_etm_packet_queue *packet_queue; |
| u64 converted_timestamp; |
| u64 estimated_first_ts; |
| |
| /* First get the packet queue for this traceID */ |
| packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id); |
| if (!packet_queue) |
| return OCSD_RESP_FATAL_SYS_ERR; |
| |
| /* |
| * Coresight timestamps are raw timer values which need to be scaled to ns. Assume |
| * 0 is a bad value so don't try to convert it. |
| */ |
| converted_timestamp = elem->timestamp ? |
| cs_etm__convert_sample_time(etmq, elem->timestamp) : 0; |
| |
| /* |
| * We've seen a timestamp packet before - simply record the new value. |
| * Function do_soft_timestamp() will report the value to the front end, |
| * hence asking the decoder to keep decoding rather than stopping. |
| */ |
| if (packet_queue->next_cs_timestamp) { |
| /* |
| * What was next is now where new ranges start from, overwriting |
| * any previous estimate in cs_timestamp |
| */ |
| packet_queue->cs_timestamp = packet_queue->next_cs_timestamp; |
| packet_queue->next_cs_timestamp = converted_timestamp; |
| return OCSD_RESP_CONT; |
| } |
| |
| if (!converted_timestamp) { |
| /* |
| * Zero timestamps can be seen due to misconfiguration or hardware bugs. |
| * Warn once, and don't try to subtract instr_count as it would result in an |
| * underflow. |
| */ |
| packet_queue->cs_timestamp = 0; |
| if (!cs_etm__etmq_is_timeless(etmq)) |
| pr_warning_once("Zero Coresight timestamp found at Idx:%" OCSD_TRC_IDX_STR |
| ". Decoding may be improved by prepending 'Z' to your current --itrace arguments.\n", |
| indx); |
| |
| } else if (packet_queue->instr_count / INSTR_PER_NS > converted_timestamp) { |
| /* |
| * Sanity check that the elem->timestamp - packet_queue->instr_count would not |
| * result in an underflow. Warn and clamp at 0 if it would. |
| */ |
| packet_queue->cs_timestamp = 0; |
| pr_err("Timestamp calculation underflow at Idx:%" OCSD_TRC_IDX_STR "\n", indx); |
| } else { |
| /* |
| * This is the first timestamp we've seen since the beginning of traces |
| * or a discontinuity. Since timestamps packets are generated *after* |
| * range packets have been generated, we need to estimate the time at |
| * which instructions started by subtracting the number of instructions |
| * executed to the timestamp. Don't estimate earlier than the last used |
| * timestamp though. |
| */ |
| estimated_first_ts = converted_timestamp - |
| (packet_queue->instr_count / INSTR_PER_NS); |
| packet_queue->cs_timestamp = max(packet_queue->cs_timestamp, estimated_first_ts); |
| } |
| packet_queue->next_cs_timestamp = converted_timestamp; |
| packet_queue->instr_count = 0; |
| |
| /* Tell the front end which traceid_queue needs attention */ |
| cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id); |
| |
| /* Halt processing until we are being told to proceed */ |
| return OCSD_RESP_WAIT; |
| } |
| |
| static void |
| cs_etm_decoder__reset_timestamp(struct cs_etm_packet_queue *packet_queue) |
| { |
| packet_queue->next_cs_timestamp = 0; |
| packet_queue->instr_count = 0; |
| } |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__buffer_packet(struct cs_etm_packet_queue *packet_queue, |
| const u8 trace_chan_id, |
| enum cs_etm_sample_type sample_type) |
| { |
| u32 et = 0; |
| int cpu; |
| |
| if (packet_queue->packet_count >= CS_ETM_PACKET_MAX_BUFFER - 1) |
| return OCSD_RESP_FATAL_SYS_ERR; |
| |
| if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) |
| return OCSD_RESP_FATAL_SYS_ERR; |
| |
| et = packet_queue->tail; |
| et = (et + 1) & (CS_ETM_PACKET_MAX_BUFFER - 1); |
| packet_queue->tail = et; |
| packet_queue->packet_count++; |
| |
| packet_queue->packet_buffer[et].sample_type = sample_type; |
| packet_queue->packet_buffer[et].isa = CS_ETM_ISA_UNKNOWN; |
| packet_queue->packet_buffer[et].cpu = cpu; |
| packet_queue->packet_buffer[et].start_addr = CS_ETM_INVAL_ADDR; |
| packet_queue->packet_buffer[et].end_addr = CS_ETM_INVAL_ADDR; |
| packet_queue->packet_buffer[et].instr_count = 0; |
| packet_queue->packet_buffer[et].last_instr_taken_branch = false; |
| packet_queue->packet_buffer[et].last_instr_size = 0; |
| packet_queue->packet_buffer[et].last_instr_type = 0; |
| packet_queue->packet_buffer[et].last_instr_subtype = 0; |
| packet_queue->packet_buffer[et].last_instr_cond = 0; |
| packet_queue->packet_buffer[et].flags = 0; |
| packet_queue->packet_buffer[et].exception_number = UINT32_MAX; |
| packet_queue->packet_buffer[et].trace_chan_id = trace_chan_id; |
| |
| if (packet_queue->packet_count == CS_ETM_PACKET_MAX_BUFFER - 1) |
| return OCSD_RESP_WAIT; |
| |
| return OCSD_RESP_CONT; |
| } |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__buffer_range(struct cs_etm_queue *etmq, |
| struct cs_etm_packet_queue *packet_queue, |
| const ocsd_generic_trace_elem *elem, |
| const uint8_t trace_chan_id) |
| { |
| int ret = 0; |
| struct cs_etm_packet *packet; |
| |
| ret = cs_etm_decoder__buffer_packet(packet_queue, trace_chan_id, |
| CS_ETM_RANGE); |
| if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT) |
| return ret; |
| |
| packet = &packet_queue->packet_buffer[packet_queue->tail]; |
| |
| switch (elem->isa) { |
| case ocsd_isa_aarch64: |
| packet->isa = CS_ETM_ISA_A64; |
| break; |
| case ocsd_isa_arm: |
| packet->isa = CS_ETM_ISA_A32; |
| break; |
| case ocsd_isa_thumb2: |
| packet->isa = CS_ETM_ISA_T32; |
| break; |
| case ocsd_isa_tee: |
| case ocsd_isa_jazelle: |
| case ocsd_isa_custom: |
| case ocsd_isa_unknown: |
| default: |
| packet->isa = CS_ETM_ISA_UNKNOWN; |
| } |
| |
| packet->start_addr = elem->st_addr; |
| packet->end_addr = elem->en_addr; |
| packet->instr_count = elem->num_instr_range; |
| packet->last_instr_type = elem->last_i_type; |
| packet->last_instr_subtype = elem->last_i_subtype; |
| packet->last_instr_cond = elem->last_instr_cond; |
| |
| if (elem->last_i_type == OCSD_INSTR_BR || elem->last_i_type == OCSD_INSTR_BR_INDIRECT) |
| packet->last_instr_taken_branch = elem->last_instr_exec; |
| else |
| packet->last_instr_taken_branch = false; |
| |
| packet->last_instr_size = elem->last_instr_sz; |
| |
| /* per-thread scenario, no need to generate a timestamp */ |
| if (cs_etm__etmq_is_timeless(etmq)) |
| goto out; |
| |
| /* |
| * The packet queue is full and we haven't seen a timestamp (had we |
| * seen one the packet queue wouldn't be full). Let the front end |
| * deal with it. |
| */ |
| if (ret == OCSD_RESP_WAIT) |
| goto out; |
| |
| packet_queue->instr_count += elem->num_instr_range; |
| /* Tell the front end we have a new timestamp to process */ |
| ret = cs_etm_decoder__do_soft_timestamp(etmq, packet_queue, |
| trace_chan_id); |
| out: |
| return ret; |
| } |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__buffer_discontinuity(struct cs_etm_packet_queue *queue, |
| const uint8_t trace_chan_id) |
| { |
| /* |
| * Something happened and who knows when we'll get new traces so |
| * reset time statistics. |
| */ |
| cs_etm_decoder__reset_timestamp(queue); |
| return cs_etm_decoder__buffer_packet(queue, trace_chan_id, |
| CS_ETM_DISCONTINUITY); |
| } |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__buffer_exception(struct cs_etm_packet_queue *queue, |
| const ocsd_generic_trace_elem *elem, |
| const uint8_t trace_chan_id) |
| { int ret = 0; |
| struct cs_etm_packet *packet; |
| |
| ret = cs_etm_decoder__buffer_packet(queue, trace_chan_id, |
| CS_ETM_EXCEPTION); |
| if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT) |
| return ret; |
| |
| packet = &queue->packet_buffer[queue->tail]; |
| packet->exception_number = elem->exception_number; |
| |
| return ret; |
| } |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__buffer_exception_ret(struct cs_etm_packet_queue *queue, |
| const uint8_t trace_chan_id) |
| { |
| return cs_etm_decoder__buffer_packet(queue, trace_chan_id, |
| CS_ETM_EXCEPTION_RET); |
| } |
| |
| static ocsd_datapath_resp_t |
| cs_etm_decoder__set_tid(struct cs_etm_queue *etmq, |
| struct cs_etm_packet_queue *packet_queue, |
| const ocsd_generic_trace_elem *elem, |
| const uint8_t trace_chan_id) |
| { |
| pid_t tid = -1; |
| static u64 pid_fmt; |
| int ret; |
| |
| /* |
| * As all the ETMs run at the same exception level, the system should |
| * have the same PID format crossing CPUs. So cache the PID format |
| * and reuse it for sequential decoding. |
| */ |
| if (!pid_fmt) { |
| ret = cs_etm__get_pid_fmt(trace_chan_id, &pid_fmt); |
| if (ret) |
| return OCSD_RESP_FATAL_SYS_ERR; |
| } |
| |
| /* |
| * Process the PE_CONTEXT packets if we have a valid contextID or VMID. |
| * If the kernel is running at EL2, the PID is traced in CONTEXTIDR_EL2 |
| * as VMID, Bit ETM_OPT_CTXTID2 is set in this case. |
| */ |
| switch (pid_fmt) { |
| case BIT(ETM_OPT_CTXTID): |
| if (elem->context.ctxt_id_valid) |
| tid = elem->context.context_id; |
| break; |
| case BIT(ETM_OPT_CTXTID2): |
| if (elem->context.vmid_valid) |
| tid = elem->context.vmid; |
| break; |
| default: |
| break; |
| } |
| |
| if (tid == -1) |
| return OCSD_RESP_CONT; |
| |
| if (cs_etm__etmq_set_tid(etmq, tid, trace_chan_id)) |
| return OCSD_RESP_FATAL_SYS_ERR; |
| |
| /* |
| * A timestamp is generated after a PE_CONTEXT element so make sure |
| * to rely on that coming one. |
| */ |
| cs_etm_decoder__reset_timestamp(packet_queue); |
| |
| return OCSD_RESP_CONT; |
| } |
| |
| static ocsd_datapath_resp_t cs_etm_decoder__gen_trace_elem_printer( |
| const void *context, |
| const ocsd_trc_index_t indx, |
| const u8 trace_chan_id __maybe_unused, |
| const ocsd_generic_trace_elem *elem) |
| { |
| ocsd_datapath_resp_t resp = OCSD_RESP_CONT; |
| struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context; |
| struct cs_etm_queue *etmq = decoder->data; |
| struct cs_etm_packet_queue *packet_queue; |
| |
| /* First get the packet queue for this traceID */ |
| packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id); |
| if (!packet_queue) |
| return OCSD_RESP_FATAL_SYS_ERR; |
| |
| switch (elem->elem_type) { |
| case OCSD_GEN_TRC_ELEM_UNKNOWN: |
| break; |
| case OCSD_GEN_TRC_ELEM_EO_TRACE: |
| case OCSD_GEN_TRC_ELEM_NO_SYNC: |
| case OCSD_GEN_TRC_ELEM_TRACE_ON: |
| resp = cs_etm_decoder__buffer_discontinuity(packet_queue, |
| trace_chan_id); |
| break; |
| case OCSD_GEN_TRC_ELEM_INSTR_RANGE: |
| resp = cs_etm_decoder__buffer_range(etmq, packet_queue, elem, |
| trace_chan_id); |
| break; |
| case OCSD_GEN_TRC_ELEM_EXCEPTION: |
| resp = cs_etm_decoder__buffer_exception(packet_queue, elem, |
| trace_chan_id); |
| break; |
| case OCSD_GEN_TRC_ELEM_EXCEPTION_RET: |
| resp = cs_etm_decoder__buffer_exception_ret(packet_queue, |
| trace_chan_id); |
| break; |
| case OCSD_GEN_TRC_ELEM_TIMESTAMP: |
| resp = cs_etm_decoder__do_hard_timestamp(etmq, elem, |
| trace_chan_id, |
| indx); |
| break; |
| case OCSD_GEN_TRC_ELEM_PE_CONTEXT: |
| resp = cs_etm_decoder__set_tid(etmq, packet_queue, |
| elem, trace_chan_id); |
| break; |
| /* Unused packet types */ |
| case OCSD_GEN_TRC_ELEM_I_RANGE_NOPATH: |
| case OCSD_GEN_TRC_ELEM_ADDR_NACC: |
| case OCSD_GEN_TRC_ELEM_CYCLE_COUNT: |
| case OCSD_GEN_TRC_ELEM_ADDR_UNKNOWN: |
| case OCSD_GEN_TRC_ELEM_EVENT: |
| case OCSD_GEN_TRC_ELEM_SWTRACE: |
| case OCSD_GEN_TRC_ELEM_CUSTOM: |
| case OCSD_GEN_TRC_ELEM_SYNC_MARKER: |
| case OCSD_GEN_TRC_ELEM_MEMTRANS: |
| #if (OCSD_VER_NUM >= 0x010400) |
| case OCSD_GEN_TRC_ELEM_INSTRUMENTATION: |
| #endif |
| default: |
| break; |
| } |
| |
| return resp; |
| } |
| |
| static int |
| cs_etm_decoder__create_etm_decoder(struct cs_etm_decoder_params *d_params, |
| struct cs_etm_trace_params *t_params, |
| struct cs_etm_decoder *decoder) |
| { |
| ocsd_etmv3_cfg config_etmv3; |
| ocsd_etmv4_cfg trace_config_etmv4; |
| ocsd_ete_cfg trace_config_ete; |
| void *trace_config; |
| u8 csid; |
| |
| switch (t_params->protocol) { |
| case CS_ETM_PROTO_ETMV3: |
| case CS_ETM_PROTO_PTM: |
| csid = (t_params->etmv3.reg_idr & CORESIGHT_TRACE_ID_VAL_MASK); |
| cs_etm_decoder__gen_etmv3_config(t_params, &config_etmv3); |
| decoder->decoder_name = (t_params->protocol == CS_ETM_PROTO_ETMV3) ? |
| OCSD_BUILTIN_DCD_ETMV3 : |
| OCSD_BUILTIN_DCD_PTM; |
| trace_config = &config_etmv3; |
| break; |
| case CS_ETM_PROTO_ETMV4i: |
| csid = (t_params->etmv4.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK); |
| cs_etm_decoder__gen_etmv4_config(t_params, &trace_config_etmv4); |
| decoder->decoder_name = OCSD_BUILTIN_DCD_ETMV4I; |
| trace_config = &trace_config_etmv4; |
| break; |
| case CS_ETM_PROTO_ETE: |
| csid = (t_params->ete.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK); |
| cs_etm_decoder__gen_ete_config(t_params, &trace_config_ete); |
| decoder->decoder_name = OCSD_BUILTIN_DCD_ETE; |
| trace_config = &trace_config_ete; |
| break; |
| default: |
| return -1; |
| } |
| |
| /* if the CPU has no trace ID associated, no decoder needed */ |
| if (csid == CORESIGHT_TRACE_ID_UNUSED_VAL) |
| return 0; |
| |
| if (d_params->operation == CS_ETM_OPERATION_DECODE) { |
| if (ocsd_dt_create_decoder(decoder->dcd_tree, |
| decoder->decoder_name, |
| OCSD_CREATE_FLG_FULL_DECODER, |
| trace_config, &csid)) |
| return -1; |
| |
| if (ocsd_dt_set_gen_elem_outfn(decoder->dcd_tree, |
| cs_etm_decoder__gen_trace_elem_printer, |
| decoder)) |
| return -1; |
| |
| return 0; |
| } else if (d_params->operation == CS_ETM_OPERATION_PRINT) { |
| if (ocsd_dt_create_decoder(decoder->dcd_tree, decoder->decoder_name, |
| OCSD_CREATE_FLG_PACKET_PROC, |
| trace_config, &csid)) |
| return -1; |
| |
| if (ocsd_dt_set_pkt_protocol_printer(decoder->dcd_tree, csid, 0)) |
| return -1; |
| |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| struct cs_etm_decoder * |
| cs_etm_decoder__new(int decoders, struct cs_etm_decoder_params *d_params, |
| struct cs_etm_trace_params t_params[]) |
| { |
| struct cs_etm_decoder *decoder; |
| ocsd_dcd_tree_src_t format; |
| u32 flags; |
| int i, ret; |
| |
| if ((!t_params) || (!d_params)) |
| return NULL; |
| |
| decoder = zalloc(sizeof(*decoder)); |
| |
| if (!decoder) |
| return NULL; |
| |
| decoder->data = d_params->data; |
| decoder->prev_return = OCSD_RESP_CONT; |
| format = (d_params->formatted ? OCSD_TRC_SRC_FRAME_FORMATTED : |
| OCSD_TRC_SRC_SINGLE); |
| flags = 0; |
| flags |= (d_params->fsyncs ? OCSD_DFRMTR_HAS_FSYNCS : 0); |
| flags |= (d_params->hsyncs ? OCSD_DFRMTR_HAS_HSYNCS : 0); |
| flags |= (d_params->frame_aligned ? OCSD_DFRMTR_FRAME_MEM_ALIGN : 0); |
| |
| /* |
| * Drivers may add barrier frames when used with perf, set up to |
| * handle this. Barriers const of FSYNC packet repeated 4 times. |
| */ |
| flags |= OCSD_DFRMTR_RESET_ON_4X_FSYNC; |
| |
| /* Create decode tree for the data source */ |
| decoder->dcd_tree = ocsd_create_dcd_tree(format, flags); |
| |
| if (decoder->dcd_tree == 0) |
| goto err_free_decoder; |
| |
| /* init library print logging support */ |
| ret = cs_etm_decoder__init_def_logger_printing(d_params, decoder); |
| if (ret != 0) |
| goto err_free_decoder; |
| |
| /* init raw frame logging if required */ |
| cs_etm_decoder__init_raw_frame_logging(d_params, decoder); |
| |
| for (i = 0; i < decoders; i++) { |
| ret = cs_etm_decoder__create_etm_decoder(d_params, |
| &t_params[i], |
| decoder); |
| if (ret != 0) |
| goto err_free_decoder; |
| } |
| |
| return decoder; |
| |
| err_free_decoder: |
| cs_etm_decoder__free(decoder); |
| return NULL; |
| } |
| |
| int cs_etm_decoder__process_data_block(struct cs_etm_decoder *decoder, |
| u64 indx, const u8 *buf, |
| size_t len, size_t *consumed) |
| { |
| int ret = 0; |
| ocsd_datapath_resp_t cur = OCSD_RESP_CONT; |
| ocsd_datapath_resp_t prev_return = decoder->prev_return; |
| size_t processed = 0; |
| u32 count; |
| |
| while (processed < len) { |
| if (OCSD_DATA_RESP_IS_WAIT(prev_return)) { |
| cur = ocsd_dt_process_data(decoder->dcd_tree, |
| OCSD_OP_FLUSH, |
| 0, |
| 0, |
| NULL, |
| NULL); |
| } else if (OCSD_DATA_RESP_IS_CONT(prev_return)) { |
| cur = ocsd_dt_process_data(decoder->dcd_tree, |
| OCSD_OP_DATA, |
| indx + processed, |
| len - processed, |
| &buf[processed], |
| &count); |
| processed += count; |
| } else { |
| ret = -EINVAL; |
| break; |
| } |
| |
| /* |
| * Return to the input code if the packet buffer is full. |
| * Flushing will get done once the packet buffer has been |
| * processed. |
| */ |
| if (OCSD_DATA_RESP_IS_WAIT(cur)) |
| break; |
| |
| prev_return = cur; |
| } |
| |
| decoder->prev_return = cur; |
| *consumed = processed; |
| |
| return ret; |
| } |
| |
| void cs_etm_decoder__free(struct cs_etm_decoder *decoder) |
| { |
| if (!decoder) |
| return; |
| |
| ocsd_destroy_dcd_tree(decoder->dcd_tree); |
| decoder->dcd_tree = NULL; |
| free(decoder); |
| } |
| |
| const char *cs_etm_decoder__get_name(struct cs_etm_decoder *decoder) |
| { |
| return decoder->decoder_name; |
| } |