blob: 82a27ab90c8be0363c9cd4e86b5b05fe872773b1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2015-2018 Linaro Limited.
*
* Author: Tor Jeremiassen <tor@ti.com>
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <asm/bug.h>
#include <linux/coresight-pmu.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/zalloc.h>
#include <stdlib.h>
#include <opencsd/c_api/opencsd_c_api.h>
#include "cs-etm.h"
#include "cs-etm-decoder.h"
#include "debug.h"
#include "intlist.h"
/* use raw logging */
#ifdef CS_DEBUG_RAW
#define CS_LOG_RAW_FRAMES
#ifdef CS_RAW_PACKED
#define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT | \
OCSD_DFRMTR_PACKED_RAW_OUT)
#else
#define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT)
#endif
#endif
/*
* Assume a maximum of 0.1ns elapsed per instruction. This would be the
* case with a theoretical 10GHz core executing 1 instruction per cycle.
* Used to estimate the sample time for synthesized instructions because
* Coresight only emits a timestamp for a range of instructions rather
* than per instruction.
*/
const u32 INSTR_PER_NS = 10;
struct cs_etm_decoder {
void *data;
void (*packet_printer)(const char *msg);
bool suppress_printing;
dcd_tree_handle_t dcd_tree;
cs_etm_mem_cb_type mem_access;
ocsd_datapath_resp_t prev_return;
const char *decoder_name;
};
static u32
cs_etm_decoder__mem_access(const void *context,
const ocsd_vaddr_t address,
const ocsd_mem_space_acc_t mem_space __maybe_unused,
const u8 trace_chan_id,
const u32 req_size,
u8 *buffer)
{
struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context;
return decoder->mem_access(decoder->data, trace_chan_id,
address, req_size, buffer);
}
int cs_etm_decoder__add_mem_access_cb(struct cs_etm_decoder *decoder,
u64 start, u64 end,
cs_etm_mem_cb_type cb_func)
{
decoder->mem_access = cb_func;
if (ocsd_dt_add_callback_trcid_mem_acc(decoder->dcd_tree, start, end,
OCSD_MEM_SPACE_ANY,
cs_etm_decoder__mem_access,
decoder))
return -1;
return 0;
}
int cs_etm_decoder__reset(struct cs_etm_decoder *decoder)
{
ocsd_datapath_resp_t dp_ret;
decoder->prev_return = OCSD_RESP_CONT;
decoder->suppress_printing = true;
dp_ret = ocsd_dt_process_data(decoder->dcd_tree, OCSD_OP_RESET,
0, 0, NULL, NULL);
decoder->suppress_printing = false;
if (OCSD_DATA_RESP_IS_FATAL(dp_ret))
return -1;
return 0;
}
int cs_etm_decoder__get_packet(struct cs_etm_packet_queue *packet_queue,
struct cs_etm_packet *packet)
{
if (!packet_queue || !packet)
return -EINVAL;
/* Nothing to do, might as well just return */
if (packet_queue->packet_count == 0)
return 0;
/*
* The queueing process in function cs_etm_decoder__buffer_packet()
* increments the tail *before* using it. This is somewhat counter
* intuitive but it has the advantage of centralizing tail management
* at a single location. Because of that we need to follow the same
* heuristic with the head, i.e we increment it before using its
* value. Otherwise the first element of the packet queue is not
* used.
*/
packet_queue->head = (packet_queue->head + 1) &
(CS_ETM_PACKET_MAX_BUFFER - 1);
*packet = packet_queue->packet_buffer[packet_queue->head];
packet_queue->packet_count--;
return 1;
}
/*
* Calculate the number of nanoseconds elapsed.
*
* instr_count is updated in place with the remainder of the instructions
* which didn't make up a whole nanosecond.
*/
static u32 cs_etm_decoder__dec_instr_count_to_ns(u32 *instr_count)
{
const u32 instr_copy = *instr_count;
*instr_count %= INSTR_PER_NS;
return instr_copy / INSTR_PER_NS;
}
static int cs_etm_decoder__gen_etmv3_config(struct cs_etm_trace_params *params,
ocsd_etmv3_cfg *config)
{
config->reg_idr = params->etmv3.reg_idr;
config->reg_ctrl = params->etmv3.reg_ctrl;
config->reg_ccer = params->etmv3.reg_ccer;
config->reg_trc_id = params->etmv3.reg_trc_id;
config->arch_ver = ARCH_V7;
config->core_prof = profile_CortexA;
return 0;
}
#define TRCIDR1_TRCARCHMIN_SHIFT 4
#define TRCIDR1_TRCARCHMIN_MASK GENMASK(7, 4)
#define TRCIDR1_TRCARCHMIN(x) (((x) & TRCIDR1_TRCARCHMIN_MASK) >> TRCIDR1_TRCARCHMIN_SHIFT)
static enum _ocsd_arch_version cs_etm_decoder__get_etmv4_arch_ver(u32 reg_idr1)
{
/*
* For ETMv4 if the trace minor version is 4 or more then we can assume
* the architecture is ARCH_AA64 rather than just V8.
* ARCH_V8 = V8 architecture
* ARCH_AA64 = Min v8r3 plus additional AA64 PE features
*/
return TRCIDR1_TRCARCHMIN(reg_idr1) >= 4 ? ARCH_AA64 : ARCH_V8;
}
static void cs_etm_decoder__gen_etmv4_config(struct cs_etm_trace_params *params,
ocsd_etmv4_cfg *config)
{
config->reg_configr = params->etmv4.reg_configr;
config->reg_traceidr = params->etmv4.reg_traceidr;
config->reg_idr0 = params->etmv4.reg_idr0;
config->reg_idr1 = params->etmv4.reg_idr1;
config->reg_idr2 = params->etmv4.reg_idr2;
config->reg_idr8 = params->etmv4.reg_idr8;
config->reg_idr9 = 0;
config->reg_idr10 = 0;
config->reg_idr11 = 0;
config->reg_idr12 = 0;
config->reg_idr13 = 0;
config->arch_ver = cs_etm_decoder__get_etmv4_arch_ver(params->etmv4.reg_idr1);
config->core_prof = profile_CortexA;
}
static void cs_etm_decoder__gen_ete_config(struct cs_etm_trace_params *params,
ocsd_ete_cfg *config)
{
config->reg_configr = params->ete.reg_configr;
config->reg_traceidr = params->ete.reg_traceidr;
config->reg_idr0 = params->ete.reg_idr0;
config->reg_idr1 = params->ete.reg_idr1;
config->reg_idr2 = params->ete.reg_idr2;
config->reg_idr8 = params->ete.reg_idr8;
config->reg_devarch = params->ete.reg_devarch;
config->arch_ver = ARCH_AA64;
config->core_prof = profile_CortexA;
}
static void cs_etm_decoder__print_str_cb(const void *p_context,
const char *msg,
const int str_len)
{
const struct cs_etm_decoder *decoder = p_context;
if (p_context && str_len && !decoder->suppress_printing)
decoder->packet_printer(msg);
}
static int
cs_etm_decoder__init_def_logger_printing(struct cs_etm_decoder_params *d_params,
struct cs_etm_decoder *decoder)
{
int ret = 0;
if (d_params->packet_printer == NULL)
return -1;
decoder->packet_printer = d_params->packet_printer;
/*
* Set up a library default logger to process any printers
* (packet/raw frame) we add later.
*/
ret = ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1);
if (ret != 0)
return -1;
/* no stdout / err / file output */
ret = ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL);
if (ret != 0)
return -1;
/*
* Set the string CB for the default logger, passes strings to
* perf print logger.
*/
ret = ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree,
(void *)decoder,
cs_etm_decoder__print_str_cb);
if (ret != 0)
ret = -1;
return 0;
}
#ifdef CS_LOG_RAW_FRAMES
static void
cs_etm_decoder__init_raw_frame_logging(struct cs_etm_decoder_params *d_params,
struct cs_etm_decoder *decoder)
{
/* Only log these during a --dump operation */
if (d_params->operation == CS_ETM_OPERATION_PRINT) {
/* set up a library default logger to process the
* raw frame printer we add later
*/
ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1);
/* no stdout / err / file output */
ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL);
/* set the string CB for the default logger,
* passes strings to perf print logger.
*/
ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree,
(void *)decoder,
cs_etm_decoder__print_str_cb);
/* use the built in library printer for the raw frames */
ocsd_dt_set_raw_frame_printer(decoder->dcd_tree,
CS_RAW_DEBUG_FLAGS);
}
}
#else
static void
cs_etm_decoder__init_raw_frame_logging(
struct cs_etm_decoder_params *d_params __maybe_unused,
struct cs_etm_decoder *decoder __maybe_unused)
{
}
#endif
static ocsd_datapath_resp_t
cs_etm_decoder__do_soft_timestamp(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *packet_queue,
const uint8_t trace_chan_id)
{
u64 estimated_ts;
/* No timestamp packet has been received, nothing to do */
if (!packet_queue->next_cs_timestamp)
return OCSD_RESP_CONT;
estimated_ts = packet_queue->cs_timestamp +
cs_etm_decoder__dec_instr_count_to_ns(&packet_queue->instr_count);
/* Estimated TS can never be higher than the next real one in the trace */
packet_queue->cs_timestamp = min(packet_queue->next_cs_timestamp, estimated_ts);
/* Tell the front end which traceid_queue needs attention */
cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id);
return OCSD_RESP_WAIT;
}
static ocsd_datapath_resp_t
cs_etm_decoder__do_hard_timestamp(struct cs_etm_queue *etmq,
const ocsd_generic_trace_elem *elem,
const uint8_t trace_chan_id,
const ocsd_trc_index_t indx)
{
struct cs_etm_packet_queue *packet_queue;
u64 converted_timestamp;
u64 estimated_first_ts;
/* First get the packet queue for this traceID */
packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id);
if (!packet_queue)
return OCSD_RESP_FATAL_SYS_ERR;
/*
* Coresight timestamps are raw timer values which need to be scaled to ns. Assume
* 0 is a bad value so don't try to convert it.
*/
converted_timestamp = elem->timestamp ?
cs_etm__convert_sample_time(etmq, elem->timestamp) : 0;
/*
* We've seen a timestamp packet before - simply record the new value.
* Function do_soft_timestamp() will report the value to the front end,
* hence asking the decoder to keep decoding rather than stopping.
*/
if (packet_queue->next_cs_timestamp) {
/*
* What was next is now where new ranges start from, overwriting
* any previous estimate in cs_timestamp
*/
packet_queue->cs_timestamp = packet_queue->next_cs_timestamp;
packet_queue->next_cs_timestamp = converted_timestamp;
return OCSD_RESP_CONT;
}
if (!converted_timestamp) {
/*
* Zero timestamps can be seen due to misconfiguration or hardware bugs.
* Warn once, and don't try to subtract instr_count as it would result in an
* underflow.
*/
packet_queue->cs_timestamp = 0;
if (!cs_etm__etmq_is_timeless(etmq))
pr_warning_once("Zero Coresight timestamp found at Idx:%" OCSD_TRC_IDX_STR
". Decoding may be improved by prepending 'Z' to your current --itrace arguments.\n",
indx);
} else if (packet_queue->instr_count / INSTR_PER_NS > converted_timestamp) {
/*
* Sanity check that the elem->timestamp - packet_queue->instr_count would not
* result in an underflow. Warn and clamp at 0 if it would.
*/
packet_queue->cs_timestamp = 0;
pr_err("Timestamp calculation underflow at Idx:%" OCSD_TRC_IDX_STR "\n", indx);
} else {
/*
* This is the first timestamp we've seen since the beginning of traces
* or a discontinuity. Since timestamps packets are generated *after*
* range packets have been generated, we need to estimate the time at
* which instructions started by subtracting the number of instructions
* executed to the timestamp. Don't estimate earlier than the last used
* timestamp though.
*/
estimated_first_ts = converted_timestamp -
(packet_queue->instr_count / INSTR_PER_NS);
packet_queue->cs_timestamp = max(packet_queue->cs_timestamp, estimated_first_ts);
}
packet_queue->next_cs_timestamp = converted_timestamp;
packet_queue->instr_count = 0;
/* Tell the front end which traceid_queue needs attention */
cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id);
/* Halt processing until we are being told to proceed */
return OCSD_RESP_WAIT;
}
static void
cs_etm_decoder__reset_timestamp(struct cs_etm_packet_queue *packet_queue)
{
packet_queue->next_cs_timestamp = 0;
packet_queue->instr_count = 0;
}
static ocsd_datapath_resp_t
cs_etm_decoder__buffer_packet(struct cs_etm_packet_queue *packet_queue,
const u8 trace_chan_id,
enum cs_etm_sample_type sample_type)
{
u32 et = 0;
int cpu;
if (packet_queue->packet_count >= CS_ETM_PACKET_MAX_BUFFER - 1)
return OCSD_RESP_FATAL_SYS_ERR;
if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
return OCSD_RESP_FATAL_SYS_ERR;
et = packet_queue->tail;
et = (et + 1) & (CS_ETM_PACKET_MAX_BUFFER - 1);
packet_queue->tail = et;
packet_queue->packet_count++;
packet_queue->packet_buffer[et].sample_type = sample_type;
packet_queue->packet_buffer[et].isa = CS_ETM_ISA_UNKNOWN;
packet_queue->packet_buffer[et].cpu = cpu;
packet_queue->packet_buffer[et].start_addr = CS_ETM_INVAL_ADDR;
packet_queue->packet_buffer[et].end_addr = CS_ETM_INVAL_ADDR;
packet_queue->packet_buffer[et].instr_count = 0;
packet_queue->packet_buffer[et].last_instr_taken_branch = false;
packet_queue->packet_buffer[et].last_instr_size = 0;
packet_queue->packet_buffer[et].last_instr_type = 0;
packet_queue->packet_buffer[et].last_instr_subtype = 0;
packet_queue->packet_buffer[et].last_instr_cond = 0;
packet_queue->packet_buffer[et].flags = 0;
packet_queue->packet_buffer[et].exception_number = UINT32_MAX;
packet_queue->packet_buffer[et].trace_chan_id = trace_chan_id;
if (packet_queue->packet_count == CS_ETM_PACKET_MAX_BUFFER - 1)
return OCSD_RESP_WAIT;
return OCSD_RESP_CONT;
}
static ocsd_datapath_resp_t
cs_etm_decoder__buffer_range(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *packet_queue,
const ocsd_generic_trace_elem *elem,
const uint8_t trace_chan_id)
{
int ret = 0;
struct cs_etm_packet *packet;
ret = cs_etm_decoder__buffer_packet(packet_queue, trace_chan_id,
CS_ETM_RANGE);
if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT)
return ret;
packet = &packet_queue->packet_buffer[packet_queue->tail];
switch (elem->isa) {
case ocsd_isa_aarch64:
packet->isa = CS_ETM_ISA_A64;
break;
case ocsd_isa_arm:
packet->isa = CS_ETM_ISA_A32;
break;
case ocsd_isa_thumb2:
packet->isa = CS_ETM_ISA_T32;
break;
case ocsd_isa_tee:
case ocsd_isa_jazelle:
case ocsd_isa_custom:
case ocsd_isa_unknown:
default:
packet->isa = CS_ETM_ISA_UNKNOWN;
}
packet->start_addr = elem->st_addr;
packet->end_addr = elem->en_addr;
packet->instr_count = elem->num_instr_range;
packet->last_instr_type = elem->last_i_type;
packet->last_instr_subtype = elem->last_i_subtype;
packet->last_instr_cond = elem->last_instr_cond;
if (elem->last_i_type == OCSD_INSTR_BR || elem->last_i_type == OCSD_INSTR_BR_INDIRECT)
packet->last_instr_taken_branch = elem->last_instr_exec;
else
packet->last_instr_taken_branch = false;
packet->last_instr_size = elem->last_instr_sz;
/* per-thread scenario, no need to generate a timestamp */
if (cs_etm__etmq_is_timeless(etmq))
goto out;
/*
* The packet queue is full and we haven't seen a timestamp (had we
* seen one the packet queue wouldn't be full). Let the front end
* deal with it.
*/
if (ret == OCSD_RESP_WAIT)
goto out;
packet_queue->instr_count += elem->num_instr_range;
/* Tell the front end we have a new timestamp to process */
ret = cs_etm_decoder__do_soft_timestamp(etmq, packet_queue,
trace_chan_id);
out:
return ret;
}
static ocsd_datapath_resp_t
cs_etm_decoder__buffer_discontinuity(struct cs_etm_packet_queue *queue,
const uint8_t trace_chan_id)
{
/*
* Something happened and who knows when we'll get new traces so
* reset time statistics.
*/
cs_etm_decoder__reset_timestamp(queue);
return cs_etm_decoder__buffer_packet(queue, trace_chan_id,
CS_ETM_DISCONTINUITY);
}
static ocsd_datapath_resp_t
cs_etm_decoder__buffer_exception(struct cs_etm_packet_queue *queue,
const ocsd_generic_trace_elem *elem,
const uint8_t trace_chan_id)
{ int ret = 0;
struct cs_etm_packet *packet;
ret = cs_etm_decoder__buffer_packet(queue, trace_chan_id,
CS_ETM_EXCEPTION);
if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT)
return ret;
packet = &queue->packet_buffer[queue->tail];
packet->exception_number = elem->exception_number;
return ret;
}
static ocsd_datapath_resp_t
cs_etm_decoder__buffer_exception_ret(struct cs_etm_packet_queue *queue,
const uint8_t trace_chan_id)
{
return cs_etm_decoder__buffer_packet(queue, trace_chan_id,
CS_ETM_EXCEPTION_RET);
}
static ocsd_datapath_resp_t
cs_etm_decoder__set_tid(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *packet_queue,
const ocsd_generic_trace_elem *elem,
const uint8_t trace_chan_id)
{
pid_t tid = -1;
static u64 pid_fmt;
int ret;
/*
* As all the ETMs run at the same exception level, the system should
* have the same PID format crossing CPUs. So cache the PID format
* and reuse it for sequential decoding.
*/
if (!pid_fmt) {
ret = cs_etm__get_pid_fmt(trace_chan_id, &pid_fmt);
if (ret)
return OCSD_RESP_FATAL_SYS_ERR;
}
/*
* Process the PE_CONTEXT packets if we have a valid contextID or VMID.
* If the kernel is running at EL2, the PID is traced in CONTEXTIDR_EL2
* as VMID, Bit ETM_OPT_CTXTID2 is set in this case.
*/
switch (pid_fmt) {
case BIT(ETM_OPT_CTXTID):
if (elem->context.ctxt_id_valid)
tid = elem->context.context_id;
break;
case BIT(ETM_OPT_CTXTID2):
if (elem->context.vmid_valid)
tid = elem->context.vmid;
break;
default:
break;
}
if (tid == -1)
return OCSD_RESP_CONT;
if (cs_etm__etmq_set_tid(etmq, tid, trace_chan_id))
return OCSD_RESP_FATAL_SYS_ERR;
/*
* A timestamp is generated after a PE_CONTEXT element so make sure
* to rely on that coming one.
*/
cs_etm_decoder__reset_timestamp(packet_queue);
return OCSD_RESP_CONT;
}
static ocsd_datapath_resp_t cs_etm_decoder__gen_trace_elem_printer(
const void *context,
const ocsd_trc_index_t indx,
const u8 trace_chan_id __maybe_unused,
const ocsd_generic_trace_elem *elem)
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context;
struct cs_etm_queue *etmq = decoder->data;
struct cs_etm_packet_queue *packet_queue;
/* First get the packet queue for this traceID */
packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id);
if (!packet_queue)
return OCSD_RESP_FATAL_SYS_ERR;
switch (elem->elem_type) {
case OCSD_GEN_TRC_ELEM_UNKNOWN:
break;
case OCSD_GEN_TRC_ELEM_EO_TRACE:
case OCSD_GEN_TRC_ELEM_NO_SYNC:
case OCSD_GEN_TRC_ELEM_TRACE_ON:
resp = cs_etm_decoder__buffer_discontinuity(packet_queue,
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_INSTR_RANGE:
resp = cs_etm_decoder__buffer_range(etmq, packet_queue, elem,
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_EXCEPTION:
resp = cs_etm_decoder__buffer_exception(packet_queue, elem,
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_EXCEPTION_RET:
resp = cs_etm_decoder__buffer_exception_ret(packet_queue,
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_TIMESTAMP:
resp = cs_etm_decoder__do_hard_timestamp(etmq, elem,
trace_chan_id,
indx);
break;
case OCSD_GEN_TRC_ELEM_PE_CONTEXT:
resp = cs_etm_decoder__set_tid(etmq, packet_queue,
elem, trace_chan_id);
break;
/* Unused packet types */
case OCSD_GEN_TRC_ELEM_I_RANGE_NOPATH:
case OCSD_GEN_TRC_ELEM_ADDR_NACC:
case OCSD_GEN_TRC_ELEM_CYCLE_COUNT:
case OCSD_GEN_TRC_ELEM_ADDR_UNKNOWN:
case OCSD_GEN_TRC_ELEM_EVENT:
case OCSD_GEN_TRC_ELEM_SWTRACE:
case OCSD_GEN_TRC_ELEM_CUSTOM:
case OCSD_GEN_TRC_ELEM_SYNC_MARKER:
case OCSD_GEN_TRC_ELEM_MEMTRANS:
#if (OCSD_VER_NUM >= 0x010400)
case OCSD_GEN_TRC_ELEM_INSTRUMENTATION:
#endif
default:
break;
}
return resp;
}
static int
cs_etm_decoder__create_etm_decoder(struct cs_etm_decoder_params *d_params,
struct cs_etm_trace_params *t_params,
struct cs_etm_decoder *decoder)
{
ocsd_etmv3_cfg config_etmv3;
ocsd_etmv4_cfg trace_config_etmv4;
ocsd_ete_cfg trace_config_ete;
void *trace_config;
u8 csid;
switch (t_params->protocol) {
case CS_ETM_PROTO_ETMV3:
case CS_ETM_PROTO_PTM:
csid = (t_params->etmv3.reg_idr & CORESIGHT_TRACE_ID_VAL_MASK);
cs_etm_decoder__gen_etmv3_config(t_params, &config_etmv3);
decoder->decoder_name = (t_params->protocol == CS_ETM_PROTO_ETMV3) ?
OCSD_BUILTIN_DCD_ETMV3 :
OCSD_BUILTIN_DCD_PTM;
trace_config = &config_etmv3;
break;
case CS_ETM_PROTO_ETMV4i:
csid = (t_params->etmv4.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK);
cs_etm_decoder__gen_etmv4_config(t_params, &trace_config_etmv4);
decoder->decoder_name = OCSD_BUILTIN_DCD_ETMV4I;
trace_config = &trace_config_etmv4;
break;
case CS_ETM_PROTO_ETE:
csid = (t_params->ete.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK);
cs_etm_decoder__gen_ete_config(t_params, &trace_config_ete);
decoder->decoder_name = OCSD_BUILTIN_DCD_ETE;
trace_config = &trace_config_ete;
break;
default:
return -1;
}
/* if the CPU has no trace ID associated, no decoder needed */
if (csid == CORESIGHT_TRACE_ID_UNUSED_VAL)
return 0;
if (d_params->operation == CS_ETM_OPERATION_DECODE) {
if (ocsd_dt_create_decoder(decoder->dcd_tree,
decoder->decoder_name,
OCSD_CREATE_FLG_FULL_DECODER,
trace_config, &csid))
return -1;
if (ocsd_dt_set_gen_elem_outfn(decoder->dcd_tree,
cs_etm_decoder__gen_trace_elem_printer,
decoder))
return -1;
return 0;
} else if (d_params->operation == CS_ETM_OPERATION_PRINT) {
if (ocsd_dt_create_decoder(decoder->dcd_tree, decoder->decoder_name,
OCSD_CREATE_FLG_PACKET_PROC,
trace_config, &csid))
return -1;
if (ocsd_dt_set_pkt_protocol_printer(decoder->dcd_tree, csid, 0))
return -1;
return 0;
}
return -1;
}
struct cs_etm_decoder *
cs_etm_decoder__new(int decoders, struct cs_etm_decoder_params *d_params,
struct cs_etm_trace_params t_params[])
{
struct cs_etm_decoder *decoder;
ocsd_dcd_tree_src_t format;
u32 flags;
int i, ret;
if ((!t_params) || (!d_params))
return NULL;
decoder = zalloc(sizeof(*decoder));
if (!decoder)
return NULL;
decoder->data = d_params->data;
decoder->prev_return = OCSD_RESP_CONT;
format = (d_params->formatted ? OCSD_TRC_SRC_FRAME_FORMATTED :
OCSD_TRC_SRC_SINGLE);
flags = 0;
flags |= (d_params->fsyncs ? OCSD_DFRMTR_HAS_FSYNCS : 0);
flags |= (d_params->hsyncs ? OCSD_DFRMTR_HAS_HSYNCS : 0);
flags |= (d_params->frame_aligned ? OCSD_DFRMTR_FRAME_MEM_ALIGN : 0);
/*
* Drivers may add barrier frames when used with perf, set up to
* handle this. Barriers const of FSYNC packet repeated 4 times.
*/
flags |= OCSD_DFRMTR_RESET_ON_4X_FSYNC;
/* Create decode tree for the data source */
decoder->dcd_tree = ocsd_create_dcd_tree(format, flags);
if (decoder->dcd_tree == 0)
goto err_free_decoder;
/* init library print logging support */
ret = cs_etm_decoder__init_def_logger_printing(d_params, decoder);
if (ret != 0)
goto err_free_decoder;
/* init raw frame logging if required */
cs_etm_decoder__init_raw_frame_logging(d_params, decoder);
for (i = 0; i < decoders; i++) {
ret = cs_etm_decoder__create_etm_decoder(d_params,
&t_params[i],
decoder);
if (ret != 0)
goto err_free_decoder;
}
return decoder;
err_free_decoder:
cs_etm_decoder__free(decoder);
return NULL;
}
int cs_etm_decoder__process_data_block(struct cs_etm_decoder *decoder,
u64 indx, const u8 *buf,
size_t len, size_t *consumed)
{
int ret = 0;
ocsd_datapath_resp_t cur = OCSD_RESP_CONT;
ocsd_datapath_resp_t prev_return = decoder->prev_return;
size_t processed = 0;
u32 count;
while (processed < len) {
if (OCSD_DATA_RESP_IS_WAIT(prev_return)) {
cur = ocsd_dt_process_data(decoder->dcd_tree,
OCSD_OP_FLUSH,
0,
0,
NULL,
NULL);
} else if (OCSD_DATA_RESP_IS_CONT(prev_return)) {
cur = ocsd_dt_process_data(decoder->dcd_tree,
OCSD_OP_DATA,
indx + processed,
len - processed,
&buf[processed],
&count);
processed += count;
} else {
ret = -EINVAL;
break;
}
/*
* Return to the input code if the packet buffer is full.
* Flushing will get done once the packet buffer has been
* processed.
*/
if (OCSD_DATA_RESP_IS_WAIT(cur))
break;
prev_return = cur;
}
decoder->prev_return = cur;
*consumed = processed;
return ret;
}
void cs_etm_decoder__free(struct cs_etm_decoder *decoder)
{
if (!decoder)
return;
ocsd_destroy_dcd_tree(decoder->dcd_tree);
decoder->dcd_tree = NULL;
free(decoder);
}
const char *cs_etm_decoder__get_name(struct cs_etm_decoder *decoder)
{
return decoder->decoder_name;
}