|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | /* Copyright (c) 2018 Facebook */ | 
|  |  | 
|  | #include <uapi/linux/btf.h> | 
|  | #include <uapi/linux/bpf.h> | 
|  | #include <uapi/linux/bpf_perf_event.h> | 
|  | #include <uapi/linux/types.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/bpf_verifier.h> | 
|  | #include <linux/btf.h> | 
|  | #include <linux/btf_ids.h> | 
|  | #include <linux/skmsg.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/bsearch.h> | 
|  | #include <linux/kobject.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <net/sock.h> | 
|  |  | 
|  | /* BTF (BPF Type Format) is the meta data format which describes | 
|  | * the data types of BPF program/map.  Hence, it basically focus | 
|  | * on the C programming language which the modern BPF is primary | 
|  | * using. | 
|  | * | 
|  | * ELF Section: | 
|  | * ~~~~~~~~~~~ | 
|  | * The BTF data is stored under the ".BTF" ELF section | 
|  | * | 
|  | * struct btf_type: | 
|  | * ~~~~~~~~~~~~~~~ | 
|  | * Each 'struct btf_type' object describes a C data type. | 
|  | * Depending on the type it is describing, a 'struct btf_type' | 
|  | * object may be followed by more data.  F.e. | 
|  | * To describe an array, 'struct btf_type' is followed by | 
|  | * 'struct btf_array'. | 
|  | * | 
|  | * 'struct btf_type' and any extra data following it are | 
|  | * 4 bytes aligned. | 
|  | * | 
|  | * Type section: | 
|  | * ~~~~~~~~~~~~~ | 
|  | * The BTF type section contains a list of 'struct btf_type' objects. | 
|  | * Each one describes a C type.  Recall from the above section | 
|  | * that a 'struct btf_type' object could be immediately followed by extra | 
|  | * data in order to desribe some particular C types. | 
|  | * | 
|  | * type_id: | 
|  | * ~~~~~~~ | 
|  | * Each btf_type object is identified by a type_id.  The type_id | 
|  | * is implicitly implied by the location of the btf_type object in | 
|  | * the BTF type section.  The first one has type_id 1.  The second | 
|  | * one has type_id 2...etc.  Hence, an earlier btf_type has | 
|  | * a smaller type_id. | 
|  | * | 
|  | * A btf_type object may refer to another btf_type object by using | 
|  | * type_id (i.e. the "type" in the "struct btf_type"). | 
|  | * | 
|  | * NOTE that we cannot assume any reference-order. | 
|  | * A btf_type object can refer to an earlier btf_type object | 
|  | * but it can also refer to a later btf_type object. | 
|  | * | 
|  | * For example, to describe "const void *".  A btf_type | 
|  | * object describing "const" may refer to another btf_type | 
|  | * object describing "void *".  This type-reference is done | 
|  | * by specifying type_id: | 
|  | * | 
|  | * [1] CONST (anon) type_id=2 | 
|  | * [2] PTR (anon) type_id=0 | 
|  | * | 
|  | * The above is the btf_verifier debug log: | 
|  | *   - Each line started with "[?]" is a btf_type object | 
|  | *   - [?] is the type_id of the btf_type object. | 
|  | *   - CONST/PTR is the BTF_KIND_XXX | 
|  | *   - "(anon)" is the name of the type.  It just | 
|  | *     happens that CONST and PTR has no name. | 
|  | *   - type_id=XXX is the 'u32 type' in btf_type | 
|  | * | 
|  | * NOTE: "void" has type_id 0 | 
|  | * | 
|  | * String section: | 
|  | * ~~~~~~~~~~~~~~ | 
|  | * The BTF string section contains the names used by the type section. | 
|  | * Each string is referred by an "offset" from the beginning of the | 
|  | * string section. | 
|  | * | 
|  | * Each string is '\0' terminated. | 
|  | * | 
|  | * The first character in the string section must be '\0' | 
|  | * which is used to mean 'anonymous'. Some btf_type may not | 
|  | * have a name. | 
|  | */ | 
|  |  | 
|  | /* BTF verification: | 
|  | * | 
|  | * To verify BTF data, two passes are needed. | 
|  | * | 
|  | * Pass #1 | 
|  | * ~~~~~~~ | 
|  | * The first pass is to collect all btf_type objects to | 
|  | * an array: "btf->types". | 
|  | * | 
|  | * Depending on the C type that a btf_type is describing, | 
|  | * a btf_type may be followed by extra data.  We don't know | 
|  | * how many btf_type is there, and more importantly we don't | 
|  | * know where each btf_type is located in the type section. | 
|  | * | 
|  | * Without knowing the location of each type_id, most verifications | 
|  | * cannot be done.  e.g. an earlier btf_type may refer to a later | 
|  | * btf_type (recall the "const void *" above), so we cannot | 
|  | * check this type-reference in the first pass. | 
|  | * | 
|  | * In the first pass, it still does some verifications (e.g. | 
|  | * checking the name is a valid offset to the string section). | 
|  | * | 
|  | * Pass #2 | 
|  | * ~~~~~~~ | 
|  | * The main focus is to resolve a btf_type that is referring | 
|  | * to another type. | 
|  | * | 
|  | * We have to ensure the referring type: | 
|  | * 1) does exist in the BTF (i.e. in btf->types[]) | 
|  | * 2) does not cause a loop: | 
|  | *	struct A { | 
|  | *		struct B b; | 
|  | *	}; | 
|  | * | 
|  | *	struct B { | 
|  | *		struct A a; | 
|  | *	}; | 
|  | * | 
|  | * btf_type_needs_resolve() decides if a btf_type needs | 
|  | * to be resolved. | 
|  | * | 
|  | * The needs_resolve type implements the "resolve()" ops which | 
|  | * essentially does a DFS and detects backedge. | 
|  | * | 
|  | * During resolve (or DFS), different C types have different | 
|  | * "RESOLVED" conditions. | 
|  | * | 
|  | * When resolving a BTF_KIND_STRUCT, we need to resolve all its | 
|  | * members because a member is always referring to another | 
|  | * type.  A struct's member can be treated as "RESOLVED" if | 
|  | * it is referring to a BTF_KIND_PTR.  Otherwise, the | 
|  | * following valid C struct would be rejected: | 
|  | * | 
|  | *	struct A { | 
|  | *		int m; | 
|  | *		struct A *a; | 
|  | *	}; | 
|  | * | 
|  | * When resolving a BTF_KIND_PTR, it needs to keep resolving if | 
|  | * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot | 
|  | * detect a pointer loop, e.g.: | 
|  | * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + | 
|  | *                        ^                                         | | 
|  | *                        +-----------------------------------------+ | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) | 
|  | #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) | 
|  | #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) | 
|  | #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) | 
|  | #define BITS_ROUNDUP_BYTES(bits) \ | 
|  | (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) | 
|  |  | 
|  | #define BTF_INFO_MASK 0x8f00ffff | 
|  | #define BTF_INT_MASK 0x0fffffff | 
|  | #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) | 
|  | #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) | 
|  |  | 
|  | /* 16MB for 64k structs and each has 16 members and | 
|  | * a few MB spaces for the string section. | 
|  | * The hard limit is S32_MAX. | 
|  | */ | 
|  | #define BTF_MAX_SIZE (16 * 1024 * 1024) | 
|  |  | 
|  | #define for_each_member_from(i, from, struct_type, member)		\ | 
|  | for (i = from, member = btf_type_member(struct_type) + from;	\ | 
|  | i < btf_type_vlen(struct_type);				\ | 
|  | i++, member++) | 
|  |  | 
|  | #define for_each_vsi_from(i, from, struct_type, member)				\ | 
|  | for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\ | 
|  | i < btf_type_vlen(struct_type);					\ | 
|  | i++, member++) | 
|  |  | 
|  | DEFINE_IDR(btf_idr); | 
|  | DEFINE_SPINLOCK(btf_idr_lock); | 
|  |  | 
|  | struct btf { | 
|  | void *data; | 
|  | struct btf_type **types; | 
|  | u32 *resolved_ids; | 
|  | u32 *resolved_sizes; | 
|  | const char *strings; | 
|  | void *nohdr_data; | 
|  | struct btf_header hdr; | 
|  | u32 nr_types; /* includes VOID for base BTF */ | 
|  | u32 types_size; | 
|  | u32 data_size; | 
|  | refcount_t refcnt; | 
|  | u32 id; | 
|  | struct rcu_head rcu; | 
|  |  | 
|  | /* split BTF support */ | 
|  | struct btf *base_btf; | 
|  | u32 start_id; /* first type ID in this BTF (0 for base BTF) */ | 
|  | u32 start_str_off; /* first string offset (0 for base BTF) */ | 
|  | char name[MODULE_NAME_LEN]; | 
|  | bool kernel_btf; | 
|  | }; | 
|  |  | 
|  | enum verifier_phase { | 
|  | CHECK_META, | 
|  | CHECK_TYPE, | 
|  | }; | 
|  |  | 
|  | struct resolve_vertex { | 
|  | const struct btf_type *t; | 
|  | u32 type_id; | 
|  | u16 next_member; | 
|  | }; | 
|  |  | 
|  | enum visit_state { | 
|  | NOT_VISITED, | 
|  | VISITED, | 
|  | RESOLVED, | 
|  | }; | 
|  |  | 
|  | enum resolve_mode { | 
|  | RESOLVE_TBD,	/* To Be Determined */ | 
|  | RESOLVE_PTR,	/* Resolving for Pointer */ | 
|  | RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union | 
|  | * or array | 
|  | */ | 
|  | }; | 
|  |  | 
|  | #define MAX_RESOLVE_DEPTH 32 | 
|  |  | 
|  | struct btf_sec_info { | 
|  | u32 off; | 
|  | u32 len; | 
|  | }; | 
|  |  | 
|  | struct btf_verifier_env { | 
|  | struct btf *btf; | 
|  | u8 *visit_states; | 
|  | struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; | 
|  | struct bpf_verifier_log log; | 
|  | u32 log_type_id; | 
|  | u32 top_stack; | 
|  | enum verifier_phase phase; | 
|  | enum resolve_mode resolve_mode; | 
|  | }; | 
|  |  | 
|  | static const char * const btf_kind_str[NR_BTF_KINDS] = { | 
|  | [BTF_KIND_UNKN]		= "UNKNOWN", | 
|  | [BTF_KIND_INT]		= "INT", | 
|  | [BTF_KIND_PTR]		= "PTR", | 
|  | [BTF_KIND_ARRAY]	= "ARRAY", | 
|  | [BTF_KIND_STRUCT]	= "STRUCT", | 
|  | [BTF_KIND_UNION]	= "UNION", | 
|  | [BTF_KIND_ENUM]		= "ENUM", | 
|  | [BTF_KIND_FWD]		= "FWD", | 
|  | [BTF_KIND_TYPEDEF]	= "TYPEDEF", | 
|  | [BTF_KIND_VOLATILE]	= "VOLATILE", | 
|  | [BTF_KIND_CONST]	= "CONST", | 
|  | [BTF_KIND_RESTRICT]	= "RESTRICT", | 
|  | [BTF_KIND_FUNC]		= "FUNC", | 
|  | [BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO", | 
|  | [BTF_KIND_VAR]		= "VAR", | 
|  | [BTF_KIND_DATASEC]	= "DATASEC", | 
|  | }; | 
|  |  | 
|  | static const char *btf_type_str(const struct btf_type *t) | 
|  | { | 
|  | return btf_kind_str[BTF_INFO_KIND(t->info)]; | 
|  | } | 
|  |  | 
|  | /* Chunk size we use in safe copy of data to be shown. */ | 
|  | #define BTF_SHOW_OBJ_SAFE_SIZE		32 | 
|  |  | 
|  | /* | 
|  | * This is the maximum size of a base type value (equivalent to a | 
|  | * 128-bit int); if we are at the end of our safe buffer and have | 
|  | * less than 16 bytes space we can't be assured of being able | 
|  | * to copy the next type safely, so in such cases we will initiate | 
|  | * a new copy. | 
|  | */ | 
|  | #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16 | 
|  |  | 
|  | /* Type name size */ | 
|  | #define BTF_SHOW_NAME_SIZE		80 | 
|  |  | 
|  | /* | 
|  | * Common data to all BTF show operations. Private show functions can add | 
|  | * their own data to a structure containing a struct btf_show and consult it | 
|  | * in the show callback.  See btf_type_show() below. | 
|  | * | 
|  | * One challenge with showing nested data is we want to skip 0-valued | 
|  | * data, but in order to figure out whether a nested object is all zeros | 
|  | * we need to walk through it.  As a result, we need to make two passes | 
|  | * when handling structs, unions and arrays; the first path simply looks | 
|  | * for nonzero data, while the second actually does the display.  The first | 
|  | * pass is signalled by show->state.depth_check being set, and if we | 
|  | * encounter a non-zero value we set show->state.depth_to_show to | 
|  | * the depth at which we encountered it.  When we have completed the | 
|  | * first pass, we will know if anything needs to be displayed if | 
|  | * depth_to_show > depth.  See btf_[struct,array]_show() for the | 
|  | * implementation of this. | 
|  | * | 
|  | * Another problem is we want to ensure the data for display is safe to | 
|  | * access.  To support this, the anonymous "struct {} obj" tracks the data | 
|  | * object and our safe copy of it.  We copy portions of the data needed | 
|  | * to the object "copy" buffer, but because its size is limited to | 
|  | * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we | 
|  | * traverse larger objects for display. | 
|  | * | 
|  | * The various data type show functions all start with a call to | 
|  | * btf_show_start_type() which returns a pointer to the safe copy | 
|  | * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the | 
|  | * raw data itself).  btf_show_obj_safe() is responsible for | 
|  | * using copy_from_kernel_nofault() to update the safe data if necessary | 
|  | * as we traverse the object's data.  skbuff-like semantics are | 
|  | * used: | 
|  | * | 
|  | * - obj.head points to the start of the toplevel object for display | 
|  | * - obj.size is the size of the toplevel object | 
|  | * - obj.data points to the current point in the original data at | 
|  | *   which our safe data starts.  obj.data will advance as we copy | 
|  | *   portions of the data. | 
|  | * | 
|  | * In most cases a single copy will suffice, but larger data structures | 
|  | * such as "struct task_struct" will require many copies.  The logic in | 
|  | * btf_show_obj_safe() handles the logic that determines if a new | 
|  | * copy_from_kernel_nofault() is needed. | 
|  | */ | 
|  | struct btf_show { | 
|  | u64 flags; | 
|  | void *target;	/* target of show operation (seq file, buffer) */ | 
|  | void (*showfn)(struct btf_show *show, const char *fmt, va_list args); | 
|  | const struct btf *btf; | 
|  | /* below are used during iteration */ | 
|  | struct { | 
|  | u8 depth; | 
|  | u8 depth_to_show; | 
|  | u8 depth_check; | 
|  | u8 array_member:1, | 
|  | array_terminated:1; | 
|  | u16 array_encoding; | 
|  | u32 type_id; | 
|  | int status;			/* non-zero for error */ | 
|  | const struct btf_type *type; | 
|  | const struct btf_member *member; | 
|  | char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */ | 
|  | } state; | 
|  | struct { | 
|  | u32 size; | 
|  | void *head; | 
|  | void *data; | 
|  | u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; | 
|  | } obj; | 
|  | }; | 
|  |  | 
|  | struct btf_kind_operations { | 
|  | s32 (*check_meta)(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left); | 
|  | int (*resolve)(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v); | 
|  | int (*check_member)(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type); | 
|  | int (*check_kflag_member)(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type); | 
|  | void (*log_details)(struct btf_verifier_env *env, | 
|  | const struct btf_type *t); | 
|  | void (*show)(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offsets, | 
|  | struct btf_show *show); | 
|  | }; | 
|  |  | 
|  | static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; | 
|  | static struct btf_type btf_void; | 
|  |  | 
|  | static int btf_resolve(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, u32 type_id); | 
|  |  | 
|  | static bool btf_type_is_modifier(const struct btf_type *t) | 
|  | { | 
|  | /* Some of them is not strictly a C modifier | 
|  | * but they are grouped into the same bucket | 
|  | * for BTF concern: | 
|  | *   A type (t) that refers to another | 
|  | *   type through t->type AND its size cannot | 
|  | *   be determined without following the t->type. | 
|  | * | 
|  | * ptr does not fall into this bucket | 
|  | * because its size is always sizeof(void *). | 
|  | */ | 
|  | switch (BTF_INFO_KIND(t->info)) { | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_RESTRICT: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool btf_type_is_void(const struct btf_type *t) | 
|  | { | 
|  | return t == &btf_void; | 
|  | } | 
|  |  | 
|  | static bool btf_type_is_fwd(const struct btf_type *t) | 
|  | { | 
|  | return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; | 
|  | } | 
|  |  | 
|  | static bool btf_type_nosize(const struct btf_type *t) | 
|  | { | 
|  | return btf_type_is_void(t) || btf_type_is_fwd(t) || | 
|  | btf_type_is_func(t) || btf_type_is_func_proto(t); | 
|  | } | 
|  |  | 
|  | static bool btf_type_nosize_or_null(const struct btf_type *t) | 
|  | { | 
|  | return !t || btf_type_nosize(t); | 
|  | } | 
|  |  | 
|  | static bool __btf_type_is_struct(const struct btf_type *t) | 
|  | { | 
|  | return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; | 
|  | } | 
|  |  | 
|  | static bool btf_type_is_array(const struct btf_type *t) | 
|  | { | 
|  | return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; | 
|  | } | 
|  |  | 
|  | static bool btf_type_is_datasec(const struct btf_type *t) | 
|  | { | 
|  | return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; | 
|  | } | 
|  |  | 
|  | u32 btf_nr_types(const struct btf *btf) | 
|  | { | 
|  | u32 total = 0; | 
|  |  | 
|  | while (btf) { | 
|  | total += btf->nr_types; | 
|  | btf = btf->base_btf; | 
|  | } | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) | 
|  | { | 
|  | const struct btf_type *t; | 
|  | const char *tname; | 
|  | u32 i, total; | 
|  |  | 
|  | total = btf_nr_types(btf); | 
|  | for (i = 1; i < total; i++) { | 
|  | t = btf_type_by_id(btf, i); | 
|  | if (BTF_INFO_KIND(t->info) != kind) | 
|  | continue; | 
|  |  | 
|  | tname = btf_name_by_offset(btf, t->name_off); | 
|  | if (!strcmp(tname, name)) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, | 
|  | u32 id, u32 *res_id) | 
|  | { | 
|  | const struct btf_type *t = btf_type_by_id(btf, id); | 
|  |  | 
|  | while (btf_type_is_modifier(t)) { | 
|  | id = t->type; | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | } | 
|  |  | 
|  | if (res_id) | 
|  | *res_id = id; | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, | 
|  | u32 id, u32 *res_id) | 
|  | { | 
|  | const struct btf_type *t; | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, id, NULL); | 
|  | if (!btf_type_is_ptr(t)) | 
|  | return NULL; | 
|  |  | 
|  | return btf_type_skip_modifiers(btf, t->type, res_id); | 
|  | } | 
|  |  | 
|  | const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, | 
|  | u32 id, u32 *res_id) | 
|  | { | 
|  | const struct btf_type *ptype; | 
|  |  | 
|  | ptype = btf_type_resolve_ptr(btf, id, res_id); | 
|  | if (ptype && btf_type_is_func_proto(ptype)) | 
|  | return ptype; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Types that act only as a source, not sink or intermediate | 
|  | * type when resolving. | 
|  | */ | 
|  | static bool btf_type_is_resolve_source_only(const struct btf_type *t) | 
|  | { | 
|  | return btf_type_is_var(t) || | 
|  | btf_type_is_datasec(t); | 
|  | } | 
|  |  | 
|  | /* What types need to be resolved? | 
|  | * | 
|  | * btf_type_is_modifier() is an obvious one. | 
|  | * | 
|  | * btf_type_is_struct() because its member refers to | 
|  | * another type (through member->type). | 
|  | * | 
|  | * btf_type_is_var() because the variable refers to | 
|  | * another type. btf_type_is_datasec() holds multiple | 
|  | * btf_type_is_var() types that need resolving. | 
|  | * | 
|  | * btf_type_is_array() because its element (array->type) | 
|  | * refers to another type.  Array can be thought of a | 
|  | * special case of struct while array just has the same | 
|  | * member-type repeated by array->nelems of times. | 
|  | */ | 
|  | static bool btf_type_needs_resolve(const struct btf_type *t) | 
|  | { | 
|  | return btf_type_is_modifier(t) || | 
|  | btf_type_is_ptr(t) || | 
|  | btf_type_is_struct(t) || | 
|  | btf_type_is_array(t) || | 
|  | btf_type_is_var(t) || | 
|  | btf_type_is_datasec(t); | 
|  | } | 
|  |  | 
|  | /* t->size can be used */ | 
|  | static bool btf_type_has_size(const struct btf_type *t) | 
|  | { | 
|  | switch (BTF_INFO_KIND(t->info)) { | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_DATASEC: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const char *btf_int_encoding_str(u8 encoding) | 
|  | { | 
|  | if (encoding == 0) | 
|  | return "(none)"; | 
|  | else if (encoding == BTF_INT_SIGNED) | 
|  | return "SIGNED"; | 
|  | else if (encoding == BTF_INT_CHAR) | 
|  | return "CHAR"; | 
|  | else if (encoding == BTF_INT_BOOL) | 
|  | return "BOOL"; | 
|  | else | 
|  | return "UNKN"; | 
|  | } | 
|  |  | 
|  | static u32 btf_type_int(const struct btf_type *t) | 
|  | { | 
|  | return *(u32 *)(t + 1); | 
|  | } | 
|  |  | 
|  | static const struct btf_array *btf_type_array(const struct btf_type *t) | 
|  | { | 
|  | return (const struct btf_array *)(t + 1); | 
|  | } | 
|  |  | 
|  | static const struct btf_enum *btf_type_enum(const struct btf_type *t) | 
|  | { | 
|  | return (const struct btf_enum *)(t + 1); | 
|  | } | 
|  |  | 
|  | static const struct btf_var *btf_type_var(const struct btf_type *t) | 
|  | { | 
|  | return (const struct btf_var *)(t + 1); | 
|  | } | 
|  |  | 
|  | static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) | 
|  | { | 
|  | return kind_ops[BTF_INFO_KIND(t->info)]; | 
|  | } | 
|  |  | 
|  | static bool btf_name_offset_valid(const struct btf *btf, u32 offset) | 
|  | { | 
|  | if (!BTF_STR_OFFSET_VALID(offset)) | 
|  | return false; | 
|  |  | 
|  | while (offset < btf->start_str_off) | 
|  | btf = btf->base_btf; | 
|  |  | 
|  | offset -= btf->start_str_off; | 
|  | return offset < btf->hdr.str_len; | 
|  | } | 
|  |  | 
|  | static bool __btf_name_char_ok(char c, bool first, bool dot_ok) | 
|  | { | 
|  | if ((first ? !isalpha(c) : | 
|  | !isalnum(c)) && | 
|  | c != '_' && | 
|  | ((c == '.' && !dot_ok) || | 
|  | c != '.')) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char *btf_str_by_offset(const struct btf *btf, u32 offset) | 
|  | { | 
|  | while (offset < btf->start_str_off) | 
|  | btf = btf->base_btf; | 
|  |  | 
|  | offset -= btf->start_str_off; | 
|  | if (offset < btf->hdr.str_len) | 
|  | return &btf->strings[offset]; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) | 
|  | { | 
|  | /* offset must be valid */ | 
|  | const char *src = btf_str_by_offset(btf, offset); | 
|  | const char *src_limit; | 
|  |  | 
|  | if (!__btf_name_char_ok(*src, true, dot_ok)) | 
|  | return false; | 
|  |  | 
|  | /* set a limit on identifier length */ | 
|  | src_limit = src + KSYM_NAME_LEN; | 
|  | src++; | 
|  | while (*src && src < src_limit) { | 
|  | if (!__btf_name_char_ok(*src, false, dot_ok)) | 
|  | return false; | 
|  | src++; | 
|  | } | 
|  |  | 
|  | return !*src; | 
|  | } | 
|  |  | 
|  | /* Only C-style identifier is permitted. This can be relaxed if | 
|  | * necessary. | 
|  | */ | 
|  | static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) | 
|  | { | 
|  | return __btf_name_valid(btf, offset, false); | 
|  | } | 
|  |  | 
|  | static bool btf_name_valid_section(const struct btf *btf, u32 offset) | 
|  | { | 
|  | return __btf_name_valid(btf, offset, true); | 
|  | } | 
|  |  | 
|  | static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | if (!offset) | 
|  | return "(anon)"; | 
|  |  | 
|  | name = btf_str_by_offset(btf, offset); | 
|  | return name ?: "(invalid-name-offset)"; | 
|  | } | 
|  |  | 
|  | const char *btf_name_by_offset(const struct btf *btf, u32 offset) | 
|  | { | 
|  | return btf_str_by_offset(btf, offset); | 
|  | } | 
|  |  | 
|  | const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) | 
|  | { | 
|  | while (type_id < btf->start_id) | 
|  | btf = btf->base_btf; | 
|  |  | 
|  | type_id -= btf->start_id; | 
|  | if (type_id >= btf->nr_types) | 
|  | return NULL; | 
|  | return btf->types[type_id]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Regular int is not a bit field and it must be either | 
|  | * u8/u16/u32/u64 or __int128. | 
|  | */ | 
|  | static bool btf_type_int_is_regular(const struct btf_type *t) | 
|  | { | 
|  | u8 nr_bits, nr_bytes; | 
|  | u32 int_data; | 
|  |  | 
|  | int_data = btf_type_int(t); | 
|  | nr_bits = BTF_INT_BITS(int_data); | 
|  | nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); | 
|  | if (BITS_PER_BYTE_MASKED(nr_bits) || | 
|  | BTF_INT_OFFSET(int_data) || | 
|  | (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && | 
|  | nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && | 
|  | nr_bytes != (2 * sizeof(u64)))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that given struct member is a regular int with expected | 
|  | * offset and size. | 
|  | */ | 
|  | bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, | 
|  | const struct btf_member *m, | 
|  | u32 expected_offset, u32 expected_size) | 
|  | { | 
|  | const struct btf_type *t; | 
|  | u32 id, int_data; | 
|  | u8 nr_bits; | 
|  |  | 
|  | id = m->type; | 
|  | t = btf_type_id_size(btf, &id, NULL); | 
|  | if (!t || !btf_type_is_int(t)) | 
|  | return false; | 
|  |  | 
|  | int_data = btf_type_int(t); | 
|  | nr_bits = BTF_INT_BITS(int_data); | 
|  | if (btf_type_kflag(s)) { | 
|  | u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); | 
|  | u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); | 
|  |  | 
|  | /* if kflag set, int should be a regular int and | 
|  | * bit offset should be at byte boundary. | 
|  | */ | 
|  | return !bitfield_size && | 
|  | BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && | 
|  | BITS_ROUNDUP_BYTES(nr_bits) == expected_size; | 
|  | } | 
|  |  | 
|  | if (BTF_INT_OFFSET(int_data) || | 
|  | BITS_PER_BYTE_MASKED(m->offset) || | 
|  | BITS_ROUNDUP_BYTES(m->offset) != expected_offset || | 
|  | BITS_PER_BYTE_MASKED(nr_bits) || | 
|  | BITS_ROUNDUP_BYTES(nr_bits) != expected_size) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ | 
|  | static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, | 
|  | u32 id) | 
|  | { | 
|  | const struct btf_type *t = btf_type_by_id(btf, id); | 
|  |  | 
|  | while (btf_type_is_modifier(t) && | 
|  | BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { | 
|  | id = t->type; | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | } | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | #define BTF_SHOW_MAX_ITER	10 | 
|  |  | 
|  | #define BTF_KIND_BIT(kind)	(1ULL << kind) | 
|  |  | 
|  | /* | 
|  | * Populate show->state.name with type name information. | 
|  | * Format of type name is | 
|  | * | 
|  | * [.member_name = ] (type_name) | 
|  | */ | 
|  | static const char *btf_show_name(struct btf_show *show) | 
|  | { | 
|  | /* BTF_MAX_ITER array suffixes "[]" */ | 
|  | const char *array_suffixes = "[][][][][][][][][][]"; | 
|  | const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; | 
|  | /* BTF_MAX_ITER pointer suffixes "*" */ | 
|  | const char *ptr_suffixes = "**********"; | 
|  | const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; | 
|  | const char *name = NULL, *prefix = "", *parens = ""; | 
|  | const struct btf_member *m = show->state.member; | 
|  | const struct btf_type *t = show->state.type; | 
|  | const struct btf_array *array; | 
|  | u32 id = show->state.type_id; | 
|  | const char *member = NULL; | 
|  | bool show_member = false; | 
|  | u64 kinds = 0; | 
|  | int i; | 
|  |  | 
|  | show->state.name[0] = '\0'; | 
|  |  | 
|  | /* | 
|  | * Don't show type name if we're showing an array member; | 
|  | * in that case we show the array type so don't need to repeat | 
|  | * ourselves for each member. | 
|  | */ | 
|  | if (show->state.array_member) | 
|  | return ""; | 
|  |  | 
|  | /* Retrieve member name, if any. */ | 
|  | if (m) { | 
|  | member = btf_name_by_offset(show->btf, m->name_off); | 
|  | show_member = strlen(member) > 0; | 
|  | id = m->type; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start with type_id, as we have resolved the struct btf_type * | 
|  | * via btf_modifier_show() past the parent typedef to the child | 
|  | * struct, int etc it is defined as.  In such cases, the type_id | 
|  | * still represents the starting type while the struct btf_type * | 
|  | * in our show->state points at the resolved type of the typedef. | 
|  | */ | 
|  | t = btf_type_by_id(show->btf, id); | 
|  | if (!t) | 
|  | return ""; | 
|  |  | 
|  | /* | 
|  | * The goal here is to build up the right number of pointer and | 
|  | * array suffixes while ensuring the type name for a typedef | 
|  | * is represented.  Along the way we accumulate a list of | 
|  | * BTF kinds we have encountered, since these will inform later | 
|  | * display; for example, pointer types will not require an | 
|  | * opening "{" for struct, we will just display the pointer value. | 
|  | * | 
|  | * We also want to accumulate the right number of pointer or array | 
|  | * indices in the format string while iterating until we get to | 
|  | * the typedef/pointee/array member target type. | 
|  | * | 
|  | * We start by pointing at the end of pointer and array suffix | 
|  | * strings; as we accumulate pointers and arrays we move the pointer | 
|  | * or array string backwards so it will show the expected number of | 
|  | * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers | 
|  | * and/or arrays and typedefs are supported as a precaution. | 
|  | * | 
|  | * We also want to get typedef name while proceeding to resolve | 
|  | * type it points to so that we can add parentheses if it is a | 
|  | * "typedef struct" etc. | 
|  | */ | 
|  | for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { | 
|  |  | 
|  | switch (BTF_INFO_KIND(t->info)) { | 
|  | case BTF_KIND_TYPEDEF: | 
|  | if (!name) | 
|  | name = btf_name_by_offset(show->btf, | 
|  | t->name_off); | 
|  | kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); | 
|  | id = t->type; | 
|  | break; | 
|  | case BTF_KIND_ARRAY: | 
|  | kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); | 
|  | parens = "["; | 
|  | if (!t) | 
|  | return ""; | 
|  | array = btf_type_array(t); | 
|  | if (array_suffix > array_suffixes) | 
|  | array_suffix -= 2; | 
|  | id = array->type; | 
|  | break; | 
|  | case BTF_KIND_PTR: | 
|  | kinds |= BTF_KIND_BIT(BTF_KIND_PTR); | 
|  | if (ptr_suffix > ptr_suffixes) | 
|  | ptr_suffix -= 1; | 
|  | id = t->type; | 
|  | break; | 
|  | default: | 
|  | id = 0; | 
|  | break; | 
|  | } | 
|  | if (!id) | 
|  | break; | 
|  | t = btf_type_skip_qualifiers(show->btf, id); | 
|  | } | 
|  | /* We may not be able to represent this type; bail to be safe */ | 
|  | if (i == BTF_SHOW_MAX_ITER) | 
|  | return ""; | 
|  |  | 
|  | if (!name) | 
|  | name = btf_name_by_offset(show->btf, t->name_off); | 
|  |  | 
|  | switch (BTF_INFO_KIND(t->info)) { | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? | 
|  | "struct" : "union"; | 
|  | /* if it's an array of struct/union, parens is already set */ | 
|  | if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) | 
|  | parens = "{"; | 
|  | break; | 
|  | case BTF_KIND_ENUM: | 
|  | prefix = "enum"; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* pointer does not require parens */ | 
|  | if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) | 
|  | parens = ""; | 
|  | /* typedef does not require struct/union/enum prefix */ | 
|  | if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) | 
|  | prefix = ""; | 
|  |  | 
|  | if (!name) | 
|  | name = ""; | 
|  |  | 
|  | /* Even if we don't want type name info, we want parentheses etc */ | 
|  | if (show->flags & BTF_SHOW_NONAME) | 
|  | snprintf(show->state.name, sizeof(show->state.name), "%s", | 
|  | parens); | 
|  | else | 
|  | snprintf(show->state.name, sizeof(show->state.name), | 
|  | "%s%s%s(%s%s%s%s%s%s)%s", | 
|  | /* first 3 strings comprise ".member = " */ | 
|  | show_member ? "." : "", | 
|  | show_member ? member : "", | 
|  | show_member ? " = " : "", | 
|  | /* ...next is our prefix (struct, enum, etc) */ | 
|  | prefix, | 
|  | strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", | 
|  | /* ...this is the type name itself */ | 
|  | name, | 
|  | /* ...suffixed by the appropriate '*', '[]' suffixes */ | 
|  | strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, | 
|  | array_suffix, parens); | 
|  |  | 
|  | return show->state.name; | 
|  | } | 
|  |  | 
|  | static const char *__btf_show_indent(struct btf_show *show) | 
|  | { | 
|  | const char *indents = "                                "; | 
|  | const char *indent = &indents[strlen(indents)]; | 
|  |  | 
|  | if ((indent - show->state.depth) >= indents) | 
|  | return indent - show->state.depth; | 
|  | return indents; | 
|  | } | 
|  |  | 
|  | static const char *btf_show_indent(struct btf_show *show) | 
|  | { | 
|  | return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); | 
|  | } | 
|  |  | 
|  | static const char *btf_show_newline(struct btf_show *show) | 
|  | { | 
|  | return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; | 
|  | } | 
|  |  | 
|  | static const char *btf_show_delim(struct btf_show *show) | 
|  | { | 
|  | if (show->state.depth == 0) | 
|  | return ""; | 
|  |  | 
|  | if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && | 
|  | BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) | 
|  | return "|"; | 
|  |  | 
|  | return ","; | 
|  | } | 
|  |  | 
|  | __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  |  | 
|  | if (!show->state.depth_check) { | 
|  | va_start(args, fmt); | 
|  | show->showfn(show, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Macros are used here as btf_show_type_value[s]() prepends and appends | 
|  | * format specifiers to the format specifier passed in; these do the work of | 
|  | * adding indentation, delimiters etc while the caller simply has to specify | 
|  | * the type value(s) in the format specifier + value(s). | 
|  | */ | 
|  | #define btf_show_type_value(show, fmt, value)				       \ | 
|  | do {								       \ | 
|  | if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \ | 
|  | show->state.depth == 0) {				       \ | 
|  | btf_show(show, "%s%s" fmt "%s%s",		       \ | 
|  | btf_show_indent(show),			       \ | 
|  | btf_show_name(show),			       \ | 
|  | value, btf_show_delim(show),		       \ | 
|  | btf_show_newline(show));		       \ | 
|  | if (show->state.depth > show->state.depth_to_show)     \ | 
|  | show->state.depth_to_show = show->state.depth; \ | 
|  | }							       \ | 
|  | } while (0) | 
|  |  | 
|  | #define btf_show_type_values(show, fmt, ...)				       \ | 
|  | do {								       \ | 
|  | btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \ | 
|  | btf_show_name(show),				       \ | 
|  | __VA_ARGS__, btf_show_delim(show),		       \ | 
|  | btf_show_newline(show));			       \ | 
|  | if (show->state.depth > show->state.depth_to_show)	       \ | 
|  | show->state.depth_to_show = show->state.depth;	       \ | 
|  | } while (0) | 
|  |  | 
|  | /* How much is left to copy to safe buffer after @data? */ | 
|  | static int btf_show_obj_size_left(struct btf_show *show, void *data) | 
|  | { | 
|  | return show->obj.head + show->obj.size - data; | 
|  | } | 
|  |  | 
|  | /* Is object pointed to by @data of @size already copied to our safe buffer? */ | 
|  | static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) | 
|  | { | 
|  | return data >= show->obj.data && | 
|  | (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If object pointed to by @data of @size falls within our safe buffer, return | 
|  | * the equivalent pointer to the same safe data.  Assumes | 
|  | * copy_from_kernel_nofault() has already happened and our safe buffer is | 
|  | * populated. | 
|  | */ | 
|  | static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) | 
|  | { | 
|  | if (btf_show_obj_is_safe(show, data, size)) | 
|  | return show->obj.safe + (data - show->obj.data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a safe-to-access version of data pointed to by @data. | 
|  | * We do this by copying the relevant amount of information | 
|  | * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). | 
|  | * | 
|  | * If BTF_SHOW_UNSAFE is specified, just return data as-is; no | 
|  | * safe copy is needed. | 
|  | * | 
|  | * Otherwise we need to determine if we have the required amount | 
|  | * of data (determined by the @data pointer and the size of the | 
|  | * largest base type we can encounter (represented by | 
|  | * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures | 
|  | * that we will be able to print some of the current object, | 
|  | * and if more is needed a copy will be triggered. | 
|  | * Some objects such as structs will not fit into the buffer; | 
|  | * in such cases additional copies when we iterate over their | 
|  | * members may be needed. | 
|  | * | 
|  | * btf_show_obj_safe() is used to return a safe buffer for | 
|  | * btf_show_start_type(); this ensures that as we recurse into | 
|  | * nested types we always have safe data for the given type. | 
|  | * This approach is somewhat wasteful; it's possible for example | 
|  | * that when iterating over a large union we'll end up copying the | 
|  | * same data repeatedly, but the goal is safety not performance. | 
|  | * We use stack data as opposed to per-CPU buffers because the | 
|  | * iteration over a type can take some time, and preemption handling | 
|  | * would greatly complicate use of the safe buffer. | 
|  | */ | 
|  | static void *btf_show_obj_safe(struct btf_show *show, | 
|  | const struct btf_type *t, | 
|  | void *data) | 
|  | { | 
|  | const struct btf_type *rt; | 
|  | int size_left, size; | 
|  | void *safe = NULL; | 
|  |  | 
|  | if (show->flags & BTF_SHOW_UNSAFE) | 
|  | return data; | 
|  |  | 
|  | rt = btf_resolve_size(show->btf, t, &size); | 
|  | if (IS_ERR(rt)) { | 
|  | show->state.status = PTR_ERR(rt); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is this toplevel object? If so, set total object size and | 
|  | * initialize pointers.  Otherwise check if we still fall within | 
|  | * our safe object data. | 
|  | */ | 
|  | if (show->state.depth == 0) { | 
|  | show->obj.size = size; | 
|  | show->obj.head = data; | 
|  | } else { | 
|  | /* | 
|  | * If the size of the current object is > our remaining | 
|  | * safe buffer we _may_ need to do a new copy.  However | 
|  | * consider the case of a nested struct; it's size pushes | 
|  | * us over the safe buffer limit, but showing any individual | 
|  | * struct members does not.  In such cases, we don't need | 
|  | * to initiate a fresh copy yet; however we definitely need | 
|  | * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left | 
|  | * in our buffer, regardless of the current object size. | 
|  | * The logic here is that as we resolve types we will | 
|  | * hit a base type at some point, and we need to be sure | 
|  | * the next chunk of data is safely available to display | 
|  | * that type info safely.  We cannot rely on the size of | 
|  | * the current object here because it may be much larger | 
|  | * than our current buffer (e.g. task_struct is 8k). | 
|  | * All we want to do here is ensure that we can print the | 
|  | * next basic type, which we can if either | 
|  | * - the current type size is within the safe buffer; or | 
|  | * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in | 
|  | *   the safe buffer. | 
|  | */ | 
|  | safe = __btf_show_obj_safe(show, data, | 
|  | min(size, | 
|  | BTF_SHOW_OBJ_BASE_TYPE_SIZE)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need a new copy to our safe object, either because we haven't | 
|  | * yet copied and are intializing safe data, or because the data | 
|  | * we want falls outside the boundaries of the safe object. | 
|  | */ | 
|  | if (!safe) { | 
|  | size_left = btf_show_obj_size_left(show, data); | 
|  | if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) | 
|  | size_left = BTF_SHOW_OBJ_SAFE_SIZE; | 
|  | show->state.status = copy_from_kernel_nofault(show->obj.safe, | 
|  | data, size_left); | 
|  | if (!show->state.status) { | 
|  | show->obj.data = data; | 
|  | safe = show->obj.safe; | 
|  | } | 
|  | } | 
|  |  | 
|  | return safe; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the type we are starting to show and return a safe data pointer | 
|  | * to be used for showing the associated data. | 
|  | */ | 
|  | static void *btf_show_start_type(struct btf_show *show, | 
|  | const struct btf_type *t, | 
|  | u32 type_id, void *data) | 
|  | { | 
|  | show->state.type = t; | 
|  | show->state.type_id = type_id; | 
|  | show->state.name[0] = '\0'; | 
|  |  | 
|  | return btf_show_obj_safe(show, t, data); | 
|  | } | 
|  |  | 
|  | static void btf_show_end_type(struct btf_show *show) | 
|  | { | 
|  | show->state.type = NULL; | 
|  | show->state.type_id = 0; | 
|  | show->state.name[0] = '\0'; | 
|  | } | 
|  |  | 
|  | static void *btf_show_start_aggr_type(struct btf_show *show, | 
|  | const struct btf_type *t, | 
|  | u32 type_id, void *data) | 
|  | { | 
|  | void *safe_data = btf_show_start_type(show, t, type_id, data); | 
|  |  | 
|  | if (!safe_data) | 
|  | return safe_data; | 
|  |  | 
|  | btf_show(show, "%s%s%s", btf_show_indent(show), | 
|  | btf_show_name(show), | 
|  | btf_show_newline(show)); | 
|  | show->state.depth++; | 
|  | return safe_data; | 
|  | } | 
|  |  | 
|  | static void btf_show_end_aggr_type(struct btf_show *show, | 
|  | const char *suffix) | 
|  | { | 
|  | show->state.depth--; | 
|  | btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, | 
|  | btf_show_delim(show), btf_show_newline(show)); | 
|  | btf_show_end_type(show); | 
|  | } | 
|  |  | 
|  | static void btf_show_start_member(struct btf_show *show, | 
|  | const struct btf_member *m) | 
|  | { | 
|  | show->state.member = m; | 
|  | } | 
|  |  | 
|  | static void btf_show_start_array_member(struct btf_show *show) | 
|  | { | 
|  | show->state.array_member = 1; | 
|  | btf_show_start_member(show, NULL); | 
|  | } | 
|  |  | 
|  | static void btf_show_end_member(struct btf_show *show) | 
|  | { | 
|  | show->state.member = NULL; | 
|  | } | 
|  |  | 
|  | static void btf_show_end_array_member(struct btf_show *show) | 
|  | { | 
|  | show->state.array_member = 0; | 
|  | btf_show_end_member(show); | 
|  | } | 
|  |  | 
|  | static void *btf_show_start_array_type(struct btf_show *show, | 
|  | const struct btf_type *t, | 
|  | u32 type_id, | 
|  | u16 array_encoding, | 
|  | void *data) | 
|  | { | 
|  | show->state.array_encoding = array_encoding; | 
|  | show->state.array_terminated = 0; | 
|  | return btf_show_start_aggr_type(show, t, type_id, data); | 
|  | } | 
|  |  | 
|  | static void btf_show_end_array_type(struct btf_show *show) | 
|  | { | 
|  | show->state.array_encoding = 0; | 
|  | show->state.array_terminated = 0; | 
|  | btf_show_end_aggr_type(show, "]"); | 
|  | } | 
|  |  | 
|  | static void *btf_show_start_struct_type(struct btf_show *show, | 
|  | const struct btf_type *t, | 
|  | u32 type_id, | 
|  | void *data) | 
|  | { | 
|  | return btf_show_start_aggr_type(show, t, type_id, data); | 
|  | } | 
|  |  | 
|  | static void btf_show_end_struct_type(struct btf_show *show) | 
|  | { | 
|  | btf_show_end_aggr_type(show, "}"); | 
|  | } | 
|  |  | 
|  | __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, | 
|  | const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | bpf_verifier_vlog(log, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, | 
|  | const char *fmt, ...) | 
|  | { | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | va_list args; | 
|  |  | 
|  | if (!bpf_verifier_log_needed(log)) | 
|  | return; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | bpf_verifier_vlog(log, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | bool log_details, | 
|  | const char *fmt, ...) | 
|  | { | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | u8 kind = BTF_INFO_KIND(t->info); | 
|  | struct btf *btf = env->btf; | 
|  | va_list args; | 
|  |  | 
|  | if (!bpf_verifier_log_needed(log)) | 
|  | return; | 
|  |  | 
|  | /* btf verifier prints all types it is processing via | 
|  | * btf_verifier_log_type(..., fmt = NULL). | 
|  | * Skip those prints for in-kernel BTF verification. | 
|  | */ | 
|  | if (log->level == BPF_LOG_KERNEL && !fmt) | 
|  | return; | 
|  |  | 
|  | __btf_verifier_log(log, "[%u] %s %s%s", | 
|  | env->log_type_id, | 
|  | btf_kind_str[kind], | 
|  | __btf_name_by_offset(btf, t->name_off), | 
|  | log_details ? " " : ""); | 
|  |  | 
|  | if (log_details) | 
|  | btf_type_ops(t)->log_details(env, t); | 
|  |  | 
|  | if (fmt && *fmt) { | 
|  | __btf_verifier_log(log, " "); | 
|  | va_start(args, fmt); | 
|  | bpf_verifier_vlog(log, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | __btf_verifier_log(log, "\n"); | 
|  | } | 
|  |  | 
|  | #define btf_verifier_log_type(env, t, ...) \ | 
|  | __btf_verifier_log_type((env), (t), true, __VA_ARGS__) | 
|  | #define btf_verifier_log_basic(env, t, ...) \ | 
|  | __btf_verifier_log_type((env), (t), false, __VA_ARGS__) | 
|  |  | 
|  | __printf(4, 5) | 
|  | static void btf_verifier_log_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const char *fmt, ...) | 
|  | { | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | struct btf *btf = env->btf; | 
|  | va_list args; | 
|  |  | 
|  | if (!bpf_verifier_log_needed(log)) | 
|  | return; | 
|  |  | 
|  | if (log->level == BPF_LOG_KERNEL && !fmt) | 
|  | return; | 
|  | /* The CHECK_META phase already did a btf dump. | 
|  | * | 
|  | * If member is logged again, it must hit an error in | 
|  | * parsing this member.  It is useful to print out which | 
|  | * struct this member belongs to. | 
|  | */ | 
|  | if (env->phase != CHECK_META) | 
|  | btf_verifier_log_type(env, struct_type, NULL); | 
|  |  | 
|  | if (btf_type_kflag(struct_type)) | 
|  | __btf_verifier_log(log, | 
|  | "\t%s type_id=%u bitfield_size=%u bits_offset=%u", | 
|  | __btf_name_by_offset(btf, member->name_off), | 
|  | member->type, | 
|  | BTF_MEMBER_BITFIELD_SIZE(member->offset), | 
|  | BTF_MEMBER_BIT_OFFSET(member->offset)); | 
|  | else | 
|  | __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", | 
|  | __btf_name_by_offset(btf, member->name_off), | 
|  | member->type, member->offset); | 
|  |  | 
|  | if (fmt && *fmt) { | 
|  | __btf_verifier_log(log, " "); | 
|  | va_start(args, fmt); | 
|  | bpf_verifier_vlog(log, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | __btf_verifier_log(log, "\n"); | 
|  | } | 
|  |  | 
|  | __printf(4, 5) | 
|  | static void btf_verifier_log_vsi(struct btf_verifier_env *env, | 
|  | const struct btf_type *datasec_type, | 
|  | const struct btf_var_secinfo *vsi, | 
|  | const char *fmt, ...) | 
|  | { | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | va_list args; | 
|  |  | 
|  | if (!bpf_verifier_log_needed(log)) | 
|  | return; | 
|  | if (log->level == BPF_LOG_KERNEL && !fmt) | 
|  | return; | 
|  | if (env->phase != CHECK_META) | 
|  | btf_verifier_log_type(env, datasec_type, NULL); | 
|  |  | 
|  | __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", | 
|  | vsi->type, vsi->offset, vsi->size); | 
|  | if (fmt && *fmt) { | 
|  | __btf_verifier_log(log, " "); | 
|  | va_start(args, fmt); | 
|  | bpf_verifier_vlog(log, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | __btf_verifier_log(log, "\n"); | 
|  | } | 
|  |  | 
|  | static void btf_verifier_log_hdr(struct btf_verifier_env *env, | 
|  | u32 btf_data_size) | 
|  | { | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | const struct btf *btf = env->btf; | 
|  | const struct btf_header *hdr; | 
|  |  | 
|  | if (!bpf_verifier_log_needed(log)) | 
|  | return; | 
|  |  | 
|  | if (log->level == BPF_LOG_KERNEL) | 
|  | return; | 
|  | hdr = &btf->hdr; | 
|  | __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); | 
|  | __btf_verifier_log(log, "version: %u\n", hdr->version); | 
|  | __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); | 
|  | __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); | 
|  | __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); | 
|  | __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); | 
|  | __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); | 
|  | __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); | 
|  | __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); | 
|  | } | 
|  |  | 
|  | static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) | 
|  | { | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | if (btf->types_size == btf->nr_types) { | 
|  | /* Expand 'types' array */ | 
|  |  | 
|  | struct btf_type **new_types; | 
|  | u32 expand_by, new_size; | 
|  |  | 
|  | if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { | 
|  | btf_verifier_log(env, "Exceeded max num of types"); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | expand_by = max_t(u32, btf->types_size >> 2, 16); | 
|  | new_size = min_t(u32, BTF_MAX_TYPE, | 
|  | btf->types_size + expand_by); | 
|  |  | 
|  | new_types = kvcalloc(new_size, sizeof(*new_types), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!new_types) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (btf->nr_types == 0) { | 
|  | if (!btf->base_btf) { | 
|  | /* lazily init VOID type */ | 
|  | new_types[0] = &btf_void; | 
|  | btf->nr_types++; | 
|  | } | 
|  | } else { | 
|  | memcpy(new_types, btf->types, | 
|  | sizeof(*btf->types) * btf->nr_types); | 
|  | } | 
|  |  | 
|  | kvfree(btf->types); | 
|  | btf->types = new_types; | 
|  | btf->types_size = new_size; | 
|  | } | 
|  |  | 
|  | btf->types[btf->nr_types++] = t; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_alloc_id(struct btf *btf) | 
|  | { | 
|  | int id; | 
|  |  | 
|  | idr_preload(GFP_KERNEL); | 
|  | spin_lock_bh(&btf_idr_lock); | 
|  | id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); | 
|  | if (id > 0) | 
|  | btf->id = id; | 
|  | spin_unlock_bh(&btf_idr_lock); | 
|  | idr_preload_end(); | 
|  |  | 
|  | if (WARN_ON_ONCE(!id)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | return id > 0 ? 0 : id; | 
|  | } | 
|  |  | 
|  | static void btf_free_id(struct btf *btf) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * In map-in-map, calling map_delete_elem() on outer | 
|  | * map will call bpf_map_put on the inner map. | 
|  | * It will then eventually call btf_free_id() | 
|  | * on the inner map.  Some of the map_delete_elem() | 
|  | * implementation may have irq disabled, so | 
|  | * we need to use the _irqsave() version instead | 
|  | * of the _bh() version. | 
|  | */ | 
|  | spin_lock_irqsave(&btf_idr_lock, flags); | 
|  | idr_remove(&btf_idr, btf->id); | 
|  | spin_unlock_irqrestore(&btf_idr_lock, flags); | 
|  | } | 
|  |  | 
|  | static void btf_free(struct btf *btf) | 
|  | { | 
|  | kvfree(btf->types); | 
|  | kvfree(btf->resolved_sizes); | 
|  | kvfree(btf->resolved_ids); | 
|  | kvfree(btf->data); | 
|  | kfree(btf); | 
|  | } | 
|  |  | 
|  | static void btf_free_rcu(struct rcu_head *rcu) | 
|  | { | 
|  | struct btf *btf = container_of(rcu, struct btf, rcu); | 
|  |  | 
|  | btf_free(btf); | 
|  | } | 
|  |  | 
|  | void btf_get(struct btf *btf) | 
|  | { | 
|  | refcount_inc(&btf->refcnt); | 
|  | } | 
|  |  | 
|  | void btf_put(struct btf *btf) | 
|  | { | 
|  | if (btf && refcount_dec_and_test(&btf->refcnt)) { | 
|  | btf_free_id(btf); | 
|  | call_rcu(&btf->rcu, btf_free_rcu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int env_resolve_init(struct btf_verifier_env *env) | 
|  | { | 
|  | struct btf *btf = env->btf; | 
|  | u32 nr_types = btf->nr_types; | 
|  | u32 *resolved_sizes = NULL; | 
|  | u32 *resolved_ids = NULL; | 
|  | u8 *visit_states = NULL; | 
|  |  | 
|  | resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!resolved_sizes) | 
|  | goto nomem; | 
|  |  | 
|  | resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!resolved_ids) | 
|  | goto nomem; | 
|  |  | 
|  | visit_states = kvcalloc(nr_types, sizeof(*visit_states), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!visit_states) | 
|  | goto nomem; | 
|  |  | 
|  | btf->resolved_sizes = resolved_sizes; | 
|  | btf->resolved_ids = resolved_ids; | 
|  | env->visit_states = visit_states; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | kvfree(resolved_sizes); | 
|  | kvfree(resolved_ids); | 
|  | kvfree(visit_states); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void btf_verifier_env_free(struct btf_verifier_env *env) | 
|  | { | 
|  | kvfree(env->visit_states); | 
|  | kfree(env); | 
|  | } | 
|  |  | 
|  | static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, | 
|  | const struct btf_type *next_type) | 
|  | { | 
|  | switch (env->resolve_mode) { | 
|  | case RESOLVE_TBD: | 
|  | /* int, enum or void is a sink */ | 
|  | return !btf_type_needs_resolve(next_type); | 
|  | case RESOLVE_PTR: | 
|  | /* int, enum, void, struct, array, func or func_proto is a sink | 
|  | * for ptr | 
|  | */ | 
|  | return !btf_type_is_modifier(next_type) && | 
|  | !btf_type_is_ptr(next_type); | 
|  | case RESOLVE_STRUCT_OR_ARRAY: | 
|  | /* int, enum, void, ptr, func or func_proto is a sink | 
|  | * for struct and array | 
|  | */ | 
|  | return !btf_type_is_modifier(next_type) && | 
|  | !btf_type_is_array(next_type) && | 
|  | !btf_type_is_struct(next_type); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool env_type_is_resolved(const struct btf_verifier_env *env, | 
|  | u32 type_id) | 
|  | { | 
|  | /* base BTF types should be resolved by now */ | 
|  | if (type_id < env->btf->start_id) | 
|  | return true; | 
|  |  | 
|  | return env->visit_states[type_id - env->btf->start_id] == RESOLVED; | 
|  | } | 
|  |  | 
|  | static int env_stack_push(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, u32 type_id) | 
|  | { | 
|  | const struct btf *btf = env->btf; | 
|  | struct resolve_vertex *v; | 
|  |  | 
|  | if (env->top_stack == MAX_RESOLVE_DEPTH) | 
|  | return -E2BIG; | 
|  |  | 
|  | if (type_id < btf->start_id | 
|  | || env->visit_states[type_id - btf->start_id] != NOT_VISITED) | 
|  | return -EEXIST; | 
|  |  | 
|  | env->visit_states[type_id - btf->start_id] = VISITED; | 
|  |  | 
|  | v = &env->stack[env->top_stack++]; | 
|  | v->t = t; | 
|  | v->type_id = type_id; | 
|  | v->next_member = 0; | 
|  |  | 
|  | if (env->resolve_mode == RESOLVE_TBD) { | 
|  | if (btf_type_is_ptr(t)) | 
|  | env->resolve_mode = RESOLVE_PTR; | 
|  | else if (btf_type_is_struct(t) || btf_type_is_array(t)) | 
|  | env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void env_stack_set_next_member(struct btf_verifier_env *env, | 
|  | u16 next_member) | 
|  | { | 
|  | env->stack[env->top_stack - 1].next_member = next_member; | 
|  | } | 
|  |  | 
|  | static void env_stack_pop_resolved(struct btf_verifier_env *env, | 
|  | u32 resolved_type_id, | 
|  | u32 resolved_size) | 
|  | { | 
|  | u32 type_id = env->stack[--(env->top_stack)].type_id; | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | type_id -= btf->start_id; /* adjust to local type id */ | 
|  | btf->resolved_sizes[type_id] = resolved_size; | 
|  | btf->resolved_ids[type_id] = resolved_type_id; | 
|  | env->visit_states[type_id] = RESOLVED; | 
|  | } | 
|  |  | 
|  | static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) | 
|  | { | 
|  | return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; | 
|  | } | 
|  |  | 
|  | /* Resolve the size of a passed-in "type" | 
|  | * | 
|  | * type: is an array (e.g. u32 array[x][y]) | 
|  | * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, | 
|  | * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always | 
|  | *             corresponds to the return type. | 
|  | * *elem_type: u32 | 
|  | * *elem_id: id of u32 | 
|  | * *total_nelems: (x * y).  Hence, individual elem size is | 
|  | *                (*type_size / *total_nelems) | 
|  | * *type_id: id of type if it's changed within the function, 0 if not | 
|  | * | 
|  | * type: is not an array (e.g. const struct X) | 
|  | * return type: type "struct X" | 
|  | * *type_size: sizeof(struct X) | 
|  | * *elem_type: same as return type ("struct X") | 
|  | * *elem_id: 0 | 
|  | * *total_nelems: 1 | 
|  | * *type_id: id of type if it's changed within the function, 0 if not | 
|  | */ | 
|  | static const struct btf_type * | 
|  | __btf_resolve_size(const struct btf *btf, const struct btf_type *type, | 
|  | u32 *type_size, const struct btf_type **elem_type, | 
|  | u32 *elem_id, u32 *total_nelems, u32 *type_id) | 
|  | { | 
|  | const struct btf_type *array_type = NULL; | 
|  | const struct btf_array *array = NULL; | 
|  | u32 i, size, nelems = 1, id = 0; | 
|  |  | 
|  | for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { | 
|  | switch (BTF_INFO_KIND(type->info)) { | 
|  | /* type->size can be used */ | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | case BTF_KIND_ENUM: | 
|  | size = type->size; | 
|  | goto resolved; | 
|  |  | 
|  | case BTF_KIND_PTR: | 
|  | size = sizeof(void *); | 
|  | goto resolved; | 
|  |  | 
|  | /* Modifiers */ | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_RESTRICT: | 
|  | id = type->type; | 
|  | type = btf_type_by_id(btf, type->type); | 
|  | break; | 
|  |  | 
|  | case BTF_KIND_ARRAY: | 
|  | if (!array_type) | 
|  | array_type = type; | 
|  | array = btf_type_array(type); | 
|  | if (nelems && array->nelems > U32_MAX / nelems) | 
|  | return ERR_PTR(-EINVAL); | 
|  | nelems *= array->nelems; | 
|  | type = btf_type_by_id(btf, array->type); | 
|  | break; | 
|  |  | 
|  | /* type without size */ | 
|  | default: | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | resolved: | 
|  | if (nelems && size > U32_MAX / nelems) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | *type_size = nelems * size; | 
|  | if (total_nelems) | 
|  | *total_nelems = nelems; | 
|  | if (elem_type) | 
|  | *elem_type = type; | 
|  | if (elem_id) | 
|  | *elem_id = array ? array->type : 0; | 
|  | if (type_id && id) | 
|  | *type_id = id; | 
|  |  | 
|  | return array_type ? : type; | 
|  | } | 
|  |  | 
|  | const struct btf_type * | 
|  | btf_resolve_size(const struct btf *btf, const struct btf_type *type, | 
|  | u32 *type_size) | 
|  | { | 
|  | return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) | 
|  | { | 
|  | while (type_id < btf->start_id) | 
|  | btf = btf->base_btf; | 
|  |  | 
|  | return btf->resolved_ids[type_id - btf->start_id]; | 
|  | } | 
|  |  | 
|  | /* The input param "type_id" must point to a needs_resolve type */ | 
|  | static const struct btf_type *btf_type_id_resolve(const struct btf *btf, | 
|  | u32 *type_id) | 
|  | { | 
|  | *type_id = btf_resolved_type_id(btf, *type_id); | 
|  | return btf_type_by_id(btf, *type_id); | 
|  | } | 
|  |  | 
|  | static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) | 
|  | { | 
|  | while (type_id < btf->start_id) | 
|  | btf = btf->base_btf; | 
|  |  | 
|  | return btf->resolved_sizes[type_id - btf->start_id]; | 
|  | } | 
|  |  | 
|  | const struct btf_type *btf_type_id_size(const struct btf *btf, | 
|  | u32 *type_id, u32 *ret_size) | 
|  | { | 
|  | const struct btf_type *size_type; | 
|  | u32 size_type_id = *type_id; | 
|  | u32 size = 0; | 
|  |  | 
|  | size_type = btf_type_by_id(btf, size_type_id); | 
|  | if (btf_type_nosize_or_null(size_type)) | 
|  | return NULL; | 
|  |  | 
|  | if (btf_type_has_size(size_type)) { | 
|  | size = size_type->size; | 
|  | } else if (btf_type_is_array(size_type)) { | 
|  | size = btf_resolved_type_size(btf, size_type_id); | 
|  | } else if (btf_type_is_ptr(size_type)) { | 
|  | size = sizeof(void *); | 
|  | } else { | 
|  | if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && | 
|  | !btf_type_is_var(size_type))) | 
|  | return NULL; | 
|  |  | 
|  | size_type_id = btf_resolved_type_id(btf, size_type_id); | 
|  | size_type = btf_type_by_id(btf, size_type_id); | 
|  | if (btf_type_nosize_or_null(size_type)) | 
|  | return NULL; | 
|  | else if (btf_type_has_size(size_type)) | 
|  | size = size_type->size; | 
|  | else if (btf_type_is_array(size_type)) | 
|  | size = btf_resolved_type_size(btf, size_type_id); | 
|  | else if (btf_type_is_ptr(size_type)) | 
|  | size = sizeof(void *); | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *type_id = size_type_id; | 
|  | if (ret_size) | 
|  | *ret_size = size; | 
|  |  | 
|  | return size_type; | 
|  | } | 
|  |  | 
|  | static int btf_df_check_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | btf_verifier_log_basic(env, struct_type, | 
|  | "Unsupported check_member"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int btf_df_check_kflag_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | btf_verifier_log_basic(env, struct_type, | 
|  | "Unsupported check_kflag_member"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Used for ptr, array and struct/union type members. | 
|  | * int, enum and modifier types have their specific callback functions. | 
|  | */ | 
|  | static int btf_generic_check_kflag_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Invalid member bitfield_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* bitfield size is 0, so member->offset represents bit offset only. | 
|  | * It is safe to call non kflag check_member variants. | 
|  | */ | 
|  | return btf_type_ops(member_type)->check_member(env, struct_type, | 
|  | member, | 
|  | member_type); | 
|  | } | 
|  |  | 
|  | static int btf_df_resolve(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v) | 
|  | { | 
|  | btf_verifier_log_basic(env, v->t, "Unsupported resolve"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void btf_df_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offsets, | 
|  | struct btf_show *show) | 
|  | { | 
|  | btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); | 
|  | } | 
|  |  | 
|  | static int btf_int_check_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | u32 int_data = btf_type_int(member_type); | 
|  | u32 struct_bits_off = member->offset; | 
|  | u32 struct_size = struct_type->size; | 
|  | u32 nr_copy_bits; | 
|  | u32 bytes_offset; | 
|  |  | 
|  | if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "bits_offset exceeds U32_MAX"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | struct_bits_off += BTF_INT_OFFSET(int_data); | 
|  | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
|  | nr_copy_bits = BTF_INT_BITS(int_data) + | 
|  | BITS_PER_BYTE_MASKED(struct_bits_off); | 
|  |  | 
|  | if (nr_copy_bits > BITS_PER_U128) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "nr_copy_bits exceeds 128"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (struct_size < bytes_offset || | 
|  | struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member exceeds struct_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_int_check_kflag_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; | 
|  | u32 int_data = btf_type_int(member_type); | 
|  | u32 struct_size = struct_type->size; | 
|  | u32 nr_copy_bits; | 
|  |  | 
|  | /* a regular int type is required for the kflag int member */ | 
|  | if (!btf_type_int_is_regular(member_type)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Invalid member base type"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check sanity of bitfield size */ | 
|  | nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); | 
|  | struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); | 
|  | nr_int_data_bits = BTF_INT_BITS(int_data); | 
|  | if (!nr_bits) { | 
|  | /* Not a bitfield member, member offset must be at byte | 
|  | * boundary. | 
|  | */ | 
|  | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Invalid member offset"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nr_bits = nr_int_data_bits; | 
|  | } else if (nr_bits > nr_int_data_bits) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Invalid member bitfield_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
|  | nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); | 
|  | if (nr_copy_bits > BITS_PER_U128) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "nr_copy_bits exceeds 128"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (struct_size < bytes_offset || | 
|  | struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member exceeds struct_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s32 btf_int_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | u32 int_data, nr_bits, meta_needed = sizeof(int_data); | 
|  | u16 encoding; | 
|  |  | 
|  | if (meta_left < meta_needed) { | 
|  | btf_verifier_log_basic(env, t, | 
|  | "meta_left:%u meta_needed:%u", | 
|  | meta_left, meta_needed); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_vlen(t)) { | 
|  | btf_verifier_log_type(env, t, "vlen != 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int_data = btf_type_int(t); | 
|  | if (int_data & ~BTF_INT_MASK) { | 
|  | btf_verifier_log_basic(env, t, "Invalid int_data:%x", | 
|  | int_data); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); | 
|  |  | 
|  | if (nr_bits > BITS_PER_U128) { | 
|  | btf_verifier_log_type(env, t, "nr_bits exceeds %zu", | 
|  | BITS_PER_U128); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { | 
|  | btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only one of the encoding bits is allowed and it | 
|  | * should be sufficient for the pretty print purpose (i.e. decoding). | 
|  | * Multiple bits can be allowed later if it is found | 
|  | * to be insufficient. | 
|  | */ | 
|  | encoding = BTF_INT_ENCODING(int_data); | 
|  | if (encoding && | 
|  | encoding != BTF_INT_SIGNED && | 
|  | encoding != BTF_INT_CHAR && | 
|  | encoding != BTF_INT_BOOL) { | 
|  | btf_verifier_log_type(env, t, "Unsupported encoding"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | return meta_needed; | 
|  | } | 
|  |  | 
|  | static void btf_int_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | int int_data = btf_type_int(t); | 
|  |  | 
|  | btf_verifier_log(env, | 
|  | "size=%u bits_offset=%u nr_bits=%u encoding=%s", | 
|  | t->size, BTF_INT_OFFSET(int_data), | 
|  | BTF_INT_BITS(int_data), | 
|  | btf_int_encoding_str(BTF_INT_ENCODING(int_data))); | 
|  | } | 
|  |  | 
|  | static void btf_int128_print(struct btf_show *show, void *data) | 
|  | { | 
|  | /* data points to a __int128 number. | 
|  | * Suppose | 
|  | *     int128_num = *(__int128 *)data; | 
|  | * The below formulas shows what upper_num and lower_num represents: | 
|  | *     upper_num = int128_num >> 64; | 
|  | *     lower_num = int128_num & 0xffffffffFFFFFFFFULL; | 
|  | */ | 
|  | u64 upper_num, lower_num; | 
|  |  | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | upper_num = *(u64 *)data; | 
|  | lower_num = *(u64 *)(data + 8); | 
|  | #else | 
|  | upper_num = *(u64 *)(data + 8); | 
|  | lower_num = *(u64 *)data; | 
|  | #endif | 
|  | if (upper_num == 0) | 
|  | btf_show_type_value(show, "0x%llx", lower_num); | 
|  | else | 
|  | btf_show_type_values(show, "0x%llx%016llx", upper_num, | 
|  | lower_num); | 
|  | } | 
|  |  | 
|  | static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, | 
|  | u16 right_shift_bits) | 
|  | { | 
|  | u64 upper_num, lower_num; | 
|  |  | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | upper_num = print_num[0]; | 
|  | lower_num = print_num[1]; | 
|  | #else | 
|  | upper_num = print_num[1]; | 
|  | lower_num = print_num[0]; | 
|  | #endif | 
|  |  | 
|  | /* shake out un-needed bits by shift/or operations */ | 
|  | if (left_shift_bits >= 64) { | 
|  | upper_num = lower_num << (left_shift_bits - 64); | 
|  | lower_num = 0; | 
|  | } else { | 
|  | upper_num = (upper_num << left_shift_bits) | | 
|  | (lower_num >> (64 - left_shift_bits)); | 
|  | lower_num = lower_num << left_shift_bits; | 
|  | } | 
|  |  | 
|  | if (right_shift_bits >= 64) { | 
|  | lower_num = upper_num >> (right_shift_bits - 64); | 
|  | upper_num = 0; | 
|  | } else { | 
|  | lower_num = (lower_num >> right_shift_bits) | | 
|  | (upper_num << (64 - right_shift_bits)); | 
|  | upper_num = upper_num >> right_shift_bits; | 
|  | } | 
|  |  | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | print_num[0] = upper_num; | 
|  | print_num[1] = lower_num; | 
|  | #else | 
|  | print_num[0] = lower_num; | 
|  | print_num[1] = upper_num; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void btf_bitfield_show(void *data, u8 bits_offset, | 
|  | u8 nr_bits, struct btf_show *show) | 
|  | { | 
|  | u16 left_shift_bits, right_shift_bits; | 
|  | u8 nr_copy_bytes; | 
|  | u8 nr_copy_bits; | 
|  | u64 print_num[2] = {}; | 
|  |  | 
|  | nr_copy_bits = nr_bits + bits_offset; | 
|  | nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); | 
|  |  | 
|  | memcpy(print_num, data, nr_copy_bytes); | 
|  |  | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | left_shift_bits = bits_offset; | 
|  | #else | 
|  | left_shift_bits = BITS_PER_U128 - nr_copy_bits; | 
|  | #endif | 
|  | right_shift_bits = BITS_PER_U128 - nr_bits; | 
|  |  | 
|  | btf_int128_shift(print_num, left_shift_bits, right_shift_bits); | 
|  | btf_int128_print(show, print_num); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void btf_int_bits_show(const struct btf *btf, | 
|  | const struct btf_type *t, | 
|  | void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | u32 int_data = btf_type_int(t); | 
|  | u8 nr_bits = BTF_INT_BITS(int_data); | 
|  | u8 total_bits_offset; | 
|  |  | 
|  | /* | 
|  | * bits_offset is at most 7. | 
|  | * BTF_INT_OFFSET() cannot exceed 128 bits. | 
|  | */ | 
|  | total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); | 
|  | data += BITS_ROUNDDOWN_BYTES(total_bits_offset); | 
|  | bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); | 
|  | btf_bitfield_show(data, bits_offset, nr_bits, show); | 
|  | } | 
|  |  | 
|  | static void btf_int_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | u32 int_data = btf_type_int(t); | 
|  | u8 encoding = BTF_INT_ENCODING(int_data); | 
|  | bool sign = encoding & BTF_INT_SIGNED; | 
|  | u8 nr_bits = BTF_INT_BITS(int_data); | 
|  | void *safe_data; | 
|  |  | 
|  | safe_data = btf_show_start_type(show, t, type_id, data); | 
|  | if (!safe_data) | 
|  | return; | 
|  |  | 
|  | if (bits_offset || BTF_INT_OFFSET(int_data) || | 
|  | BITS_PER_BYTE_MASKED(nr_bits)) { | 
|  | btf_int_bits_show(btf, t, safe_data, bits_offset, show); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (nr_bits) { | 
|  | case 128: | 
|  | btf_int128_print(show, safe_data); | 
|  | break; | 
|  | case 64: | 
|  | if (sign) | 
|  | btf_show_type_value(show, "%lld", *(s64 *)safe_data); | 
|  | else | 
|  | btf_show_type_value(show, "%llu", *(u64 *)safe_data); | 
|  | break; | 
|  | case 32: | 
|  | if (sign) | 
|  | btf_show_type_value(show, "%d", *(s32 *)safe_data); | 
|  | else | 
|  | btf_show_type_value(show, "%u", *(u32 *)safe_data); | 
|  | break; | 
|  | case 16: | 
|  | if (sign) | 
|  | btf_show_type_value(show, "%d", *(s16 *)safe_data); | 
|  | else | 
|  | btf_show_type_value(show, "%u", *(u16 *)safe_data); | 
|  | break; | 
|  | case 8: | 
|  | if (show->state.array_encoding == BTF_INT_CHAR) { | 
|  | /* check for null terminator */ | 
|  | if (show->state.array_terminated) | 
|  | break; | 
|  | if (*(char *)data == '\0') { | 
|  | show->state.array_terminated = 1; | 
|  | break; | 
|  | } | 
|  | if (isprint(*(char *)data)) { | 
|  | btf_show_type_value(show, "'%c'", | 
|  | *(char *)safe_data); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (sign) | 
|  | btf_show_type_value(show, "%d", *(s8 *)safe_data); | 
|  | else | 
|  | btf_show_type_value(show, "%u", *(u8 *)safe_data); | 
|  | break; | 
|  | default: | 
|  | btf_int_bits_show(btf, t, safe_data, bits_offset, show); | 
|  | break; | 
|  | } | 
|  | out: | 
|  | btf_show_end_type(show); | 
|  | } | 
|  |  | 
|  | static const struct btf_kind_operations int_ops = { | 
|  | .check_meta = btf_int_check_meta, | 
|  | .resolve = btf_df_resolve, | 
|  | .check_member = btf_int_check_member, | 
|  | .check_kflag_member = btf_int_check_kflag_member, | 
|  | .log_details = btf_int_log, | 
|  | .show = btf_int_show, | 
|  | }; | 
|  |  | 
|  | static int btf_modifier_check_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | const struct btf_type *resolved_type; | 
|  | u32 resolved_type_id = member->type; | 
|  | struct btf_member resolved_member; | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); | 
|  | if (!resolved_type) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Invalid member"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | resolved_member = *member; | 
|  | resolved_member.type = resolved_type_id; | 
|  |  | 
|  | return btf_type_ops(resolved_type)->check_member(env, struct_type, | 
|  | &resolved_member, | 
|  | resolved_type); | 
|  | } | 
|  |  | 
|  | static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | const struct btf_type *resolved_type; | 
|  | u32 resolved_type_id = member->type; | 
|  | struct btf_member resolved_member; | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); | 
|  | if (!resolved_type) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Invalid member"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | resolved_member = *member; | 
|  | resolved_member.type = resolved_type_id; | 
|  |  | 
|  | return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, | 
|  | &resolved_member, | 
|  | resolved_type); | 
|  | } | 
|  |  | 
|  | static int btf_ptr_check_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | u32 struct_size, struct_bits_off, bytes_offset; | 
|  |  | 
|  | struct_size = struct_type->size; | 
|  | struct_bits_off = member->offset; | 
|  | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
|  |  | 
|  | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member is not byte aligned"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (struct_size - bytes_offset < sizeof(void *)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member exceeds struct_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_ref_type_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | if (btf_type_vlen(t)) { | 
|  | btf_verifier_log_type(env, t, "vlen != 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!BTF_TYPE_ID_VALID(t->type)) { | 
|  | btf_verifier_log_type(env, t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* typedef type must have a valid name, and other ref types, | 
|  | * volatile, const, restrict, should have a null name. | 
|  | */ | 
|  | if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { | 
|  | if (!t->name_off || | 
|  | !btf_name_valid_identifier(env->btf, t->name_off)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (t->name_off) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_modifier_resolve(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v) | 
|  | { | 
|  | const struct btf_type *t = v->t; | 
|  | const struct btf_type *next_type; | 
|  | u32 next_type_id = t->type; | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | next_type = btf_type_by_id(btf, next_type_id); | 
|  | if (!next_type || btf_type_is_resolve_source_only(next_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env_type_is_resolve_sink(env, next_type) && | 
|  | !env_type_is_resolved(env, next_type_id)) | 
|  | return env_stack_push(env, next_type, next_type_id); | 
|  |  | 
|  | /* Figure out the resolved next_type_id with size. | 
|  | * They will be stored in the current modifier's | 
|  | * resolved_ids and resolved_sizes such that it can | 
|  | * save us a few type-following when we use it later (e.g. in | 
|  | * pretty print). | 
|  | */ | 
|  | if (!btf_type_id_size(btf, &next_type_id, NULL)) { | 
|  | if (env_type_is_resolved(env, next_type_id)) | 
|  | next_type = btf_type_id_resolve(btf, &next_type_id); | 
|  |  | 
|  | /* "typedef void new_void", "const void"...etc */ | 
|  | if (!btf_type_is_void(next_type) && | 
|  | !btf_type_is_fwd(next_type) && | 
|  | !btf_type_is_func_proto(next_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | env_stack_pop_resolved(env, next_type_id, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_var_resolve(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v) | 
|  | { | 
|  | const struct btf_type *next_type; | 
|  | const struct btf_type *t = v->t; | 
|  | u32 next_type_id = t->type; | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | next_type = btf_type_by_id(btf, next_type_id); | 
|  | if (!next_type || btf_type_is_resolve_source_only(next_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env_type_is_resolve_sink(env, next_type) && | 
|  | !env_type_is_resolved(env, next_type_id)) | 
|  | return env_stack_push(env, next_type, next_type_id); | 
|  |  | 
|  | if (btf_type_is_modifier(next_type)) { | 
|  | const struct btf_type *resolved_type; | 
|  | u32 resolved_type_id; | 
|  |  | 
|  | resolved_type_id = next_type_id; | 
|  | resolved_type = btf_type_id_resolve(btf, &resolved_type_id); | 
|  |  | 
|  | if (btf_type_is_ptr(resolved_type) && | 
|  | !env_type_is_resolve_sink(env, resolved_type) && | 
|  | !env_type_is_resolved(env, resolved_type_id)) | 
|  | return env_stack_push(env, resolved_type, | 
|  | resolved_type_id); | 
|  | } | 
|  |  | 
|  | /* We must resolve to something concrete at this point, no | 
|  | * forward types or similar that would resolve to size of | 
|  | * zero is allowed. | 
|  | */ | 
|  | if (!btf_type_id_size(btf, &next_type_id, NULL)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | env_stack_pop_resolved(env, next_type_id, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_ptr_resolve(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v) | 
|  | { | 
|  | const struct btf_type *next_type; | 
|  | const struct btf_type *t = v->t; | 
|  | u32 next_type_id = t->type; | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | next_type = btf_type_by_id(btf, next_type_id); | 
|  | if (!next_type || btf_type_is_resolve_source_only(next_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env_type_is_resolve_sink(env, next_type) && | 
|  | !env_type_is_resolved(env, next_type_id)) | 
|  | return env_stack_push(env, next_type, next_type_id); | 
|  |  | 
|  | /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, | 
|  | * the modifier may have stopped resolving when it was resolved | 
|  | * to a ptr (last-resolved-ptr). | 
|  | * | 
|  | * We now need to continue from the last-resolved-ptr to | 
|  | * ensure the last-resolved-ptr will not referring back to | 
|  | * the currenct ptr (t). | 
|  | */ | 
|  | if (btf_type_is_modifier(next_type)) { | 
|  | const struct btf_type *resolved_type; | 
|  | u32 resolved_type_id; | 
|  |  | 
|  | resolved_type_id = next_type_id; | 
|  | resolved_type = btf_type_id_resolve(btf, &resolved_type_id); | 
|  |  | 
|  | if (btf_type_is_ptr(resolved_type) && | 
|  | !env_type_is_resolve_sink(env, resolved_type) && | 
|  | !env_type_is_resolved(env, resolved_type_id)) | 
|  | return env_stack_push(env, resolved_type, | 
|  | resolved_type_id); | 
|  | } | 
|  |  | 
|  | if (!btf_type_id_size(btf, &next_type_id, NULL)) { | 
|  | if (env_type_is_resolved(env, next_type_id)) | 
|  | next_type = btf_type_id_resolve(btf, &next_type_id); | 
|  |  | 
|  | if (!btf_type_is_void(next_type) && | 
|  | !btf_type_is_fwd(next_type) && | 
|  | !btf_type_is_func_proto(next_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | env_stack_pop_resolved(env, next_type_id, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_modifier_show(const struct btf *btf, | 
|  | const struct btf_type *t, | 
|  | u32 type_id, void *data, | 
|  | u8 bits_offset, struct btf_show *show) | 
|  | { | 
|  | if (btf->resolved_ids) | 
|  | t = btf_type_id_resolve(btf, &type_id); | 
|  | else | 
|  | t = btf_type_skip_modifiers(btf, type_id, NULL); | 
|  |  | 
|  | btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); | 
|  | } | 
|  |  | 
|  | static void btf_var_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | t = btf_type_id_resolve(btf, &type_id); | 
|  |  | 
|  | btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); | 
|  | } | 
|  |  | 
|  | static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | void *safe_data; | 
|  |  | 
|  | safe_data = btf_show_start_type(show, t, type_id, data); | 
|  | if (!safe_data) | 
|  | return; | 
|  |  | 
|  | /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ | 
|  | if (show->flags & BTF_SHOW_PTR_RAW) | 
|  | btf_show_type_value(show, "0x%px", *(void **)safe_data); | 
|  | else | 
|  | btf_show_type_value(show, "0x%p", *(void **)safe_data); | 
|  | btf_show_end_type(show); | 
|  | } | 
|  |  | 
|  | static void btf_ref_type_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | btf_verifier_log(env, "type_id=%u", t->type); | 
|  | } | 
|  |  | 
|  | static struct btf_kind_operations modifier_ops = { | 
|  | .check_meta = btf_ref_type_check_meta, | 
|  | .resolve = btf_modifier_resolve, | 
|  | .check_member = btf_modifier_check_member, | 
|  | .check_kflag_member = btf_modifier_check_kflag_member, | 
|  | .log_details = btf_ref_type_log, | 
|  | .show = btf_modifier_show, | 
|  | }; | 
|  |  | 
|  | static struct btf_kind_operations ptr_ops = { | 
|  | .check_meta = btf_ref_type_check_meta, | 
|  | .resolve = btf_ptr_resolve, | 
|  | .check_member = btf_ptr_check_member, | 
|  | .check_kflag_member = btf_generic_check_kflag_member, | 
|  | .log_details = btf_ref_type_log, | 
|  | .show = btf_ptr_show, | 
|  | }; | 
|  |  | 
|  | static s32 btf_fwd_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | if (btf_type_vlen(t)) { | 
|  | btf_verifier_log_type(env, t, "vlen != 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (t->type) { | 
|  | btf_verifier_log_type(env, t, "type != 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* fwd type must have a valid name */ | 
|  | if (!t->name_off || | 
|  | !btf_name_valid_identifier(env->btf, t->name_off)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_fwd_type_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); | 
|  | } | 
|  |  | 
|  | static struct btf_kind_operations fwd_ops = { | 
|  | .check_meta = btf_fwd_check_meta, | 
|  | .resolve = btf_df_resolve, | 
|  | .check_member = btf_df_check_member, | 
|  | .check_kflag_member = btf_df_check_kflag_member, | 
|  | .log_details = btf_fwd_type_log, | 
|  | .show = btf_df_show, | 
|  | }; | 
|  |  | 
|  | static int btf_array_check_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | u32 struct_bits_off = member->offset; | 
|  | u32 struct_size, bytes_offset; | 
|  | u32 array_type_id, array_size; | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member is not byte aligned"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | array_type_id = member->type; | 
|  | btf_type_id_size(btf, &array_type_id, &array_size); | 
|  | struct_size = struct_type->size; | 
|  | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
|  | if (struct_size - bytes_offset < array_size) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member exceeds struct_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s32 btf_array_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | const struct btf_array *array = btf_type_array(t); | 
|  | u32 meta_needed = sizeof(*array); | 
|  |  | 
|  | if (meta_left < meta_needed) { | 
|  | btf_verifier_log_basic(env, t, | 
|  | "meta_left:%u meta_needed:%u", | 
|  | meta_left, meta_needed); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* array type should not have a name */ | 
|  | if (t->name_off) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_vlen(t)) { | 
|  | btf_verifier_log_type(env, t, "vlen != 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (t->size) { | 
|  | btf_verifier_log_type(env, t, "size != 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Array elem type and index type cannot be in type void, | 
|  | * so !array->type and !array->index_type are not allowed. | 
|  | */ | 
|  | if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { | 
|  | btf_verifier_log_type(env, t, "Invalid elem"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { | 
|  | btf_verifier_log_type(env, t, "Invalid index"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | return meta_needed; | 
|  | } | 
|  |  | 
|  | static int btf_array_resolve(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v) | 
|  | { | 
|  | const struct btf_array *array = btf_type_array(v->t); | 
|  | const struct btf_type *elem_type, *index_type; | 
|  | u32 elem_type_id, index_type_id; | 
|  | struct btf *btf = env->btf; | 
|  | u32 elem_size; | 
|  |  | 
|  | /* Check array->index_type */ | 
|  | index_type_id = array->index_type; | 
|  | index_type = btf_type_by_id(btf, index_type_id); | 
|  | if (btf_type_nosize_or_null(index_type) || | 
|  | btf_type_is_resolve_source_only(index_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid index"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env_type_is_resolve_sink(env, index_type) && | 
|  | !env_type_is_resolved(env, index_type_id)) | 
|  | return env_stack_push(env, index_type, index_type_id); | 
|  |  | 
|  | index_type = btf_type_id_size(btf, &index_type_id, NULL); | 
|  | if (!index_type || !btf_type_is_int(index_type) || | 
|  | !btf_type_int_is_regular(index_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid index"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check array->type */ | 
|  | elem_type_id = array->type; | 
|  | elem_type = btf_type_by_id(btf, elem_type_id); | 
|  | if (btf_type_nosize_or_null(elem_type) || | 
|  | btf_type_is_resolve_source_only(elem_type)) { | 
|  | btf_verifier_log_type(env, v->t, | 
|  | "Invalid elem"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env_type_is_resolve_sink(env, elem_type) && | 
|  | !env_type_is_resolved(env, elem_type_id)) | 
|  | return env_stack_push(env, elem_type, elem_type_id); | 
|  |  | 
|  | elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); | 
|  | if (!elem_type) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid elem"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { | 
|  | btf_verifier_log_type(env, v->t, "Invalid array of int"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (array->nelems && elem_size > U32_MAX / array->nelems) { | 
|  | btf_verifier_log_type(env, v->t, | 
|  | "Array size overflows U32_MAX"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_array_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | const struct btf_array *array = btf_type_array(t); | 
|  |  | 
|  | btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", | 
|  | array->type, array->index_type, array->nelems); | 
|  | } | 
|  |  | 
|  | static void __btf_array_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | const struct btf_array *array = btf_type_array(t); | 
|  | const struct btf_kind_operations *elem_ops; | 
|  | const struct btf_type *elem_type; | 
|  | u32 i, elem_size = 0, elem_type_id; | 
|  | u16 encoding = 0; | 
|  |  | 
|  | elem_type_id = array->type; | 
|  | elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); | 
|  | if (elem_type && btf_type_has_size(elem_type)) | 
|  | elem_size = elem_type->size; | 
|  |  | 
|  | if (elem_type && btf_type_is_int(elem_type)) { | 
|  | u32 int_type = btf_type_int(elem_type); | 
|  |  | 
|  | encoding = BTF_INT_ENCODING(int_type); | 
|  |  | 
|  | /* | 
|  | * BTF_INT_CHAR encoding never seems to be set for | 
|  | * char arrays, so if size is 1 and element is | 
|  | * printable as a char, we'll do that. | 
|  | */ | 
|  | if (elem_size == 1) | 
|  | encoding = BTF_INT_CHAR; | 
|  | } | 
|  |  | 
|  | if (!btf_show_start_array_type(show, t, type_id, encoding, data)) | 
|  | return; | 
|  |  | 
|  | if (!elem_type) | 
|  | goto out; | 
|  | elem_ops = btf_type_ops(elem_type); | 
|  |  | 
|  | for (i = 0; i < array->nelems; i++) { | 
|  |  | 
|  | btf_show_start_array_member(show); | 
|  |  | 
|  | elem_ops->show(btf, elem_type, elem_type_id, data, | 
|  | bits_offset, show); | 
|  | data += elem_size; | 
|  |  | 
|  | btf_show_end_array_member(show); | 
|  |  | 
|  | if (show->state.array_terminated) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | btf_show_end_array_type(show); | 
|  | } | 
|  |  | 
|  | static void btf_array_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | const struct btf_member *m = show->state.member; | 
|  |  | 
|  | /* | 
|  | * First check if any members would be shown (are non-zero). | 
|  | * See comments above "struct btf_show" definition for more | 
|  | * details on how this works at a high-level. | 
|  | */ | 
|  | if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { | 
|  | if (!show->state.depth_check) { | 
|  | show->state.depth_check = show->state.depth + 1; | 
|  | show->state.depth_to_show = 0; | 
|  | } | 
|  | __btf_array_show(btf, t, type_id, data, bits_offset, show); | 
|  | show->state.member = m; | 
|  |  | 
|  | if (show->state.depth_check != show->state.depth + 1) | 
|  | return; | 
|  | show->state.depth_check = 0; | 
|  |  | 
|  | if (show->state.depth_to_show <= show->state.depth) | 
|  | return; | 
|  | /* | 
|  | * Reaching here indicates we have recursed and found | 
|  | * non-zero array member(s). | 
|  | */ | 
|  | } | 
|  | __btf_array_show(btf, t, type_id, data, bits_offset, show); | 
|  | } | 
|  |  | 
|  | static struct btf_kind_operations array_ops = { | 
|  | .check_meta = btf_array_check_meta, | 
|  | .resolve = btf_array_resolve, | 
|  | .check_member = btf_array_check_member, | 
|  | .check_kflag_member = btf_generic_check_kflag_member, | 
|  | .log_details = btf_array_log, | 
|  | .show = btf_array_show, | 
|  | }; | 
|  |  | 
|  | static int btf_struct_check_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | u32 struct_bits_off = member->offset; | 
|  | u32 struct_size, bytes_offset; | 
|  |  | 
|  | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member is not byte aligned"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | struct_size = struct_type->size; | 
|  | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
|  | if (struct_size - bytes_offset < member_type->size) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member exceeds struct_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s32 btf_struct_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; | 
|  | const struct btf_member *member; | 
|  | u32 meta_needed, last_offset; | 
|  | struct btf *btf = env->btf; | 
|  | u32 struct_size = t->size; | 
|  | u32 offset; | 
|  | u16 i; | 
|  |  | 
|  | meta_needed = btf_type_vlen(t) * sizeof(*member); | 
|  | if (meta_left < meta_needed) { | 
|  | btf_verifier_log_basic(env, t, | 
|  | "meta_left:%u meta_needed:%u", | 
|  | meta_left, meta_needed); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* struct type either no name or a valid one */ | 
|  | if (t->name_off && | 
|  | !btf_name_valid_identifier(env->btf, t->name_off)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | last_offset = 0; | 
|  | for_each_member(i, t, member) { | 
|  | if (!btf_name_offset_valid(btf, member->name_off)) { | 
|  | btf_verifier_log_member(env, t, member, | 
|  | "Invalid member name_offset:%u", | 
|  | member->name_off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* struct member either no name or a valid one */ | 
|  | if (member->name_off && | 
|  | !btf_name_valid_identifier(btf, member->name_off)) { | 
|  | btf_verifier_log_member(env, t, member, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* A member cannot be in type void */ | 
|  | if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { | 
|  | btf_verifier_log_member(env, t, member, | 
|  | "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | offset = btf_member_bit_offset(t, member); | 
|  | if (is_union && offset) { | 
|  | btf_verifier_log_member(env, t, member, | 
|  | "Invalid member bits_offset"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ">" instead of ">=" because the last member could be | 
|  | * "char a[0];" | 
|  | */ | 
|  | if (last_offset > offset) { | 
|  | btf_verifier_log_member(env, t, member, | 
|  | "Invalid member bits_offset"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (BITS_ROUNDUP_BYTES(offset) > struct_size) { | 
|  | btf_verifier_log_member(env, t, member, | 
|  | "Member bits_offset exceeds its struct size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_member(env, t, member, NULL); | 
|  | last_offset = offset; | 
|  | } | 
|  |  | 
|  | return meta_needed; | 
|  | } | 
|  |  | 
|  | static int btf_struct_resolve(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v) | 
|  | { | 
|  | const struct btf_member *member; | 
|  | int err; | 
|  | u16 i; | 
|  |  | 
|  | /* Before continue resolving the next_member, | 
|  | * ensure the last member is indeed resolved to a | 
|  | * type with size info. | 
|  | */ | 
|  | if (v->next_member) { | 
|  | const struct btf_type *last_member_type; | 
|  | const struct btf_member *last_member; | 
|  | u16 last_member_type_id; | 
|  |  | 
|  | last_member = btf_type_member(v->t) + v->next_member - 1; | 
|  | last_member_type_id = last_member->type; | 
|  | if (WARN_ON_ONCE(!env_type_is_resolved(env, | 
|  | last_member_type_id))) | 
|  | return -EINVAL; | 
|  |  | 
|  | last_member_type = btf_type_by_id(env->btf, | 
|  | last_member_type_id); | 
|  | if (btf_type_kflag(v->t)) | 
|  | err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, | 
|  | last_member, | 
|  | last_member_type); | 
|  | else | 
|  | err = btf_type_ops(last_member_type)->check_member(env, v->t, | 
|  | last_member, | 
|  | last_member_type); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | for_each_member_from(i, v->next_member, v->t, member) { | 
|  | u32 member_type_id = member->type; | 
|  | const struct btf_type *member_type = btf_type_by_id(env->btf, | 
|  | member_type_id); | 
|  |  | 
|  | if (btf_type_nosize_or_null(member_type) || | 
|  | btf_type_is_resolve_source_only(member_type)) { | 
|  | btf_verifier_log_member(env, v->t, member, | 
|  | "Invalid member"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env_type_is_resolve_sink(env, member_type) && | 
|  | !env_type_is_resolved(env, member_type_id)) { | 
|  | env_stack_set_next_member(env, i + 1); | 
|  | return env_stack_push(env, member_type, member_type_id); | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(v->t)) | 
|  | err = btf_type_ops(member_type)->check_kflag_member(env, v->t, | 
|  | member, | 
|  | member_type); | 
|  | else | 
|  | err = btf_type_ops(member_type)->check_member(env, v->t, | 
|  | member, | 
|  | member_type); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | env_stack_pop_resolved(env, 0, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_struct_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); | 
|  | } | 
|  |  | 
|  | /* find 'struct bpf_spin_lock' in map value. | 
|  | * return >= 0 offset if found | 
|  | * and < 0 in case of error | 
|  | */ | 
|  | int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) | 
|  | { | 
|  | const struct btf_member *member; | 
|  | u32 i, off = -ENOENT; | 
|  |  | 
|  | if (!__btf_type_is_struct(t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | for_each_member(i, t, member) { | 
|  | const struct btf_type *member_type = btf_type_by_id(btf, | 
|  | member->type); | 
|  | if (!__btf_type_is_struct(member_type)) | 
|  | continue; | 
|  | if (member_type->size != sizeof(struct bpf_spin_lock)) | 
|  | continue; | 
|  | if (strcmp(__btf_name_by_offset(btf, member_type->name_off), | 
|  | "bpf_spin_lock")) | 
|  | continue; | 
|  | if (off != -ENOENT) | 
|  | /* only one 'struct bpf_spin_lock' is allowed */ | 
|  | return -E2BIG; | 
|  | off = btf_member_bit_offset(t, member); | 
|  | if (off % 8) | 
|  | /* valid C code cannot generate such BTF */ | 
|  | return -EINVAL; | 
|  | off /= 8; | 
|  | if (off % __alignof__(struct bpf_spin_lock)) | 
|  | /* valid struct bpf_spin_lock will be 4 byte aligned */ | 
|  | return -EINVAL; | 
|  | } | 
|  | return off; | 
|  | } | 
|  |  | 
|  | static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | const struct btf_member *member; | 
|  | void *safe_data; | 
|  | u32 i; | 
|  |  | 
|  | safe_data = btf_show_start_struct_type(show, t, type_id, data); | 
|  | if (!safe_data) | 
|  | return; | 
|  |  | 
|  | for_each_member(i, t, member) { | 
|  | const struct btf_type *member_type = btf_type_by_id(btf, | 
|  | member->type); | 
|  | const struct btf_kind_operations *ops; | 
|  | u32 member_offset, bitfield_size; | 
|  | u32 bytes_offset; | 
|  | u8 bits8_offset; | 
|  |  | 
|  | btf_show_start_member(show, member); | 
|  |  | 
|  | member_offset = btf_member_bit_offset(t, member); | 
|  | bitfield_size = btf_member_bitfield_size(t, member); | 
|  | bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); | 
|  | bits8_offset = BITS_PER_BYTE_MASKED(member_offset); | 
|  | if (bitfield_size) { | 
|  | safe_data = btf_show_start_type(show, member_type, | 
|  | member->type, | 
|  | data + bytes_offset); | 
|  | if (safe_data) | 
|  | btf_bitfield_show(safe_data, | 
|  | bits8_offset, | 
|  | bitfield_size, show); | 
|  | btf_show_end_type(show); | 
|  | } else { | 
|  | ops = btf_type_ops(member_type); | 
|  | ops->show(btf, member_type, member->type, | 
|  | data + bytes_offset, bits8_offset, show); | 
|  | } | 
|  |  | 
|  | btf_show_end_member(show); | 
|  | } | 
|  |  | 
|  | btf_show_end_struct_type(show); | 
|  | } | 
|  |  | 
|  | static void btf_struct_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | const struct btf_member *m = show->state.member; | 
|  |  | 
|  | /* | 
|  | * First check if any members would be shown (are non-zero). | 
|  | * See comments above "struct btf_show" definition for more | 
|  | * details on how this works at a high-level. | 
|  | */ | 
|  | if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { | 
|  | if (!show->state.depth_check) { | 
|  | show->state.depth_check = show->state.depth + 1; | 
|  | show->state.depth_to_show = 0; | 
|  | } | 
|  | __btf_struct_show(btf, t, type_id, data, bits_offset, show); | 
|  | /* Restore saved member data here */ | 
|  | show->state.member = m; | 
|  | if (show->state.depth_check != show->state.depth + 1) | 
|  | return; | 
|  | show->state.depth_check = 0; | 
|  |  | 
|  | if (show->state.depth_to_show <= show->state.depth) | 
|  | return; | 
|  | /* | 
|  | * Reaching here indicates we have recursed and found | 
|  | * non-zero child values. | 
|  | */ | 
|  | } | 
|  |  | 
|  | __btf_struct_show(btf, t, type_id, data, bits_offset, show); | 
|  | } | 
|  |  | 
|  | static struct btf_kind_operations struct_ops = { | 
|  | .check_meta = btf_struct_check_meta, | 
|  | .resolve = btf_struct_resolve, | 
|  | .check_member = btf_struct_check_member, | 
|  | .check_kflag_member = btf_generic_check_kflag_member, | 
|  | .log_details = btf_struct_log, | 
|  | .show = btf_struct_show, | 
|  | }; | 
|  |  | 
|  | static int btf_enum_check_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | u32 struct_bits_off = member->offset; | 
|  | u32 struct_size, bytes_offset; | 
|  |  | 
|  | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member is not byte aligned"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | struct_size = struct_type->size; | 
|  | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
|  | if (struct_size - bytes_offset < member_type->size) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member exceeds struct_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_enum_check_kflag_member(struct btf_verifier_env *env, | 
|  | const struct btf_type *struct_type, | 
|  | const struct btf_member *member, | 
|  | const struct btf_type *member_type) | 
|  | { | 
|  | u32 struct_bits_off, nr_bits, bytes_end, struct_size; | 
|  | u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; | 
|  |  | 
|  | struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); | 
|  | nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); | 
|  | if (!nr_bits) { | 
|  | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member is not byte aligned"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nr_bits = int_bitsize; | 
|  | } else if (nr_bits > int_bitsize) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Invalid member bitfield_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | struct_size = struct_type->size; | 
|  | bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); | 
|  | if (struct_size < bytes_end) { | 
|  | btf_verifier_log_member(env, struct_type, member, | 
|  | "Member exceeds struct_size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s32 btf_enum_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | const struct btf_enum *enums = btf_type_enum(t); | 
|  | struct btf *btf = env->btf; | 
|  | u16 i, nr_enums; | 
|  | u32 meta_needed; | 
|  |  | 
|  | nr_enums = btf_type_vlen(t); | 
|  | meta_needed = nr_enums * sizeof(*enums); | 
|  |  | 
|  | if (meta_left < meta_needed) { | 
|  | btf_verifier_log_basic(env, t, | 
|  | "meta_left:%u meta_needed:%u", | 
|  | meta_left, meta_needed); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (t->size > 8 || !is_power_of_2(t->size)) { | 
|  | btf_verifier_log_type(env, t, "Unexpected size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* enum type either no name or a valid one */ | 
|  | if (t->name_off && | 
|  | !btf_name_valid_identifier(env->btf, t->name_off)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | for (i = 0; i < nr_enums; i++) { | 
|  | if (!btf_name_offset_valid(btf, enums[i].name_off)) { | 
|  | btf_verifier_log(env, "\tInvalid name_offset:%u", | 
|  | enums[i].name_off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* enum member must have a valid name */ | 
|  | if (!enums[i].name_off || | 
|  | !btf_name_valid_identifier(btf, enums[i].name_off)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->log.level == BPF_LOG_KERNEL) | 
|  | continue; | 
|  | btf_verifier_log(env, "\t%s val=%d\n", | 
|  | __btf_name_by_offset(btf, enums[i].name_off), | 
|  | enums[i].val); | 
|  | } | 
|  |  | 
|  | return meta_needed; | 
|  | } | 
|  |  | 
|  | static void btf_enum_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); | 
|  | } | 
|  |  | 
|  | static void btf_enum_show(const struct btf *btf, const struct btf_type *t, | 
|  | u32 type_id, void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | const struct btf_enum *enums = btf_type_enum(t); | 
|  | u32 i, nr_enums = btf_type_vlen(t); | 
|  | void *safe_data; | 
|  | int v; | 
|  |  | 
|  | safe_data = btf_show_start_type(show, t, type_id, data); | 
|  | if (!safe_data) | 
|  | return; | 
|  |  | 
|  | v = *(int *)safe_data; | 
|  |  | 
|  | for (i = 0; i < nr_enums; i++) { | 
|  | if (v != enums[i].val) | 
|  | continue; | 
|  |  | 
|  | btf_show_type_value(show, "%s", | 
|  | __btf_name_by_offset(btf, | 
|  | enums[i].name_off)); | 
|  |  | 
|  | btf_show_end_type(show); | 
|  | return; | 
|  | } | 
|  |  | 
|  | btf_show_type_value(show, "%d", v); | 
|  | btf_show_end_type(show); | 
|  | } | 
|  |  | 
|  | static struct btf_kind_operations enum_ops = { | 
|  | .check_meta = btf_enum_check_meta, | 
|  | .resolve = btf_df_resolve, | 
|  | .check_member = btf_enum_check_member, | 
|  | .check_kflag_member = btf_enum_check_kflag_member, | 
|  | .log_details = btf_enum_log, | 
|  | .show = btf_enum_show, | 
|  | }; | 
|  |  | 
|  | static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); | 
|  |  | 
|  | if (meta_left < meta_needed) { | 
|  | btf_verifier_log_basic(env, t, | 
|  | "meta_left:%u meta_needed:%u", | 
|  | meta_left, meta_needed); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (t->name_off) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | return meta_needed; | 
|  | } | 
|  |  | 
|  | static void btf_func_proto_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | const struct btf_param *args = (const struct btf_param *)(t + 1); | 
|  | u16 nr_args = btf_type_vlen(t), i; | 
|  |  | 
|  | btf_verifier_log(env, "return=%u args=(", t->type); | 
|  | if (!nr_args) { | 
|  | btf_verifier_log(env, "void"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (nr_args == 1 && !args[0].type) { | 
|  | /* Only one vararg */ | 
|  | btf_verifier_log(env, "vararg"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | btf_verifier_log(env, "%u %s", args[0].type, | 
|  | __btf_name_by_offset(env->btf, | 
|  | args[0].name_off)); | 
|  | for (i = 1; i < nr_args - 1; i++) | 
|  | btf_verifier_log(env, ", %u %s", args[i].type, | 
|  | __btf_name_by_offset(env->btf, | 
|  | args[i].name_off)); | 
|  |  | 
|  | if (nr_args > 1) { | 
|  | const struct btf_param *last_arg = &args[nr_args - 1]; | 
|  |  | 
|  | if (last_arg->type) | 
|  | btf_verifier_log(env, ", %u %s", last_arg->type, | 
|  | __btf_name_by_offset(env->btf, | 
|  | last_arg->name_off)); | 
|  | else | 
|  | btf_verifier_log(env, ", vararg"); | 
|  | } | 
|  |  | 
|  | done: | 
|  | btf_verifier_log(env, ")"); | 
|  | } | 
|  |  | 
|  | static struct btf_kind_operations func_proto_ops = { | 
|  | .check_meta = btf_func_proto_check_meta, | 
|  | .resolve = btf_df_resolve, | 
|  | /* | 
|  | * BTF_KIND_FUNC_PROTO cannot be directly referred by | 
|  | * a struct's member. | 
|  | * | 
|  | * It should be a funciton pointer instead. | 
|  | * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) | 
|  | * | 
|  | * Hence, there is no btf_func_check_member(). | 
|  | */ | 
|  | .check_member = btf_df_check_member, | 
|  | .check_kflag_member = btf_df_check_kflag_member, | 
|  | .log_details = btf_func_proto_log, | 
|  | .show = btf_df_show, | 
|  | }; | 
|  |  | 
|  | static s32 btf_func_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | if (!t->name_off || | 
|  | !btf_name_valid_identifier(env->btf, t->name_off)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { | 
|  | btf_verifier_log_type(env, t, "Invalid func linkage"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btf_kind_operations func_ops = { | 
|  | .check_meta = btf_func_check_meta, | 
|  | .resolve = btf_df_resolve, | 
|  | .check_member = btf_df_check_member, | 
|  | .check_kflag_member = btf_df_check_kflag_member, | 
|  | .log_details = btf_ref_type_log, | 
|  | .show = btf_df_show, | 
|  | }; | 
|  |  | 
|  | static s32 btf_var_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | const struct btf_var *var; | 
|  | u32 meta_needed = sizeof(*var); | 
|  |  | 
|  | if (meta_left < meta_needed) { | 
|  | btf_verifier_log_basic(env, t, | 
|  | "meta_left:%u meta_needed:%u", | 
|  | meta_left, meta_needed); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_vlen(t)) { | 
|  | btf_verifier_log_type(env, t, "vlen != 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!t->name_off || | 
|  | !__btf_name_valid(env->btf, t->name_off, true)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* A var cannot be in type void */ | 
|  | if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { | 
|  | btf_verifier_log_type(env, t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | var = btf_type_var(t); | 
|  | if (var->linkage != BTF_VAR_STATIC && | 
|  | var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { | 
|  | btf_verifier_log_type(env, t, "Linkage not supported"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | return meta_needed; | 
|  | } | 
|  |  | 
|  | static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) | 
|  | { | 
|  | const struct btf_var *var = btf_type_var(t); | 
|  |  | 
|  | btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); | 
|  | } | 
|  |  | 
|  | static const struct btf_kind_operations var_ops = { | 
|  | .check_meta		= btf_var_check_meta, | 
|  | .resolve		= btf_var_resolve, | 
|  | .check_member		= btf_df_check_member, | 
|  | .check_kflag_member	= btf_df_check_kflag_member, | 
|  | .log_details		= btf_var_log, | 
|  | .show			= btf_var_show, | 
|  | }; | 
|  |  | 
|  | static s32 btf_datasec_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | const struct btf_var_secinfo *vsi; | 
|  | u64 last_vsi_end_off = 0, sum = 0; | 
|  | u32 i, meta_needed; | 
|  |  | 
|  | meta_needed = btf_type_vlen(t) * sizeof(*vsi); | 
|  | if (meta_left < meta_needed) { | 
|  | btf_verifier_log_basic(env, t, | 
|  | "meta_left:%u meta_needed:%u", | 
|  | meta_left, meta_needed); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!t->size) { | 
|  | btf_verifier_log_type(env, t, "size == 0"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_kflag(t)) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!t->name_off || | 
|  | !btf_name_valid_section(env->btf, t->name_off)) { | 
|  | btf_verifier_log_type(env, t, "Invalid name"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_type(env, t, NULL); | 
|  |  | 
|  | for_each_vsi(i, t, vsi) { | 
|  | /* A var cannot be in type void */ | 
|  | if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { | 
|  | btf_verifier_log_vsi(env, t, vsi, | 
|  | "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { | 
|  | btf_verifier_log_vsi(env, t, vsi, | 
|  | "Invalid offset"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!vsi->size || vsi->size > t->size) { | 
|  | btf_verifier_log_vsi(env, t, vsi, | 
|  | "Invalid size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | last_vsi_end_off = vsi->offset + vsi->size; | 
|  | if (last_vsi_end_off > t->size) { | 
|  | btf_verifier_log_vsi(env, t, vsi, | 
|  | "Invalid offset+size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_verifier_log_vsi(env, t, vsi, NULL); | 
|  | sum += vsi->size; | 
|  | } | 
|  |  | 
|  | if (t->size < sum) { | 
|  | btf_verifier_log_type(env, t, "Invalid btf_info size"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return meta_needed; | 
|  | } | 
|  |  | 
|  | static int btf_datasec_resolve(struct btf_verifier_env *env, | 
|  | const struct resolve_vertex *v) | 
|  | { | 
|  | const struct btf_var_secinfo *vsi; | 
|  | struct btf *btf = env->btf; | 
|  | u16 i; | 
|  |  | 
|  | for_each_vsi_from(i, v->next_member, v->t, vsi) { | 
|  | u32 var_type_id = vsi->type, type_id, type_size = 0; | 
|  | const struct btf_type *var_type = btf_type_by_id(env->btf, | 
|  | var_type_id); | 
|  | if (!var_type || !btf_type_is_var(var_type)) { | 
|  | btf_verifier_log_vsi(env, v->t, vsi, | 
|  | "Not a VAR kind member"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env_type_is_resolve_sink(env, var_type) && | 
|  | !env_type_is_resolved(env, var_type_id)) { | 
|  | env_stack_set_next_member(env, i + 1); | 
|  | return env_stack_push(env, var_type, var_type_id); | 
|  | } | 
|  |  | 
|  | type_id = var_type->type; | 
|  | if (!btf_type_id_size(btf, &type_id, &type_size)) { | 
|  | btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (vsi->size < type_size) { | 
|  | btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | env_stack_pop_resolved(env, 0, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_datasec_log(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); | 
|  | } | 
|  |  | 
|  | static void btf_datasec_show(const struct btf *btf, | 
|  | const struct btf_type *t, u32 type_id, | 
|  | void *data, u8 bits_offset, | 
|  | struct btf_show *show) | 
|  | { | 
|  | const struct btf_var_secinfo *vsi; | 
|  | const struct btf_type *var; | 
|  | u32 i; | 
|  |  | 
|  | if (!btf_show_start_type(show, t, type_id, data)) | 
|  | return; | 
|  |  | 
|  | btf_show_type_value(show, "section (\"%s\") = {", | 
|  | __btf_name_by_offset(btf, t->name_off)); | 
|  | for_each_vsi(i, t, vsi) { | 
|  | var = btf_type_by_id(btf, vsi->type); | 
|  | if (i) | 
|  | btf_show(show, ","); | 
|  | btf_type_ops(var)->show(btf, var, vsi->type, | 
|  | data + vsi->offset, bits_offset, show); | 
|  | } | 
|  | btf_show_end_type(show); | 
|  | } | 
|  |  | 
|  | static const struct btf_kind_operations datasec_ops = { | 
|  | .check_meta		= btf_datasec_check_meta, | 
|  | .resolve		= btf_datasec_resolve, | 
|  | .check_member		= btf_df_check_member, | 
|  | .check_kflag_member	= btf_df_check_kflag_member, | 
|  | .log_details		= btf_datasec_log, | 
|  | .show			= btf_datasec_show, | 
|  | }; | 
|  |  | 
|  | static int btf_func_proto_check(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | const struct btf_type *ret_type; | 
|  | const struct btf_param *args; | 
|  | const struct btf *btf; | 
|  | u16 nr_args, i; | 
|  | int err; | 
|  |  | 
|  | btf = env->btf; | 
|  | args = (const struct btf_param *)(t + 1); | 
|  | nr_args = btf_type_vlen(t); | 
|  |  | 
|  | /* Check func return type which could be "void" (t->type == 0) */ | 
|  | if (t->type) { | 
|  | u32 ret_type_id = t->type; | 
|  |  | 
|  | ret_type = btf_type_by_id(btf, ret_type_id); | 
|  | if (!ret_type) { | 
|  | btf_verifier_log_type(env, t, "Invalid return type"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf_type_needs_resolve(ret_type) && | 
|  | !env_type_is_resolved(env, ret_type_id)) { | 
|  | err = btf_resolve(env, ret_type, ret_type_id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Ensure the return type is a type that has a size */ | 
|  | if (!btf_type_id_size(btf, &ret_type_id, NULL)) { | 
|  | btf_verifier_log_type(env, t, "Invalid return type"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!nr_args) | 
|  | return 0; | 
|  |  | 
|  | /* Last func arg type_id could be 0 if it is a vararg */ | 
|  | if (!args[nr_args - 1].type) { | 
|  | if (args[nr_args - 1].name_off) { | 
|  | btf_verifier_log_type(env, t, "Invalid arg#%u", | 
|  | nr_args); | 
|  | return -EINVAL; | 
|  | } | 
|  | nr_args--; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | for (i = 0; i < nr_args; i++) { | 
|  | const struct btf_type *arg_type; | 
|  | u32 arg_type_id; | 
|  |  | 
|  | arg_type_id = args[i].type; | 
|  | arg_type = btf_type_by_id(btf, arg_type_id); | 
|  | if (!arg_type) { | 
|  | btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); | 
|  | err = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (args[i].name_off && | 
|  | (!btf_name_offset_valid(btf, args[i].name_off) || | 
|  | !btf_name_valid_identifier(btf, args[i].name_off))) { | 
|  | btf_verifier_log_type(env, t, | 
|  | "Invalid arg#%u", i + 1); | 
|  | err = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (btf_type_needs_resolve(arg_type) && | 
|  | !env_type_is_resolved(env, arg_type_id)) { | 
|  | err = btf_resolve(env, arg_type, arg_type_id); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!btf_type_id_size(btf, &arg_type_id, NULL)) { | 
|  | btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); | 
|  | err = -EINVAL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btf_func_check(struct btf_verifier_env *env, | 
|  | const struct btf_type *t) | 
|  | { | 
|  | const struct btf_type *proto_type; | 
|  | const struct btf_param *args; | 
|  | const struct btf *btf; | 
|  | u16 nr_args, i; | 
|  |  | 
|  | btf = env->btf; | 
|  | proto_type = btf_type_by_id(btf, t->type); | 
|  |  | 
|  | if (!proto_type || !btf_type_is_func_proto(proto_type)) { | 
|  | btf_verifier_log_type(env, t, "Invalid type_id"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | args = (const struct btf_param *)(proto_type + 1); | 
|  | nr_args = btf_type_vlen(proto_type); | 
|  | for (i = 0; i < nr_args; i++) { | 
|  | if (!args[i].name_off && args[i].type) { | 
|  | btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { | 
|  | [BTF_KIND_INT] = &int_ops, | 
|  | [BTF_KIND_PTR] = &ptr_ops, | 
|  | [BTF_KIND_ARRAY] = &array_ops, | 
|  | [BTF_KIND_STRUCT] = &struct_ops, | 
|  | [BTF_KIND_UNION] = &struct_ops, | 
|  | [BTF_KIND_ENUM] = &enum_ops, | 
|  | [BTF_KIND_FWD] = &fwd_ops, | 
|  | [BTF_KIND_TYPEDEF] = &modifier_ops, | 
|  | [BTF_KIND_VOLATILE] = &modifier_ops, | 
|  | [BTF_KIND_CONST] = &modifier_ops, | 
|  | [BTF_KIND_RESTRICT] = &modifier_ops, | 
|  | [BTF_KIND_FUNC] = &func_ops, | 
|  | [BTF_KIND_FUNC_PROTO] = &func_proto_ops, | 
|  | [BTF_KIND_VAR] = &var_ops, | 
|  | [BTF_KIND_DATASEC] = &datasec_ops, | 
|  | }; | 
|  |  | 
|  | static s32 btf_check_meta(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 meta_left) | 
|  | { | 
|  | u32 saved_meta_left = meta_left; | 
|  | s32 var_meta_size; | 
|  |  | 
|  | if (meta_left < sizeof(*t)) { | 
|  | btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", | 
|  | env->log_type_id, meta_left, sizeof(*t)); | 
|  | return -EINVAL; | 
|  | } | 
|  | meta_left -= sizeof(*t); | 
|  |  | 
|  | if (t->info & ~BTF_INFO_MASK) { | 
|  | btf_verifier_log(env, "[%u] Invalid btf_info:%x", | 
|  | env->log_type_id, t->info); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || | 
|  | BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { | 
|  | btf_verifier_log(env, "[%u] Invalid kind:%u", | 
|  | env->log_type_id, BTF_INFO_KIND(t->info)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!btf_name_offset_valid(env->btf, t->name_off)) { | 
|  | btf_verifier_log(env, "[%u] Invalid name_offset:%u", | 
|  | env->log_type_id, t->name_off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); | 
|  | if (var_meta_size < 0) | 
|  | return var_meta_size; | 
|  |  | 
|  | meta_left -= var_meta_size; | 
|  |  | 
|  | return saved_meta_left - meta_left; | 
|  | } | 
|  |  | 
|  | static int btf_check_all_metas(struct btf_verifier_env *env) | 
|  | { | 
|  | struct btf *btf = env->btf; | 
|  | struct btf_header *hdr; | 
|  | void *cur, *end; | 
|  |  | 
|  | hdr = &btf->hdr; | 
|  | cur = btf->nohdr_data + hdr->type_off; | 
|  | end = cur + hdr->type_len; | 
|  |  | 
|  | env->log_type_id = btf->base_btf ? btf->start_id : 1; | 
|  | while (cur < end) { | 
|  | struct btf_type *t = cur; | 
|  | s32 meta_size; | 
|  |  | 
|  | meta_size = btf_check_meta(env, t, end - cur); | 
|  | if (meta_size < 0) | 
|  | return meta_size; | 
|  |  | 
|  | btf_add_type(env, t); | 
|  | cur += meta_size; | 
|  | env->log_type_id++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool btf_resolve_valid(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, | 
|  | u32 type_id) | 
|  | { | 
|  | struct btf *btf = env->btf; | 
|  |  | 
|  | if (!env_type_is_resolved(env, type_id)) | 
|  | return false; | 
|  |  | 
|  | if (btf_type_is_struct(t) || btf_type_is_datasec(t)) | 
|  | return !btf_resolved_type_id(btf, type_id) && | 
|  | !btf_resolved_type_size(btf, type_id); | 
|  |  | 
|  | if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || | 
|  | btf_type_is_var(t)) { | 
|  | t = btf_type_id_resolve(btf, &type_id); | 
|  | return t && | 
|  | !btf_type_is_modifier(t) && | 
|  | !btf_type_is_var(t) && | 
|  | !btf_type_is_datasec(t); | 
|  | } | 
|  |  | 
|  | if (btf_type_is_array(t)) { | 
|  | const struct btf_array *array = btf_type_array(t); | 
|  | const struct btf_type *elem_type; | 
|  | u32 elem_type_id = array->type; | 
|  | u32 elem_size; | 
|  |  | 
|  | elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); | 
|  | return elem_type && !btf_type_is_modifier(elem_type) && | 
|  | (array->nelems * elem_size == | 
|  | btf_resolved_type_size(btf, type_id)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int btf_resolve(struct btf_verifier_env *env, | 
|  | const struct btf_type *t, u32 type_id) | 
|  | { | 
|  | u32 save_log_type_id = env->log_type_id; | 
|  | const struct resolve_vertex *v; | 
|  | int err = 0; | 
|  |  | 
|  | env->resolve_mode = RESOLVE_TBD; | 
|  | env_stack_push(env, t, type_id); | 
|  | while (!err && (v = env_stack_peak(env))) { | 
|  | env->log_type_id = v->type_id; | 
|  | err = btf_type_ops(v->t)->resolve(env, v); | 
|  | } | 
|  |  | 
|  | env->log_type_id = type_id; | 
|  | if (err == -E2BIG) { | 
|  | btf_verifier_log_type(env, t, | 
|  | "Exceeded max resolving depth:%u", | 
|  | MAX_RESOLVE_DEPTH); | 
|  | } else if (err == -EEXIST) { | 
|  | btf_verifier_log_type(env, t, "Loop detected"); | 
|  | } | 
|  |  | 
|  | /* Final sanity check */ | 
|  | if (!err && !btf_resolve_valid(env, t, type_id)) { | 
|  | btf_verifier_log_type(env, t, "Invalid resolve state"); | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | env->log_type_id = save_log_type_id; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btf_check_all_types(struct btf_verifier_env *env) | 
|  | { | 
|  | struct btf *btf = env->btf; | 
|  | const struct btf_type *t; | 
|  | u32 type_id, i; | 
|  | int err; | 
|  |  | 
|  | err = env_resolve_init(env); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | env->phase++; | 
|  | for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { | 
|  | type_id = btf->start_id + i; | 
|  | t = btf_type_by_id(btf, type_id); | 
|  |  | 
|  | env->log_type_id = type_id; | 
|  | if (btf_type_needs_resolve(t) && | 
|  | !env_type_is_resolved(env, type_id)) { | 
|  | err = btf_resolve(env, t, type_id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (btf_type_is_func_proto(t)) { | 
|  | err = btf_func_proto_check(env, t); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (btf_type_is_func(t)) { | 
|  | err = btf_func_check(env, t); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_parse_type_sec(struct btf_verifier_env *env) | 
|  | { | 
|  | const struct btf_header *hdr = &env->btf->hdr; | 
|  | int err; | 
|  |  | 
|  | /* Type section must align to 4 bytes */ | 
|  | if (hdr->type_off & (sizeof(u32) - 1)) { | 
|  | btf_verifier_log(env, "Unaligned type_off"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env->btf->base_btf && !hdr->type_len) { | 
|  | btf_verifier_log(env, "No type found"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = btf_check_all_metas(env); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return btf_check_all_types(env); | 
|  | } | 
|  |  | 
|  | static int btf_parse_str_sec(struct btf_verifier_env *env) | 
|  | { | 
|  | const struct btf_header *hdr; | 
|  | struct btf *btf = env->btf; | 
|  | const char *start, *end; | 
|  |  | 
|  | hdr = &btf->hdr; | 
|  | start = btf->nohdr_data + hdr->str_off; | 
|  | end = start + hdr->str_len; | 
|  |  | 
|  | if (end != btf->data + btf->data_size) { | 
|  | btf_verifier_log(env, "String section is not at the end"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf->strings = start; | 
|  |  | 
|  | if (btf->base_btf && !hdr->str_len) | 
|  | return 0; | 
|  | if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { | 
|  | btf_verifier_log(env, "Invalid string section"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!btf->base_btf && start[0]) { | 
|  | btf_verifier_log(env, "Invalid string section"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const size_t btf_sec_info_offset[] = { | 
|  | offsetof(struct btf_header, type_off), | 
|  | offsetof(struct btf_header, str_off), | 
|  | }; | 
|  |  | 
|  | static int btf_sec_info_cmp(const void *a, const void *b) | 
|  | { | 
|  | const struct btf_sec_info *x = a; | 
|  | const struct btf_sec_info *y = b; | 
|  |  | 
|  | return (int)(x->off - y->off) ? : (int)(x->len - y->len); | 
|  | } | 
|  |  | 
|  | static int btf_check_sec_info(struct btf_verifier_env *env, | 
|  | u32 btf_data_size) | 
|  | { | 
|  | struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; | 
|  | u32 total, expected_total, i; | 
|  | const struct btf_header *hdr; | 
|  | const struct btf *btf; | 
|  |  | 
|  | btf = env->btf; | 
|  | hdr = &btf->hdr; | 
|  |  | 
|  | /* Populate the secs from hdr */ | 
|  | for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) | 
|  | secs[i] = *(struct btf_sec_info *)((void *)hdr + | 
|  | btf_sec_info_offset[i]); | 
|  |  | 
|  | sort(secs, ARRAY_SIZE(btf_sec_info_offset), | 
|  | sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); | 
|  |  | 
|  | /* Check for gaps and overlap among sections */ | 
|  | total = 0; | 
|  | expected_total = btf_data_size - hdr->hdr_len; | 
|  | for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { | 
|  | if (expected_total < secs[i].off) { | 
|  | btf_verifier_log(env, "Invalid section offset"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (total < secs[i].off) { | 
|  | /* gap */ | 
|  | btf_verifier_log(env, "Unsupported section found"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (total > secs[i].off) { | 
|  | btf_verifier_log(env, "Section overlap found"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (expected_total - total < secs[i].len) { | 
|  | btf_verifier_log(env, | 
|  | "Total section length too long"); | 
|  | return -EINVAL; | 
|  | } | 
|  | total += secs[i].len; | 
|  | } | 
|  |  | 
|  | /* There is data other than hdr and known sections */ | 
|  | if (expected_total != total) { | 
|  | btf_verifier_log(env, "Unsupported section found"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_parse_hdr(struct btf_verifier_env *env) | 
|  | { | 
|  | u32 hdr_len, hdr_copy, btf_data_size; | 
|  | const struct btf_header *hdr; | 
|  | struct btf *btf; | 
|  | int err; | 
|  |  | 
|  | btf = env->btf; | 
|  | btf_data_size = btf->data_size; | 
|  |  | 
|  | if (btf_data_size < | 
|  | offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { | 
|  | btf_verifier_log(env, "hdr_len not found"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | hdr = btf->data; | 
|  | hdr_len = hdr->hdr_len; | 
|  | if (btf_data_size < hdr_len) { | 
|  | btf_verifier_log(env, "btf_header not found"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Ensure the unsupported header fields are zero */ | 
|  | if (hdr_len > sizeof(btf->hdr)) { | 
|  | u8 *expected_zero = btf->data + sizeof(btf->hdr); | 
|  | u8 *end = btf->data + hdr_len; | 
|  |  | 
|  | for (; expected_zero < end; expected_zero++) { | 
|  | if (*expected_zero) { | 
|  | btf_verifier_log(env, "Unsupported btf_header"); | 
|  | return -E2BIG; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); | 
|  | memcpy(&btf->hdr, btf->data, hdr_copy); | 
|  |  | 
|  | hdr = &btf->hdr; | 
|  |  | 
|  | btf_verifier_log_hdr(env, btf_data_size); | 
|  |  | 
|  | if (hdr->magic != BTF_MAGIC) { | 
|  | btf_verifier_log(env, "Invalid magic"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (hdr->version != BTF_VERSION) { | 
|  | btf_verifier_log(env, "Unsupported version"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | if (hdr->flags) { | 
|  | btf_verifier_log(env, "Unsupported flags"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!btf->base_btf && btf_data_size == hdr->hdr_len) { | 
|  | btf_verifier_log(env, "No data"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = btf_check_sec_info(env, btf_data_size); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, | 
|  | u32 log_level, char __user *log_ubuf, u32 log_size) | 
|  | { | 
|  | struct btf_verifier_env *env = NULL; | 
|  | struct bpf_verifier_log *log; | 
|  | struct btf *btf = NULL; | 
|  | u8 *data; | 
|  | int err; | 
|  |  | 
|  | if (btf_data_size > BTF_MAX_SIZE) | 
|  | return ERR_PTR(-E2BIG); | 
|  |  | 
|  | env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!env) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | log = &env->log; | 
|  | if (log_level || log_ubuf || log_size) { | 
|  | /* user requested verbose verifier output | 
|  | * and supplied buffer to store the verification trace | 
|  | */ | 
|  | log->level = log_level; | 
|  | log->ubuf = log_ubuf; | 
|  | log->len_total = log_size; | 
|  |  | 
|  | /* log attributes have to be sane */ | 
|  | if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || | 
|  | !log->level || !log->ubuf) { | 
|  | err = -EINVAL; | 
|  | goto errout; | 
|  | } | 
|  | } | 
|  |  | 
|  | btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!btf) { | 
|  | err = -ENOMEM; | 
|  | goto errout; | 
|  | } | 
|  | env->btf = btf; | 
|  |  | 
|  | data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!data) { | 
|  | err = -ENOMEM; | 
|  | goto errout; | 
|  | } | 
|  |  | 
|  | btf->data = data; | 
|  | btf->data_size = btf_data_size; | 
|  |  | 
|  | if (copy_from_user(data, btf_data, btf_data_size)) { | 
|  | err = -EFAULT; | 
|  | goto errout; | 
|  | } | 
|  |  | 
|  | err = btf_parse_hdr(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | btf->nohdr_data = btf->data + btf->hdr.hdr_len; | 
|  |  | 
|  | err = btf_parse_str_sec(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | err = btf_parse_type_sec(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | if (log->level && bpf_verifier_log_full(log)) { | 
|  | err = -ENOSPC; | 
|  | goto errout; | 
|  | } | 
|  |  | 
|  | btf_verifier_env_free(env); | 
|  | refcount_set(&btf->refcnt, 1); | 
|  | return btf; | 
|  |  | 
|  | errout: | 
|  | btf_verifier_env_free(env); | 
|  | if (btf) | 
|  | btf_free(btf); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | extern char __weak __start_BTF[]; | 
|  | extern char __weak __stop_BTF[]; | 
|  | extern struct btf *btf_vmlinux; | 
|  |  | 
|  | #define BPF_MAP_TYPE(_id, _ops) | 
|  | #define BPF_LINK_TYPE(_id, _name) | 
|  | static union { | 
|  | struct bpf_ctx_convert { | 
|  | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ | 
|  | prog_ctx_type _id##_prog; \ | 
|  | kern_ctx_type _id##_kern; | 
|  | #include <linux/bpf_types.h> | 
|  | #undef BPF_PROG_TYPE | 
|  | } *__t; | 
|  | /* 't' is written once under lock. Read many times. */ | 
|  | const struct btf_type *t; | 
|  | } bpf_ctx_convert; | 
|  | enum { | 
|  | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ | 
|  | __ctx_convert##_id, | 
|  | #include <linux/bpf_types.h> | 
|  | #undef BPF_PROG_TYPE | 
|  | __ctx_convert_unused, /* to avoid empty enum in extreme .config */ | 
|  | }; | 
|  | static u8 bpf_ctx_convert_map[] = { | 
|  | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ | 
|  | [_id] = __ctx_convert##_id, | 
|  | #include <linux/bpf_types.h> | 
|  | #undef BPF_PROG_TYPE | 
|  | 0, /* avoid empty array */ | 
|  | }; | 
|  | #undef BPF_MAP_TYPE | 
|  | #undef BPF_LINK_TYPE | 
|  |  | 
|  | static const struct btf_member * | 
|  | btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf, | 
|  | const struct btf_type *t, enum bpf_prog_type prog_type, | 
|  | int arg) | 
|  | { | 
|  | const struct btf_type *conv_struct; | 
|  | const struct btf_type *ctx_struct; | 
|  | const struct btf_member *ctx_type; | 
|  | const char *tname, *ctx_tname; | 
|  |  | 
|  | conv_struct = bpf_ctx_convert.t; | 
|  | if (!conv_struct) { | 
|  | bpf_log(log, "btf_vmlinux is malformed\n"); | 
|  | return NULL; | 
|  | } | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | while (btf_type_is_modifier(t)) | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!btf_type_is_struct(t)) { | 
|  | /* Only pointer to struct is supported for now. | 
|  | * That means that BPF_PROG_TYPE_TRACEPOINT with BTF | 
|  | * is not supported yet. | 
|  | * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  | tname = btf_name_by_offset(btf, t->name_off); | 
|  | if (!tname) { | 
|  | bpf_log(log, "arg#%d struct doesn't have a name\n", arg); | 
|  | return NULL; | 
|  | } | 
|  | /* prog_type is valid bpf program type. No need for bounds check. */ | 
|  | ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; | 
|  | /* ctx_struct is a pointer to prog_ctx_type in vmlinux. | 
|  | * Like 'struct __sk_buff' | 
|  | */ | 
|  | ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); | 
|  | if (!ctx_struct) | 
|  | /* should not happen */ | 
|  | return NULL; | 
|  | ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); | 
|  | if (!ctx_tname) { | 
|  | /* should not happen */ | 
|  | bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); | 
|  | return NULL; | 
|  | } | 
|  | /* only compare that prog's ctx type name is the same as | 
|  | * kernel expects. No need to compare field by field. | 
|  | * It's ok for bpf prog to do: | 
|  | * struct __sk_buff {}; | 
|  | * int socket_filter_bpf_prog(struct __sk_buff *skb) | 
|  | * { // no fields of skb are ever used } | 
|  | */ | 
|  | if (strcmp(ctx_tname, tname)) | 
|  | return NULL; | 
|  | return ctx_type; | 
|  | } | 
|  |  | 
|  | static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { | 
|  | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) | 
|  | #define BPF_LINK_TYPE(_id, _name) | 
|  | #define BPF_MAP_TYPE(_id, _ops) \ | 
|  | [_id] = &_ops, | 
|  | #include <linux/bpf_types.h> | 
|  | #undef BPF_PROG_TYPE | 
|  | #undef BPF_LINK_TYPE | 
|  | #undef BPF_MAP_TYPE | 
|  | }; | 
|  |  | 
|  | static int btf_vmlinux_map_ids_init(const struct btf *btf, | 
|  | struct bpf_verifier_log *log) | 
|  | { | 
|  | const struct bpf_map_ops *ops; | 
|  | int i, btf_id; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { | 
|  | ops = btf_vmlinux_map_ops[i]; | 
|  | if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) | 
|  | continue; | 
|  | if (!ops->map_btf_name || !ops->map_btf_id) { | 
|  | bpf_log(log, "map type %d is misconfigured\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, | 
|  | BTF_KIND_STRUCT); | 
|  | if (btf_id < 0) | 
|  | return btf_id; | 
|  | *ops->map_btf_id = btf_id; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, | 
|  | struct btf *btf, | 
|  | const struct btf_type *t, | 
|  | enum bpf_prog_type prog_type, | 
|  | int arg) | 
|  | { | 
|  | const struct btf_member *prog_ctx_type, *kern_ctx_type; | 
|  |  | 
|  | prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); | 
|  | if (!prog_ctx_type) | 
|  | return -ENOENT; | 
|  | kern_ctx_type = prog_ctx_type + 1; | 
|  | return kern_ctx_type->type; | 
|  | } | 
|  |  | 
|  | BTF_ID_LIST(bpf_ctx_convert_btf_id) | 
|  | BTF_ID(struct, bpf_ctx_convert) | 
|  |  | 
|  | struct btf *btf_parse_vmlinux(void) | 
|  | { | 
|  | struct btf_verifier_env *env = NULL; | 
|  | struct bpf_verifier_log *log; | 
|  | struct btf *btf = NULL; | 
|  | int err; | 
|  |  | 
|  | env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!env) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | log = &env->log; | 
|  | log->level = BPF_LOG_KERNEL; | 
|  |  | 
|  | btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!btf) { | 
|  | err = -ENOMEM; | 
|  | goto errout; | 
|  | } | 
|  | env->btf = btf; | 
|  |  | 
|  | btf->data = __start_BTF; | 
|  | btf->data_size = __stop_BTF - __start_BTF; | 
|  | btf->kernel_btf = true; | 
|  | snprintf(btf->name, sizeof(btf->name), "vmlinux"); | 
|  |  | 
|  | err = btf_parse_hdr(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | btf->nohdr_data = btf->data + btf->hdr.hdr_len; | 
|  |  | 
|  | err = btf_parse_str_sec(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | err = btf_check_all_metas(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | /* btf_parse_vmlinux() runs under bpf_verifier_lock */ | 
|  | bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); | 
|  |  | 
|  | /* find bpf map structs for map_ptr access checking */ | 
|  | err = btf_vmlinux_map_ids_init(btf, log); | 
|  | if (err < 0) | 
|  | goto errout; | 
|  |  | 
|  | bpf_struct_ops_init(btf, log); | 
|  |  | 
|  | refcount_set(&btf->refcnt, 1); | 
|  |  | 
|  | err = btf_alloc_id(btf); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | btf_verifier_env_free(env); | 
|  | return btf; | 
|  |  | 
|  | errout: | 
|  | btf_verifier_env_free(env); | 
|  | if (btf) { | 
|  | kvfree(btf->types); | 
|  | kfree(btf); | 
|  | } | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES | 
|  |  | 
|  | static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) | 
|  | { | 
|  | struct btf_verifier_env *env = NULL; | 
|  | struct bpf_verifier_log *log; | 
|  | struct btf *btf = NULL, *base_btf; | 
|  | int err; | 
|  |  | 
|  | base_btf = bpf_get_btf_vmlinux(); | 
|  | if (IS_ERR(base_btf)) | 
|  | return base_btf; | 
|  | if (!base_btf) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!env) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | log = &env->log; | 
|  | log->level = BPF_LOG_KERNEL; | 
|  |  | 
|  | btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!btf) { | 
|  | err = -ENOMEM; | 
|  | goto errout; | 
|  | } | 
|  | env->btf = btf; | 
|  |  | 
|  | btf->base_btf = base_btf; | 
|  | btf->start_id = base_btf->nr_types; | 
|  | btf->start_str_off = base_btf->hdr.str_len; | 
|  | btf->kernel_btf = true; | 
|  | snprintf(btf->name, sizeof(btf->name), "%s", module_name); | 
|  |  | 
|  | btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!btf->data) { | 
|  | err = -ENOMEM; | 
|  | goto errout; | 
|  | } | 
|  | memcpy(btf->data, data, data_size); | 
|  | btf->data_size = data_size; | 
|  |  | 
|  | err = btf_parse_hdr(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | btf->nohdr_data = btf->data + btf->hdr.hdr_len; | 
|  |  | 
|  | err = btf_parse_str_sec(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | err = btf_check_all_metas(env); | 
|  | if (err) | 
|  | goto errout; | 
|  |  | 
|  | btf_verifier_env_free(env); | 
|  | refcount_set(&btf->refcnt, 1); | 
|  | return btf; | 
|  |  | 
|  | errout: | 
|  | btf_verifier_env_free(env); | 
|  | if (btf) { | 
|  | kvfree(btf->data); | 
|  | kvfree(btf->types); | 
|  | kfree(btf); | 
|  | } | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ | 
|  |  | 
|  | struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) | 
|  | { | 
|  | struct bpf_prog *tgt_prog = prog->aux->dst_prog; | 
|  |  | 
|  | if (tgt_prog) | 
|  | return tgt_prog->aux->btf; | 
|  | else | 
|  | return prog->aux->attach_btf; | 
|  | } | 
|  |  | 
|  | static bool is_string_ptr(struct btf *btf, const struct btf_type *t) | 
|  | { | 
|  | /* t comes in already as a pointer */ | 
|  | t = btf_type_by_id(btf, t->type); | 
|  |  | 
|  | /* allow const */ | 
|  | if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) | 
|  | t = btf_type_by_id(btf, t->type); | 
|  |  | 
|  | /* char, signed char, unsigned char */ | 
|  | return btf_type_is_int(t) && t->size == 1; | 
|  | } | 
|  |  | 
|  | bool btf_ctx_access(int off, int size, enum bpf_access_type type, | 
|  | const struct bpf_prog *prog, | 
|  | struct bpf_insn_access_aux *info) | 
|  | { | 
|  | const struct btf_type *t = prog->aux->attach_func_proto; | 
|  | struct bpf_prog *tgt_prog = prog->aux->dst_prog; | 
|  | struct btf *btf = bpf_prog_get_target_btf(prog); | 
|  | const char *tname = prog->aux->attach_func_name; | 
|  | struct bpf_verifier_log *log = info->log; | 
|  | const struct btf_param *args; | 
|  | u32 nr_args, arg; | 
|  | int i, ret; | 
|  |  | 
|  | if (off % 8) { | 
|  | bpf_log(log, "func '%s' offset %d is not multiple of 8\n", | 
|  | tname, off); | 
|  | return false; | 
|  | } | 
|  | arg = off / 8; | 
|  | args = (const struct btf_param *)(t + 1); | 
|  | /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */ | 
|  | nr_args = t ? btf_type_vlen(t) : 5; | 
|  | if (prog->aux->attach_btf_trace) { | 
|  | /* skip first 'void *__data' argument in btf_trace_##name typedef */ | 
|  | args++; | 
|  | nr_args--; | 
|  | } | 
|  |  | 
|  | if (arg > nr_args) { | 
|  | bpf_log(log, "func '%s' doesn't have %d-th argument\n", | 
|  | tname, arg + 1); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (arg == nr_args) { | 
|  | switch (prog->expected_attach_type) { | 
|  | case BPF_LSM_MAC: | 
|  | case BPF_TRACE_FEXIT: | 
|  | /* When LSM programs are attached to void LSM hooks | 
|  | * they use FEXIT trampolines and when attached to | 
|  | * int LSM hooks, they use MODIFY_RETURN trampolines. | 
|  | * | 
|  | * While the LSM programs are BPF_MODIFY_RETURN-like | 
|  | * the check: | 
|  | * | 
|  | *	if (ret_type != 'int') | 
|  | *		return -EINVAL; | 
|  | * | 
|  | * is _not_ done here. This is still safe as LSM hooks | 
|  | * have only void and int return types. | 
|  | */ | 
|  | if (!t) | 
|  | return true; | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | break; | 
|  | case BPF_MODIFY_RETURN: | 
|  | /* For now the BPF_MODIFY_RETURN can only be attached to | 
|  | * functions that return an int. | 
|  | */ | 
|  | if (!t) | 
|  | return false; | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, t->type, NULL); | 
|  | if (!btf_type_is_small_int(t)) { | 
|  | bpf_log(log, | 
|  | "ret type %s not allowed for fmod_ret\n", | 
|  | btf_kind_str[BTF_INFO_KIND(t->info)]); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | bpf_log(log, "func '%s' doesn't have %d-th argument\n", | 
|  | tname, arg + 1); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!t) | 
|  | /* Default prog with 5 args */ | 
|  | return true; | 
|  | t = btf_type_by_id(btf, args[arg].type); | 
|  | } | 
|  |  | 
|  | /* skip modifiers */ | 
|  | while (btf_type_is_modifier(t)) | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (btf_type_is_small_int(t) || btf_type_is_enum(t)) | 
|  | /* accessing a scalar */ | 
|  | return true; | 
|  | if (!btf_type_is_ptr(t)) { | 
|  | bpf_log(log, | 
|  | "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", | 
|  | tname, arg, | 
|  | __btf_name_by_offset(btf, t->name_off), | 
|  | btf_kind_str[BTF_INFO_KIND(t->info)]); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ | 
|  | for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { | 
|  | const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; | 
|  |  | 
|  | if (ctx_arg_info->offset == off && | 
|  | (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL || | 
|  | ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) { | 
|  | info->reg_type = ctx_arg_info->reg_type; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (t->type == 0) | 
|  | /* This is a pointer to void. | 
|  | * It is the same as scalar from the verifier safety pov. | 
|  | * No further pointer walking is allowed. | 
|  | */ | 
|  | return true; | 
|  |  | 
|  | if (is_string_ptr(btf, t)) | 
|  | return true; | 
|  |  | 
|  | /* this is a pointer to another type */ | 
|  | for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { | 
|  | const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; | 
|  |  | 
|  | if (ctx_arg_info->offset == off) { | 
|  | info->reg_type = ctx_arg_info->reg_type; | 
|  | info->btf = btf_vmlinux; | 
|  | info->btf_id = ctx_arg_info->btf_id; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | info->reg_type = PTR_TO_BTF_ID; | 
|  | if (tgt_prog) { | 
|  | enum bpf_prog_type tgt_type; | 
|  |  | 
|  | if (tgt_prog->type == BPF_PROG_TYPE_EXT) | 
|  | tgt_type = tgt_prog->aux->saved_dst_prog_type; | 
|  | else | 
|  | tgt_type = tgt_prog->type; | 
|  |  | 
|  | ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); | 
|  | if (ret > 0) { | 
|  | info->btf = btf_vmlinux; | 
|  | info->btf_id = ret; | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | info->btf = btf; | 
|  | info->btf_id = t->type; | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | /* skip modifiers */ | 
|  | while (btf_type_is_modifier(t)) { | 
|  | info->btf_id = t->type; | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | } | 
|  | if (!btf_type_is_struct(t)) { | 
|  | bpf_log(log, | 
|  | "func '%s' arg%d type %s is not a struct\n", | 
|  | tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); | 
|  | return false; | 
|  | } | 
|  | bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", | 
|  | tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], | 
|  | __btf_name_by_offset(btf, t->name_off)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum bpf_struct_walk_result { | 
|  | /* < 0 error */ | 
|  | WALK_SCALAR = 0, | 
|  | WALK_PTR, | 
|  | WALK_STRUCT, | 
|  | }; | 
|  |  | 
|  | static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, | 
|  | const struct btf_type *t, int off, int size, | 
|  | u32 *next_btf_id) | 
|  | { | 
|  | u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; | 
|  | const struct btf_type *mtype, *elem_type = NULL; | 
|  | const struct btf_member *member; | 
|  | const char *tname, *mname; | 
|  | u32 vlen, elem_id, mid; | 
|  |  | 
|  | again: | 
|  | tname = __btf_name_by_offset(btf, t->name_off); | 
|  | if (!btf_type_is_struct(t)) { | 
|  | bpf_log(log, "Type '%s' is not a struct\n", tname); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | vlen = btf_type_vlen(t); | 
|  | if (off + size > t->size) { | 
|  | /* If the last element is a variable size array, we may | 
|  | * need to relax the rule. | 
|  | */ | 
|  | struct btf_array *array_elem; | 
|  |  | 
|  | if (vlen == 0) | 
|  | goto error; | 
|  |  | 
|  | member = btf_type_member(t) + vlen - 1; | 
|  | mtype = btf_type_skip_modifiers(btf, member->type, | 
|  | NULL); | 
|  | if (!btf_type_is_array(mtype)) | 
|  | goto error; | 
|  |  | 
|  | array_elem = (struct btf_array *)(mtype + 1); | 
|  | if (array_elem->nelems != 0) | 
|  | goto error; | 
|  |  | 
|  | moff = btf_member_bit_offset(t, member) / 8; | 
|  | if (off < moff) | 
|  | goto error; | 
|  |  | 
|  | /* Only allow structure for now, can be relaxed for | 
|  | * other types later. | 
|  | */ | 
|  | t = btf_type_skip_modifiers(btf, array_elem->type, | 
|  | NULL); | 
|  | if (!btf_type_is_struct(t)) | 
|  | goto error; | 
|  |  | 
|  | off = (off - moff) % t->size; | 
|  | goto again; | 
|  |  | 
|  | error: | 
|  | bpf_log(log, "access beyond struct %s at off %u size %u\n", | 
|  | tname, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | for_each_member(i, t, member) { | 
|  | /* offset of the field in bytes */ | 
|  | moff = btf_member_bit_offset(t, member) / 8; | 
|  | if (off + size <= moff) | 
|  | /* won't find anything, field is already too far */ | 
|  | break; | 
|  |  | 
|  | if (btf_member_bitfield_size(t, member)) { | 
|  | u32 end_bit = btf_member_bit_offset(t, member) + | 
|  | btf_member_bitfield_size(t, member); | 
|  |  | 
|  | /* off <= moff instead of off == moff because clang | 
|  | * does not generate a BTF member for anonymous | 
|  | * bitfield like the ":16" here: | 
|  | * struct { | 
|  | *	int :16; | 
|  | *	int x:8; | 
|  | * }; | 
|  | */ | 
|  | if (off <= moff && | 
|  | BITS_ROUNDUP_BYTES(end_bit) <= off + size) | 
|  | return WALK_SCALAR; | 
|  |  | 
|  | /* off may be accessing a following member | 
|  | * | 
|  | * or | 
|  | * | 
|  | * Doing partial access at either end of this | 
|  | * bitfield.  Continue on this case also to | 
|  | * treat it as not accessing this bitfield | 
|  | * and eventually error out as field not | 
|  | * found to keep it simple. | 
|  | * It could be relaxed if there was a legit | 
|  | * partial access case later. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* In case of "off" is pointing to holes of a struct */ | 
|  | if (off < moff) | 
|  | break; | 
|  |  | 
|  | /* type of the field */ | 
|  | mid = member->type; | 
|  | mtype = btf_type_by_id(btf, member->type); | 
|  | mname = __btf_name_by_offset(btf, member->name_off); | 
|  |  | 
|  | mtype = __btf_resolve_size(btf, mtype, &msize, | 
|  | &elem_type, &elem_id, &total_nelems, | 
|  | &mid); | 
|  | if (IS_ERR(mtype)) { | 
|  | bpf_log(log, "field %s doesn't have size\n", mname); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | mtrue_end = moff + msize; | 
|  | if (off >= mtrue_end) | 
|  | /* no overlap with member, keep iterating */ | 
|  | continue; | 
|  |  | 
|  | if (btf_type_is_array(mtype)) { | 
|  | u32 elem_idx; | 
|  |  | 
|  | /* __btf_resolve_size() above helps to | 
|  | * linearize a multi-dimensional array. | 
|  | * | 
|  | * The logic here is treating an array | 
|  | * in a struct as the following way: | 
|  | * | 
|  | * struct outer { | 
|  | *	struct inner array[2][2]; | 
|  | * }; | 
|  | * | 
|  | * looks like: | 
|  | * | 
|  | * struct outer { | 
|  | *	struct inner array_elem0; | 
|  | *	struct inner array_elem1; | 
|  | *	struct inner array_elem2; | 
|  | *	struct inner array_elem3; | 
|  | * }; | 
|  | * | 
|  | * When accessing outer->array[1][0], it moves | 
|  | * moff to "array_elem2", set mtype to | 
|  | * "struct inner", and msize also becomes | 
|  | * sizeof(struct inner).  Then most of the | 
|  | * remaining logic will fall through without | 
|  | * caring the current member is an array or | 
|  | * not. | 
|  | * | 
|  | * Unlike mtype/msize/moff, mtrue_end does not | 
|  | * change.  The naming difference ("_true") tells | 
|  | * that it is not always corresponding to | 
|  | * the current mtype/msize/moff. | 
|  | * It is the true end of the current | 
|  | * member (i.e. array in this case).  That | 
|  | * will allow an int array to be accessed like | 
|  | * a scratch space, | 
|  | * i.e. allow access beyond the size of | 
|  | *      the array's element as long as it is | 
|  | *      within the mtrue_end boundary. | 
|  | */ | 
|  |  | 
|  | /* skip empty array */ | 
|  | if (moff == mtrue_end) | 
|  | continue; | 
|  |  | 
|  | msize /= total_nelems; | 
|  | elem_idx = (off - moff) / msize; | 
|  | moff += elem_idx * msize; | 
|  | mtype = elem_type; | 
|  | mid = elem_id; | 
|  | } | 
|  |  | 
|  | /* the 'off' we're looking for is either equal to start | 
|  | * of this field or inside of this struct | 
|  | */ | 
|  | if (btf_type_is_struct(mtype)) { | 
|  | /* our field must be inside that union or struct */ | 
|  | t = mtype; | 
|  |  | 
|  | /* return if the offset matches the member offset */ | 
|  | if (off == moff) { | 
|  | *next_btf_id = mid; | 
|  | return WALK_STRUCT; | 
|  | } | 
|  |  | 
|  | /* adjust offset we're looking for */ | 
|  | off -= moff; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (btf_type_is_ptr(mtype)) { | 
|  | const struct btf_type *stype; | 
|  | u32 id; | 
|  |  | 
|  | if (msize != size || off != moff) { | 
|  | bpf_log(log, | 
|  | "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", | 
|  | mname, moff, tname, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  | stype = btf_type_skip_modifiers(btf, mtype->type, &id); | 
|  | if (btf_type_is_struct(stype)) { | 
|  | *next_btf_id = id; | 
|  | return WALK_PTR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allow more flexible access within an int as long as | 
|  | * it is within mtrue_end. | 
|  | * Since mtrue_end could be the end of an array, | 
|  | * that also allows using an array of int as a scratch | 
|  | * space. e.g. skb->cb[]. | 
|  | */ | 
|  | if (off + size > mtrue_end) { | 
|  | bpf_log(log, | 
|  | "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", | 
|  | mname, mtrue_end, tname, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return WALK_SCALAR; | 
|  | } | 
|  | bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, | 
|  | const struct btf_type *t, int off, int size, | 
|  | enum bpf_access_type atype __maybe_unused, | 
|  | u32 *next_btf_id) | 
|  | { | 
|  | int err; | 
|  | u32 id; | 
|  |  | 
|  | do { | 
|  | err = btf_struct_walk(log, btf, t, off, size, &id); | 
|  |  | 
|  | switch (err) { | 
|  | case WALK_PTR: | 
|  | /* If we found the pointer or scalar on t+off, | 
|  | * we're done. | 
|  | */ | 
|  | *next_btf_id = id; | 
|  | return PTR_TO_BTF_ID; | 
|  | case WALK_SCALAR: | 
|  | return SCALAR_VALUE; | 
|  | case WALK_STRUCT: | 
|  | /* We found nested struct, so continue the search | 
|  | * by diving in it. At this point the offset is | 
|  | * aligned with the new type, so set it to 0. | 
|  | */ | 
|  | t = btf_type_by_id(btf, id); | 
|  | off = 0; | 
|  | break; | 
|  | default: | 
|  | /* It's either error or unknown return value.. | 
|  | * scream and leave. | 
|  | */ | 
|  | if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) | 
|  | return -EINVAL; | 
|  | return err; | 
|  | } | 
|  | } while (t); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check that two BTF types, each specified as an BTF object + id, are exactly | 
|  | * the same. Trivial ID check is not enough due to module BTFs, because we can | 
|  | * end up with two different module BTFs, but IDs point to the common type in | 
|  | * vmlinux BTF. | 
|  | */ | 
|  | static bool btf_types_are_same(const struct btf *btf1, u32 id1, | 
|  | const struct btf *btf2, u32 id2) | 
|  | { | 
|  | if (id1 != id2) | 
|  | return false; | 
|  | if (btf1 == btf2) | 
|  | return true; | 
|  | return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); | 
|  | } | 
|  |  | 
|  | bool btf_struct_ids_match(struct bpf_verifier_log *log, | 
|  | const struct btf *btf, u32 id, int off, | 
|  | const struct btf *need_btf, u32 need_type_id) | 
|  | { | 
|  | const struct btf_type *type; | 
|  | int err; | 
|  |  | 
|  | /* Are we already done? */ | 
|  | if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) | 
|  | return true; | 
|  |  | 
|  | again: | 
|  | type = btf_type_by_id(btf, id); | 
|  | if (!type) | 
|  | return false; | 
|  | err = btf_struct_walk(log, btf, type, off, 1, &id); | 
|  | if (err != WALK_STRUCT) | 
|  | return false; | 
|  |  | 
|  | /* We found nested struct object. If it matches | 
|  | * the requested ID, we're done. Otherwise let's | 
|  | * continue the search with offset 0 in the new | 
|  | * type. | 
|  | */ | 
|  | if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { | 
|  | off = 0; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __get_type_size(struct btf *btf, u32 btf_id, | 
|  | const struct btf_type **bad_type) | 
|  | { | 
|  | const struct btf_type *t; | 
|  |  | 
|  | if (!btf_id) | 
|  | /* void */ | 
|  | return 0; | 
|  | t = btf_type_by_id(btf, btf_id); | 
|  | while (t && btf_type_is_modifier(t)) | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!t) { | 
|  | *bad_type = btf_type_by_id(btf, 0); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (btf_type_is_ptr(t)) | 
|  | /* kernel size of pointer. Not BPF's size of pointer*/ | 
|  | return sizeof(void *); | 
|  | if (btf_type_is_int(t) || btf_type_is_enum(t)) | 
|  | return t->size; | 
|  | *bad_type = t; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int btf_distill_func_proto(struct bpf_verifier_log *log, | 
|  | struct btf *btf, | 
|  | const struct btf_type *func, | 
|  | const char *tname, | 
|  | struct btf_func_model *m) | 
|  | { | 
|  | const struct btf_param *args; | 
|  | const struct btf_type *t; | 
|  | u32 i, nargs; | 
|  | int ret; | 
|  |  | 
|  | if (!func) { | 
|  | /* BTF function prototype doesn't match the verifier types. | 
|  | * Fall back to 5 u64 args. | 
|  | */ | 
|  | for (i = 0; i < 5; i++) | 
|  | m->arg_size[i] = 8; | 
|  | m->ret_size = 8; | 
|  | m->nr_args = 5; | 
|  | return 0; | 
|  | } | 
|  | args = (const struct btf_param *)(func + 1); | 
|  | nargs = btf_type_vlen(func); | 
|  | if (nargs >= MAX_BPF_FUNC_ARGS) { | 
|  | bpf_log(log, | 
|  | "The function %s has %d arguments. Too many.\n", | 
|  | tname, nargs); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = __get_type_size(btf, func->type, &t); | 
|  | if (ret < 0) { | 
|  | bpf_log(log, | 
|  | "The function %s return type %s is unsupported.\n", | 
|  | tname, btf_kind_str[BTF_INFO_KIND(t->info)]); | 
|  | return -EINVAL; | 
|  | } | 
|  | m->ret_size = ret; | 
|  |  | 
|  | for (i = 0; i < nargs; i++) { | 
|  | ret = __get_type_size(btf, args[i].type, &t); | 
|  | if (ret < 0) { | 
|  | bpf_log(log, | 
|  | "The function %s arg%d type %s is unsupported.\n", | 
|  | tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); | 
|  | return -EINVAL; | 
|  | } | 
|  | m->arg_size[i] = ret; | 
|  | } | 
|  | m->nr_args = nargs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Compare BTFs of two functions assuming only scalars and pointers to context. | 
|  | * t1 points to BTF_KIND_FUNC in btf1 | 
|  | * t2 points to BTF_KIND_FUNC in btf2 | 
|  | * Returns: | 
|  | * EINVAL - function prototype mismatch | 
|  | * EFAULT - verifier bug | 
|  | * 0 - 99% match. The last 1% is validated by the verifier. | 
|  | */ | 
|  | static int btf_check_func_type_match(struct bpf_verifier_log *log, | 
|  | struct btf *btf1, const struct btf_type *t1, | 
|  | struct btf *btf2, const struct btf_type *t2) | 
|  | { | 
|  | const struct btf_param *args1, *args2; | 
|  | const char *fn1, *fn2, *s1, *s2; | 
|  | u32 nargs1, nargs2, i; | 
|  |  | 
|  | fn1 = btf_name_by_offset(btf1, t1->name_off); | 
|  | fn2 = btf_name_by_offset(btf2, t2->name_off); | 
|  |  | 
|  | if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { | 
|  | bpf_log(log, "%s() is not a global function\n", fn1); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { | 
|  | bpf_log(log, "%s() is not a global function\n", fn2); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | t1 = btf_type_by_id(btf1, t1->type); | 
|  | if (!t1 || !btf_type_is_func_proto(t1)) | 
|  | return -EFAULT; | 
|  | t2 = btf_type_by_id(btf2, t2->type); | 
|  | if (!t2 || !btf_type_is_func_proto(t2)) | 
|  | return -EFAULT; | 
|  |  | 
|  | args1 = (const struct btf_param *)(t1 + 1); | 
|  | nargs1 = btf_type_vlen(t1); | 
|  | args2 = (const struct btf_param *)(t2 + 1); | 
|  | nargs2 = btf_type_vlen(t2); | 
|  |  | 
|  | if (nargs1 != nargs2) { | 
|  | bpf_log(log, "%s() has %d args while %s() has %d args\n", | 
|  | fn1, nargs1, fn2, nargs2); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); | 
|  | t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); | 
|  | if (t1->info != t2->info) { | 
|  | bpf_log(log, | 
|  | "Return type %s of %s() doesn't match type %s of %s()\n", | 
|  | btf_type_str(t1), fn1, | 
|  | btf_type_str(t2), fn2); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nargs1; i++) { | 
|  | t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); | 
|  | t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); | 
|  |  | 
|  | if (t1->info != t2->info) { | 
|  | bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", | 
|  | i, fn1, btf_type_str(t1), | 
|  | fn2, btf_type_str(t2)); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (btf_type_has_size(t1) && t1->size != t2->size) { | 
|  | bpf_log(log, | 
|  | "arg%d in %s() has size %d while %s() has %d\n", | 
|  | i, fn1, t1->size, | 
|  | fn2, t2->size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* global functions are validated with scalars and pointers | 
|  | * to context only. And only global functions can be replaced. | 
|  | * Hence type check only those types. | 
|  | */ | 
|  | if (btf_type_is_int(t1) || btf_type_is_enum(t1)) | 
|  | continue; | 
|  | if (!btf_type_is_ptr(t1)) { | 
|  | bpf_log(log, | 
|  | "arg%d in %s() has unrecognized type\n", | 
|  | i, fn1); | 
|  | return -EINVAL; | 
|  | } | 
|  | t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); | 
|  | t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); | 
|  | if (!btf_type_is_struct(t1)) { | 
|  | bpf_log(log, | 
|  | "arg%d in %s() is not a pointer to context\n", | 
|  | i, fn1); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!btf_type_is_struct(t2)) { | 
|  | bpf_log(log, | 
|  | "arg%d in %s() is not a pointer to context\n", | 
|  | i, fn2); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* This is an optional check to make program writing easier. | 
|  | * Compare names of structs and report an error to the user. | 
|  | * btf_prepare_func_args() already checked that t2 struct | 
|  | * is a context type. btf_prepare_func_args() will check | 
|  | * later that t1 struct is a context type as well. | 
|  | */ | 
|  | s1 = btf_name_by_offset(btf1, t1->name_off); | 
|  | s2 = btf_name_by_offset(btf2, t2->name_off); | 
|  | if (strcmp(s1, s2)) { | 
|  | bpf_log(log, | 
|  | "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", | 
|  | i, fn1, s1, fn2, s2); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Compare BTFs of given program with BTF of target program */ | 
|  | int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, | 
|  | struct btf *btf2, const struct btf_type *t2) | 
|  | { | 
|  | struct btf *btf1 = prog->aux->btf; | 
|  | const struct btf_type *t1; | 
|  | u32 btf_id = 0; | 
|  |  | 
|  | if (!prog->aux->func_info) { | 
|  | bpf_log(log, "Program extension requires BTF\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btf_id = prog->aux->func_info[0].type_id; | 
|  | if (!btf_id) | 
|  | return -EFAULT; | 
|  |  | 
|  | t1 = btf_type_by_id(btf1, btf_id); | 
|  | if (!t1 || !btf_type_is_func(t1)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return btf_check_func_type_match(log, btf1, t1, btf2, t2); | 
|  | } | 
|  |  | 
|  | /* Compare BTF of a function with given bpf_reg_state. | 
|  | * Returns: | 
|  | * EFAULT - there is a verifier bug. Abort verification. | 
|  | * EINVAL - there is a type mismatch or BTF is not available. | 
|  | * 0 - BTF matches with what bpf_reg_state expects. | 
|  | * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. | 
|  | */ | 
|  | int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, | 
|  | struct bpf_reg_state *regs) | 
|  | { | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | struct bpf_prog *prog = env->prog; | 
|  | struct btf *btf = prog->aux->btf; | 
|  | const struct btf_param *args; | 
|  | const struct btf_type *t, *ref_t; | 
|  | u32 i, nargs, btf_id, type_size; | 
|  | const char *tname; | 
|  | bool is_global; | 
|  |  | 
|  | if (!prog->aux->func_info) | 
|  | return -EINVAL; | 
|  |  | 
|  | btf_id = prog->aux->func_info[subprog].type_id; | 
|  | if (!btf_id) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (prog->aux->func_info_aux[subprog].unreliable) | 
|  | return -EINVAL; | 
|  |  | 
|  | t = btf_type_by_id(btf, btf_id); | 
|  | if (!t || !btf_type_is_func(t)) { | 
|  | /* These checks were already done by the verifier while loading | 
|  | * struct bpf_func_info | 
|  | */ | 
|  | bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", | 
|  | subprog); | 
|  | return -EFAULT; | 
|  | } | 
|  | tname = btf_name_by_offset(btf, t->name_off); | 
|  |  | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!t || !btf_type_is_func_proto(t)) { | 
|  | bpf_log(log, "Invalid BTF of func %s\n", tname); | 
|  | return -EFAULT; | 
|  | } | 
|  | args = (const struct btf_param *)(t + 1); | 
|  | nargs = btf_type_vlen(t); | 
|  | if (nargs > 5) { | 
|  | bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; | 
|  | /* check that BTF function arguments match actual types that the | 
|  | * verifier sees. | 
|  | */ | 
|  | for (i = 0; i < nargs; i++) { | 
|  | struct bpf_reg_state *reg = ®s[i + 1]; | 
|  |  | 
|  | t = btf_type_by_id(btf, args[i].type); | 
|  | while (btf_type_is_modifier(t)) | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (btf_type_is_int(t) || btf_type_is_enum(t)) { | 
|  | if (reg->type == SCALAR_VALUE) | 
|  | continue; | 
|  | bpf_log(log, "R%d is not a scalar\n", i + 1); | 
|  | goto out; | 
|  | } | 
|  | if (btf_type_is_ptr(t)) { | 
|  | /* If function expects ctx type in BTF check that caller | 
|  | * is passing PTR_TO_CTX. | 
|  | */ | 
|  | if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) { | 
|  | if (reg->type != PTR_TO_CTX) { | 
|  | bpf_log(log, | 
|  | "arg#%d expected pointer to ctx, but got %s\n", | 
|  | i, btf_kind_str[BTF_INFO_KIND(t->info)]); | 
|  | goto out; | 
|  | } | 
|  | if (check_ctx_reg(env, reg, i + 1)) | 
|  | goto out; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!is_global) | 
|  | goto out; | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, t->type, NULL); | 
|  |  | 
|  | ref_t = btf_resolve_size(btf, t, &type_size); | 
|  | if (IS_ERR(ref_t)) { | 
|  | bpf_log(log, | 
|  | "arg#%d reference type('%s %s') size cannot be determined: %ld\n", | 
|  | i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), | 
|  | PTR_ERR(ref_t)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (check_mem_reg(env, reg, i + 1, type_size)) | 
|  | goto out; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | bpf_log(log, "Unrecognized arg#%d type %s\n", | 
|  | i, btf_kind_str[BTF_INFO_KIND(t->info)]); | 
|  | goto out; | 
|  | } | 
|  | return 0; | 
|  | out: | 
|  | /* Compiler optimizations can remove arguments from static functions | 
|  | * or mismatched type can be passed into a global function. | 
|  | * In such cases mark the function as unreliable from BTF point of view. | 
|  | */ | 
|  | prog->aux->func_info_aux[subprog].unreliable = true; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Convert BTF of a function into bpf_reg_state if possible | 
|  | * Returns: | 
|  | * EFAULT - there is a verifier bug. Abort verification. | 
|  | * EINVAL - cannot convert BTF. | 
|  | * 0 - Successfully converted BTF into bpf_reg_state | 
|  | * (either PTR_TO_CTX or SCALAR_VALUE). | 
|  | */ | 
|  | int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, | 
|  | struct bpf_reg_state *regs) | 
|  | { | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | struct bpf_prog *prog = env->prog; | 
|  | enum bpf_prog_type prog_type = prog->type; | 
|  | struct btf *btf = prog->aux->btf; | 
|  | const struct btf_param *args; | 
|  | const struct btf_type *t, *ref_t; | 
|  | u32 i, nargs, btf_id; | 
|  | const char *tname; | 
|  |  | 
|  | if (!prog->aux->func_info || | 
|  | prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { | 
|  | bpf_log(log, "Verifier bug\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | btf_id = prog->aux->func_info[subprog].type_id; | 
|  | if (!btf_id) { | 
|  | bpf_log(log, "Global functions need valid BTF\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | t = btf_type_by_id(btf, btf_id); | 
|  | if (!t || !btf_type_is_func(t)) { | 
|  | /* These checks were already done by the verifier while loading | 
|  | * struct bpf_func_info | 
|  | */ | 
|  | bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", | 
|  | subprog); | 
|  | return -EFAULT; | 
|  | } | 
|  | tname = btf_name_by_offset(btf, t->name_off); | 
|  |  | 
|  | if (log->level & BPF_LOG_LEVEL) | 
|  | bpf_log(log, "Validating %s() func#%d...\n", | 
|  | tname, subprog); | 
|  |  | 
|  | if (prog->aux->func_info_aux[subprog].unreliable) { | 
|  | bpf_log(log, "Verifier bug in function %s()\n", tname); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (prog_type == BPF_PROG_TYPE_EXT) | 
|  | prog_type = prog->aux->dst_prog->type; | 
|  |  | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!t || !btf_type_is_func_proto(t)) { | 
|  | bpf_log(log, "Invalid type of function %s()\n", tname); | 
|  | return -EFAULT; | 
|  | } | 
|  | args = (const struct btf_param *)(t + 1); | 
|  | nargs = btf_type_vlen(t); | 
|  | if (nargs > 5) { | 
|  | bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n", | 
|  | tname, nargs); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check that function returns int */ | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | while (btf_type_is_modifier(t)) | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { | 
|  | bpf_log(log, | 
|  | "Global function %s() doesn't return scalar. Only those are supported.\n", | 
|  | tname); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* Convert BTF function arguments into verifier types. | 
|  | * Only PTR_TO_CTX and SCALAR are supported atm. | 
|  | */ | 
|  | for (i = 0; i < nargs; i++) { | 
|  | struct bpf_reg_state *reg = ®s[i + 1]; | 
|  |  | 
|  | t = btf_type_by_id(btf, args[i].type); | 
|  | while (btf_type_is_modifier(t)) | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (btf_type_is_int(t) || btf_type_is_enum(t)) { | 
|  | reg->type = SCALAR_VALUE; | 
|  | continue; | 
|  | } | 
|  | if (btf_type_is_ptr(t)) { | 
|  | if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { | 
|  | reg->type = PTR_TO_CTX; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, t->type, NULL); | 
|  |  | 
|  | ref_t = btf_resolve_size(btf, t, ®->mem_size); | 
|  | if (IS_ERR(ref_t)) { | 
|  | bpf_log(log, | 
|  | "arg#%d reference type('%s %s') size cannot be determined: %ld\n", | 
|  | i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), | 
|  | PTR_ERR(ref_t)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | reg->type = PTR_TO_MEM_OR_NULL; | 
|  | reg->id = ++env->id_gen; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", | 
|  | i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, | 
|  | struct btf_show *show) | 
|  | { | 
|  | const struct btf_type *t = btf_type_by_id(btf, type_id); | 
|  |  | 
|  | show->btf = btf; | 
|  | memset(&show->state, 0, sizeof(show->state)); | 
|  | memset(&show->obj, 0, sizeof(show->obj)); | 
|  |  | 
|  | btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); | 
|  | } | 
|  |  | 
|  | static void btf_seq_show(struct btf_show *show, const char *fmt, | 
|  | va_list args) | 
|  | { | 
|  | seq_vprintf((struct seq_file *)show->target, fmt, args); | 
|  | } | 
|  |  | 
|  | int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, | 
|  | void *obj, struct seq_file *m, u64 flags) | 
|  | { | 
|  | struct btf_show sseq; | 
|  |  | 
|  | sseq.target = m; | 
|  | sseq.showfn = btf_seq_show; | 
|  | sseq.flags = flags; | 
|  |  | 
|  | btf_type_show(btf, type_id, obj, &sseq); | 
|  |  | 
|  | return sseq.state.status; | 
|  | } | 
|  |  | 
|  | void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, | 
|  | struct seq_file *m) | 
|  | { | 
|  | (void) btf_type_seq_show_flags(btf, type_id, obj, m, | 
|  | BTF_SHOW_NONAME | BTF_SHOW_COMPACT | | 
|  | BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); | 
|  | } | 
|  |  | 
|  | struct btf_show_snprintf { | 
|  | struct btf_show show; | 
|  | int len_left;		/* space left in string */ | 
|  | int len;		/* length we would have written */ | 
|  | }; | 
|  |  | 
|  | static void btf_snprintf_show(struct btf_show *show, const char *fmt, | 
|  | va_list args) | 
|  | { | 
|  | struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; | 
|  | int len; | 
|  |  | 
|  | len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); | 
|  |  | 
|  | if (len < 0) { | 
|  | ssnprintf->len_left = 0; | 
|  | ssnprintf->len = len; | 
|  | } else if (len > ssnprintf->len_left) { | 
|  | /* no space, drive on to get length we would have written */ | 
|  | ssnprintf->len_left = 0; | 
|  | ssnprintf->len += len; | 
|  | } else { | 
|  | ssnprintf->len_left -= len; | 
|  | ssnprintf->len += len; | 
|  | show->target += len; | 
|  | } | 
|  | } | 
|  |  | 
|  | int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, | 
|  | char *buf, int len, u64 flags) | 
|  | { | 
|  | struct btf_show_snprintf ssnprintf; | 
|  |  | 
|  | ssnprintf.show.target = buf; | 
|  | ssnprintf.show.flags = flags; | 
|  | ssnprintf.show.showfn = btf_snprintf_show; | 
|  | ssnprintf.len_left = len; | 
|  | ssnprintf.len = 0; | 
|  |  | 
|  | btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); | 
|  |  | 
|  | /* If we encontered an error, return it. */ | 
|  | if (ssnprintf.show.state.status) | 
|  | return ssnprintf.show.state.status; | 
|  |  | 
|  | /* Otherwise return length we would have written */ | 
|  | return ssnprintf.len; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) | 
|  | { | 
|  | const struct btf *btf = filp->private_data; | 
|  |  | 
|  | seq_printf(m, "btf_id:\t%u\n", btf->id); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int btf_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | btf_put(filp->private_data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct file_operations btf_fops = { | 
|  | #ifdef CONFIG_PROC_FS | 
|  | .show_fdinfo	= bpf_btf_show_fdinfo, | 
|  | #endif | 
|  | .release	= btf_release, | 
|  | }; | 
|  |  | 
|  | static int __btf_new_fd(struct btf *btf) | 
|  | { | 
|  | return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); | 
|  | } | 
|  |  | 
|  | int btf_new_fd(const union bpf_attr *attr) | 
|  | { | 
|  | struct btf *btf; | 
|  | int ret; | 
|  |  | 
|  | btf = btf_parse(u64_to_user_ptr(attr->btf), | 
|  | attr->btf_size, attr->btf_log_level, | 
|  | u64_to_user_ptr(attr->btf_log_buf), | 
|  | attr->btf_log_size); | 
|  | if (IS_ERR(btf)) | 
|  | return PTR_ERR(btf); | 
|  |  | 
|  | ret = btf_alloc_id(btf); | 
|  | if (ret) { | 
|  | btf_free(btf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The BTF ID is published to the userspace. | 
|  | * All BTF free must go through call_rcu() from | 
|  | * now on (i.e. free by calling btf_put()). | 
|  | */ | 
|  |  | 
|  | ret = __btf_new_fd(btf); | 
|  | if (ret < 0) | 
|  | btf_put(btf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btf *btf_get_by_fd(int fd) | 
|  | { | 
|  | struct btf *btf; | 
|  | struct fd f; | 
|  |  | 
|  | f = fdget(fd); | 
|  |  | 
|  | if (!f.file) | 
|  | return ERR_PTR(-EBADF); | 
|  |  | 
|  | if (f.file->f_op != &btf_fops) { | 
|  | fdput(f); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | btf = f.file->private_data; | 
|  | refcount_inc(&btf->refcnt); | 
|  | fdput(f); | 
|  |  | 
|  | return btf; | 
|  | } | 
|  |  | 
|  | int btf_get_info_by_fd(const struct btf *btf, | 
|  | const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | struct bpf_btf_info __user *uinfo; | 
|  | struct bpf_btf_info info; | 
|  | u32 info_copy, btf_copy; | 
|  | void __user *ubtf; | 
|  | char __user *uname; | 
|  | u32 uinfo_len, uname_len, name_len; | 
|  | int ret = 0; | 
|  |  | 
|  | uinfo = u64_to_user_ptr(attr->info.info); | 
|  | uinfo_len = attr->info.info_len; | 
|  |  | 
|  | info_copy = min_t(u32, uinfo_len, sizeof(info)); | 
|  | memset(&info, 0, sizeof(info)); | 
|  | if (copy_from_user(&info, uinfo, info_copy)) | 
|  | return -EFAULT; | 
|  |  | 
|  | info.id = btf->id; | 
|  | ubtf = u64_to_user_ptr(info.btf); | 
|  | btf_copy = min_t(u32, btf->data_size, info.btf_size); | 
|  | if (copy_to_user(ubtf, btf->data, btf_copy)) | 
|  | return -EFAULT; | 
|  | info.btf_size = btf->data_size; | 
|  |  | 
|  | info.kernel_btf = btf->kernel_btf; | 
|  |  | 
|  | uname = u64_to_user_ptr(info.name); | 
|  | uname_len = info.name_len; | 
|  | if (!uname ^ !uname_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | name_len = strlen(btf->name); | 
|  | info.name_len = name_len; | 
|  |  | 
|  | if (uname) { | 
|  | if (uname_len >= name_len + 1) { | 
|  | if (copy_to_user(uname, btf->name, name_len + 1)) | 
|  | return -EFAULT; | 
|  | } else { | 
|  | char zero = '\0'; | 
|  |  | 
|  | if (copy_to_user(uname, btf->name, uname_len - 1)) | 
|  | return -EFAULT; | 
|  | if (put_user(zero, uname + uname_len - 1)) | 
|  | return -EFAULT; | 
|  | /* let user-space know about too short buffer */ | 
|  | ret = -ENOSPC; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (copy_to_user(uinfo, &info, info_copy) || | 
|  | put_user(info_copy, &uattr->info.info_len)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btf_get_fd_by_id(u32 id) | 
|  | { | 
|  | struct btf *btf; | 
|  | int fd; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | btf = idr_find(&btf_idr, id); | 
|  | if (!btf || !refcount_inc_not_zero(&btf->refcnt)) | 
|  | btf = ERR_PTR(-ENOENT); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (IS_ERR(btf)) | 
|  | return PTR_ERR(btf); | 
|  |  | 
|  | fd = __btf_new_fd(btf); | 
|  | if (fd < 0) | 
|  | btf_put(btf); | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | u32 btf_obj_id(const struct btf *btf) | 
|  | { | 
|  | return btf->id; | 
|  | } | 
|  |  | 
|  | bool btf_is_kernel(const struct btf *btf) | 
|  | { | 
|  | return btf->kernel_btf; | 
|  | } | 
|  |  | 
|  | bool btf_is_module(const struct btf *btf) | 
|  | { | 
|  | return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; | 
|  | } | 
|  |  | 
|  | static int btf_id_cmp_func(const void *a, const void *b) | 
|  | { | 
|  | const int *pa = a, *pb = b; | 
|  |  | 
|  | return *pa - *pb; | 
|  | } | 
|  |  | 
|  | bool btf_id_set_contains(const struct btf_id_set *set, u32 id) | 
|  | { | 
|  | return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES | 
|  | struct btf_module { | 
|  | struct list_head list; | 
|  | struct module *module; | 
|  | struct btf *btf; | 
|  | struct bin_attribute *sysfs_attr; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(btf_modules); | 
|  | static DEFINE_MUTEX(btf_module_mutex); | 
|  |  | 
|  | static ssize_t | 
|  | btf_module_read(struct file *file, struct kobject *kobj, | 
|  | struct bin_attribute *bin_attr, | 
|  | char *buf, loff_t off, size_t len) | 
|  | { | 
|  | const struct btf *btf = bin_attr->private; | 
|  |  | 
|  | memcpy(buf, btf->data + off, len); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static int btf_module_notify(struct notifier_block *nb, unsigned long op, | 
|  | void *module) | 
|  | { | 
|  | struct btf_module *btf_mod, *tmp; | 
|  | struct module *mod = module; | 
|  | struct btf *btf; | 
|  | int err = 0; | 
|  |  | 
|  | if (mod->btf_data_size == 0 || | 
|  | (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) | 
|  | goto out; | 
|  |  | 
|  | switch (op) { | 
|  | case MODULE_STATE_COMING: | 
|  | btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); | 
|  | if (!btf_mod) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); | 
|  | if (IS_ERR(btf)) { | 
|  | pr_warn("failed to validate module [%s] BTF: %ld\n", | 
|  | mod->name, PTR_ERR(btf)); | 
|  | kfree(btf_mod); | 
|  | err = PTR_ERR(btf); | 
|  | goto out; | 
|  | } | 
|  | err = btf_alloc_id(btf); | 
|  | if (err) { | 
|  | btf_free(btf); | 
|  | kfree(btf_mod); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mutex_lock(&btf_module_mutex); | 
|  | btf_mod->module = module; | 
|  | btf_mod->btf = btf; | 
|  | list_add(&btf_mod->list, &btf_modules); | 
|  | mutex_unlock(&btf_module_mutex); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SYSFS)) { | 
|  | struct bin_attribute *attr; | 
|  |  | 
|  | attr = kzalloc(sizeof(*attr), GFP_KERNEL); | 
|  | if (!attr) | 
|  | goto out; | 
|  |  | 
|  | sysfs_bin_attr_init(attr); | 
|  | attr->attr.name = btf->name; | 
|  | attr->attr.mode = 0444; | 
|  | attr->size = btf->data_size; | 
|  | attr->private = btf; | 
|  | attr->read = btf_module_read; | 
|  |  | 
|  | err = sysfs_create_bin_file(btf_kobj, attr); | 
|  | if (err) { | 
|  | pr_warn("failed to register module [%s] BTF in sysfs: %d\n", | 
|  | mod->name, err); | 
|  | kfree(attr); | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btf_mod->sysfs_attr = attr; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case MODULE_STATE_GOING: | 
|  | mutex_lock(&btf_module_mutex); | 
|  | list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { | 
|  | if (btf_mod->module != module) | 
|  | continue; | 
|  |  | 
|  | list_del(&btf_mod->list); | 
|  | if (btf_mod->sysfs_attr) | 
|  | sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); | 
|  | btf_put(btf_mod->btf); | 
|  | kfree(btf_mod->sysfs_attr); | 
|  | kfree(btf_mod); | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&btf_module_mutex); | 
|  | break; | 
|  | } | 
|  | out: | 
|  | return notifier_from_errno(err); | 
|  | } | 
|  |  | 
|  | static struct notifier_block btf_module_nb = { | 
|  | .notifier_call = btf_module_notify, | 
|  | }; | 
|  |  | 
|  | static int __init btf_module_init(void) | 
|  | { | 
|  | register_module_notifier(&btf_module_nb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | fs_initcall(btf_module_init); | 
|  | #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ | 
|  |  | 
|  | struct module *btf_try_get_module(const struct btf *btf) | 
|  | { | 
|  | struct module *res = NULL; | 
|  | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES | 
|  | struct btf_module *btf_mod, *tmp; | 
|  |  | 
|  | mutex_lock(&btf_module_mutex); | 
|  | list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { | 
|  | if (btf_mod->btf != btf) | 
|  | continue; | 
|  |  | 
|  | if (try_module_get(btf_mod->module)) | 
|  | res = btf_mod->module; | 
|  |  | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&btf_module_mutex); | 
|  | #endif | 
|  |  | 
|  | return res; | 
|  | } |