| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  linux/mm/oom_kill.c | 
 |  *  | 
 |  *  Copyright (C)  1998,2000  Rik van Riel | 
 |  *	Thanks go out to Claus Fischer for some serious inspiration and | 
 |  *	for goading me into coding this file... | 
 |  *  Copyright (C)  2010  Google, Inc. | 
 |  *	Rewritten by David Rientjes | 
 |  * | 
 |  *  The routines in this file are used to kill a process when | 
 |  *  we're seriously out of memory. This gets called from __alloc_pages() | 
 |  *  in mm/page_alloc.c when we really run out of memory. | 
 |  * | 
 |  *  Since we won't call these routines often (on a well-configured | 
 |  *  machine) this file will double as a 'coding guide' and a signpost | 
 |  *  for newbie kernel hackers. It features several pointers to major | 
 |  *  kernel subsystems and hints as to where to find out what things do. | 
 |  */ | 
 |  | 
 | #include <linux/oom.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/err.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/coredump.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/sched/debug.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/export.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/security.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mmu_notifier.h> | 
 |  | 
 | #include <asm/tlb.h> | 
 | #include "internal.h" | 
 | #include "slab.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/oom.h> | 
 |  | 
 | int sysctl_panic_on_oom; | 
 | int sysctl_oom_kill_allocating_task; | 
 | int sysctl_oom_dump_tasks = 1; | 
 |  | 
 | /* | 
 |  * Serializes oom killer invocations (out_of_memory()) from all contexts to | 
 |  * prevent from over eager oom killing (e.g. when the oom killer is invoked | 
 |  * from different domains). | 
 |  * | 
 |  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled | 
 |  * and mark_oom_victim | 
 |  */ | 
 | DEFINE_MUTEX(oom_lock); | 
 | /* Serializes oom_score_adj and oom_score_adj_min updates */ | 
 | DEFINE_MUTEX(oom_adj_mutex); | 
 |  | 
 | static inline bool is_memcg_oom(struct oom_control *oc) | 
 | { | 
 | 	return oc->memcg != NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /** | 
 |  * oom_cpuset_eligible() - check task eligiblity for kill | 
 |  * @start: task struct of which task to consider | 
 |  * @oc: pointer to struct oom_control | 
 |  * | 
 |  * Task eligibility is determined by whether or not a candidate task, @tsk, | 
 |  * shares the same mempolicy nodes as current if it is bound by such a policy | 
 |  * and whether or not it has the same set of allowed cpuset nodes. | 
 |  * | 
 |  * This function is assuming oom-killer context and 'current' has triggered | 
 |  * the oom-killer. | 
 |  */ | 
 | static bool oom_cpuset_eligible(struct task_struct *start, | 
 | 				struct oom_control *oc) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	bool ret = false; | 
 | 	const nodemask_t *mask = oc->nodemask; | 
 |  | 
 | 	if (is_memcg_oom(oc)) | 
 | 		return true; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_thread(start, tsk) { | 
 | 		if (mask) { | 
 | 			/* | 
 | 			 * If this is a mempolicy constrained oom, tsk's | 
 | 			 * cpuset is irrelevant.  Only return true if its | 
 | 			 * mempolicy intersects current, otherwise it may be | 
 | 			 * needlessly killed. | 
 | 			 */ | 
 | 			ret = mempolicy_nodemask_intersects(tsk, mask); | 
 | 		} else { | 
 | 			/* | 
 | 			 * This is not a mempolicy constrained oom, so only | 
 | 			 * check the mems of tsk's cpuset. | 
 | 			 */ | 
 | 			ret = cpuset_mems_allowed_intersects(current, tsk); | 
 | 		} | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * The process p may have detached its own ->mm while exiting or through | 
 |  * kthread_use_mm(), but one or more of its subthreads may still have a valid | 
 |  * pointer.  Return p, or any of its subthreads with a valid ->mm, with | 
 |  * task_lock() held. | 
 |  */ | 
 | struct task_struct *find_lock_task_mm(struct task_struct *p) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	for_each_thread(p, t) { | 
 | 		task_lock(t); | 
 | 		if (likely(t->mm)) | 
 | 			goto found; | 
 | 		task_unlock(t); | 
 | 	} | 
 | 	t = NULL; | 
 | found: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return t; | 
 | } | 
 |  | 
 | /* | 
 |  * order == -1 means the oom kill is required by sysrq, otherwise only | 
 |  * for display purposes. | 
 |  */ | 
 | static inline bool is_sysrq_oom(struct oom_control *oc) | 
 | { | 
 | 	return oc->order == -1; | 
 | } | 
 |  | 
 | /* return true if the task is not adequate as candidate victim task. */ | 
 | static bool oom_unkillable_task(struct task_struct *p) | 
 | { | 
 | 	if (is_global_init(p)) | 
 | 		return true; | 
 | 	if (p->flags & PF_KTHREAD) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * Check whether unreclaimable slab amount is greater than | 
 |  * all user memory(LRU pages). | 
 |  * dump_unreclaimable_slab() could help in the case that | 
 |  * oom due to too much unreclaimable slab used by kernel. | 
 | */ | 
 | static bool should_dump_unreclaim_slab(void) | 
 | { | 
 | 	unsigned long nr_lru; | 
 |  | 
 | 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) + | 
 | 		 global_node_page_state(NR_INACTIVE_ANON) + | 
 | 		 global_node_page_state(NR_ACTIVE_FILE) + | 
 | 		 global_node_page_state(NR_INACTIVE_FILE) + | 
 | 		 global_node_page_state(NR_ISOLATED_ANON) + | 
 | 		 global_node_page_state(NR_ISOLATED_FILE) + | 
 | 		 global_node_page_state(NR_UNEVICTABLE); | 
 |  | 
 | 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); | 
 | } | 
 |  | 
 | /** | 
 |  * oom_badness - heuristic function to determine which candidate task to kill | 
 |  * @p: task struct of which task we should calculate | 
 |  * @totalpages: total present RAM allowed for page allocation | 
 |  * | 
 |  * The heuristic for determining which task to kill is made to be as simple and | 
 |  * predictable as possible.  The goal is to return the highest value for the | 
 |  * task consuming the most memory to avoid subsequent oom failures. | 
 |  */ | 
 | long oom_badness(struct task_struct *p, unsigned long totalpages) | 
 | { | 
 | 	long points; | 
 | 	long adj; | 
 |  | 
 | 	if (oom_unkillable_task(p)) | 
 | 		return LONG_MIN; | 
 |  | 
 | 	p = find_lock_task_mm(p); | 
 | 	if (!p) | 
 | 		return LONG_MIN; | 
 |  | 
 | 	/* | 
 | 	 * Do not even consider tasks which are explicitly marked oom | 
 | 	 * unkillable or have been already oom reaped or the are in | 
 | 	 * the middle of vfork | 
 | 	 */ | 
 | 	adj = (long)p->signal->oom_score_adj; | 
 | 	if (adj == OOM_SCORE_ADJ_MIN || | 
 | 			test_bit(MMF_OOM_SKIP, &p->mm->flags) || | 
 | 			in_vfork(p)) { | 
 | 		task_unlock(p); | 
 | 		return LONG_MIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The baseline for the badness score is the proportion of RAM that each | 
 | 	 * task's rss, pagetable and swap space use. | 
 | 	 */ | 
 | 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + | 
 | 		mm_pgtables_bytes(p->mm) / PAGE_SIZE; | 
 | 	task_unlock(p); | 
 |  | 
 | 	/* Normalize to oom_score_adj units */ | 
 | 	adj *= totalpages / 1000; | 
 | 	points += adj; | 
 |  | 
 | 	return points; | 
 | } | 
 |  | 
 | static const char * const oom_constraint_text[] = { | 
 | 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE", | 
 | 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", | 
 | 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", | 
 | 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", | 
 | }; | 
 |  | 
 | /* | 
 |  * Determine the type of allocation constraint. | 
 |  */ | 
 | static enum oom_constraint constrained_alloc(struct oom_control *oc) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 | 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); | 
 | 	bool cpuset_limited = false; | 
 | 	int nid; | 
 |  | 
 | 	if (is_memcg_oom(oc)) { | 
 | 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; | 
 | 		return CONSTRAINT_MEMCG; | 
 | 	} | 
 |  | 
 | 	/* Default to all available memory */ | 
 | 	oc->totalpages = totalram_pages() + total_swap_pages; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_NUMA)) | 
 | 		return CONSTRAINT_NONE; | 
 |  | 
 | 	if (!oc->zonelist) | 
 | 		return CONSTRAINT_NONE; | 
 | 	/* | 
 | 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid | 
 | 	 * to kill current.We have to random task kill in this case. | 
 | 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. | 
 | 	 */ | 
 | 	if (oc->gfp_mask & __GFP_THISNODE) | 
 | 		return CONSTRAINT_NONE; | 
 |  | 
 | 	/* | 
 | 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in | 
 | 	 * the page allocator means a mempolicy is in effect.  Cpuset policy | 
 | 	 * is enforced in get_page_from_freelist(). | 
 | 	 */ | 
 | 	if (oc->nodemask && | 
 | 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { | 
 | 		oc->totalpages = total_swap_pages; | 
 | 		for_each_node_mask(nid, *oc->nodemask) | 
 | 			oc->totalpages += node_present_pages(nid); | 
 | 		return CONSTRAINT_MEMORY_POLICY; | 
 | 	} | 
 |  | 
 | 	/* Check this allocation failure is caused by cpuset's wall function */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, | 
 | 			highest_zoneidx, oc->nodemask) | 
 | 		if (!cpuset_zone_allowed(zone, oc->gfp_mask)) | 
 | 			cpuset_limited = true; | 
 |  | 
 | 	if (cpuset_limited) { | 
 | 		oc->totalpages = total_swap_pages; | 
 | 		for_each_node_mask(nid, cpuset_current_mems_allowed) | 
 | 			oc->totalpages += node_present_pages(nid); | 
 | 		return CONSTRAINT_CPUSET; | 
 | 	} | 
 | 	return CONSTRAINT_NONE; | 
 | } | 
 |  | 
 | static int oom_evaluate_task(struct task_struct *task, void *arg) | 
 | { | 
 | 	struct oom_control *oc = arg; | 
 | 	long points; | 
 |  | 
 | 	if (oom_unkillable_task(task)) | 
 | 		goto next; | 
 |  | 
 | 	/* p may not have freeable memory in nodemask */ | 
 | 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) | 
 | 		goto next; | 
 |  | 
 | 	/* | 
 | 	 * This task already has access to memory reserves and is being killed. | 
 | 	 * Don't allow any other task to have access to the reserves unless | 
 | 	 * the task has MMF_OOM_SKIP because chances that it would release | 
 | 	 * any memory is quite low. | 
 | 	 */ | 
 | 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { | 
 | 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) | 
 | 			goto next; | 
 | 		goto abort; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If task is allocating a lot of memory and has been marked to be | 
 | 	 * killed first if it triggers an oom, then select it. | 
 | 	 */ | 
 | 	if (oom_task_origin(task)) { | 
 | 		points = LONG_MAX; | 
 | 		goto select; | 
 | 	} | 
 |  | 
 | 	points = oom_badness(task, oc->totalpages); | 
 | 	if (points == LONG_MIN || points < oc->chosen_points) | 
 | 		goto next; | 
 |  | 
 | select: | 
 | 	if (oc->chosen) | 
 | 		put_task_struct(oc->chosen); | 
 | 	get_task_struct(task); | 
 | 	oc->chosen = task; | 
 | 	oc->chosen_points = points; | 
 | next: | 
 | 	return 0; | 
 | abort: | 
 | 	if (oc->chosen) | 
 | 		put_task_struct(oc->chosen); | 
 | 	oc->chosen = (void *)-1UL; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Simple selection loop. We choose the process with the highest number of | 
 |  * 'points'. In case scan was aborted, oc->chosen is set to -1. | 
 |  */ | 
 | static void select_bad_process(struct oom_control *oc) | 
 | { | 
 | 	oc->chosen_points = LONG_MIN; | 
 |  | 
 | 	if (is_memcg_oom(oc)) | 
 | 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); | 
 | 	else { | 
 | 		struct task_struct *p; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		for_each_process(p) | 
 | 			if (oom_evaluate_task(p, oc)) | 
 | 				break; | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | } | 
 |  | 
 | static int dump_task(struct task_struct *p, void *arg) | 
 | { | 
 | 	struct oom_control *oc = arg; | 
 | 	struct task_struct *task; | 
 |  | 
 | 	if (oom_unkillable_task(p)) | 
 | 		return 0; | 
 |  | 
 | 	/* p may not have freeable memory in nodemask */ | 
 | 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) | 
 | 		return 0; | 
 |  | 
 | 	task = find_lock_task_mm(p); | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * All of p's threads have already detached their mm's. There's | 
 | 		 * no need to report them; they can't be oom killed anyway. | 
 | 		 */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n", | 
 | 		task->pid, from_kuid(&init_user_ns, task_uid(task)), | 
 | 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm), | 
 | 		mm_pgtables_bytes(task->mm), | 
 | 		get_mm_counter(task->mm, MM_SWAPENTS), | 
 | 		task->signal->oom_score_adj, task->comm); | 
 | 	task_unlock(task); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dump_tasks - dump current memory state of all system tasks | 
 |  * @oc: pointer to struct oom_control | 
 |  * | 
 |  * Dumps the current memory state of all eligible tasks.  Tasks not in the same | 
 |  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes | 
 |  * are not shown. | 
 |  * State information includes task's pid, uid, tgid, vm size, rss, | 
 |  * pgtables_bytes, swapents, oom_score_adj value, and name. | 
 |  */ | 
 | static void dump_tasks(struct oom_control *oc) | 
 | { | 
 | 	pr_info("Tasks state (memory values in pages):\n"); | 
 | 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n"); | 
 |  | 
 | 	if (is_memcg_oom(oc)) | 
 | 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); | 
 | 	else { | 
 | 		struct task_struct *p; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		for_each_process(p) | 
 | 			dump_task(p, oc); | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | } | 
 |  | 
 | static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) | 
 | { | 
 | 	/* one line summary of the oom killer context. */ | 
 | 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl", | 
 | 			oom_constraint_text[oc->constraint], | 
 | 			nodemask_pr_args(oc->nodemask)); | 
 | 	cpuset_print_current_mems_allowed(); | 
 | 	mem_cgroup_print_oom_context(oc->memcg, victim); | 
 | 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, | 
 | 		from_kuid(&init_user_ns, task_uid(victim))); | 
 | } | 
 |  | 
 | static void dump_header(struct oom_control *oc, struct task_struct *p) | 
 | { | 
 | 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", | 
 | 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, | 
 | 			current->signal->oom_score_adj); | 
 | 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) | 
 | 		pr_warn("COMPACTION is disabled!!!\n"); | 
 |  | 
 | 	dump_stack(); | 
 | 	if (is_memcg_oom(oc)) | 
 | 		mem_cgroup_print_oom_meminfo(oc->memcg); | 
 | 	else { | 
 | 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); | 
 | 		if (should_dump_unreclaim_slab()) | 
 | 			dump_unreclaimable_slab(); | 
 | 	} | 
 | 	if (sysctl_oom_dump_tasks) | 
 | 		dump_tasks(oc); | 
 | 	if (p) | 
 | 		dump_oom_summary(oc, p); | 
 | } | 
 |  | 
 | /* | 
 |  * Number of OOM victims in flight | 
 |  */ | 
 | static atomic_t oom_victims = ATOMIC_INIT(0); | 
 | static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); | 
 |  | 
 | static bool oom_killer_disabled __read_mostly; | 
 |  | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 |  | 
 | /* | 
 |  * task->mm can be NULL if the task is the exited group leader.  So to | 
 |  * determine whether the task is using a particular mm, we examine all the | 
 |  * task's threads: if one of those is using this mm then this task was also | 
 |  * using it. | 
 |  */ | 
 | bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	for_each_thread(p, t) { | 
 | 		struct mm_struct *t_mm = READ_ONCE(t->mm); | 
 | 		if (t_mm) | 
 | 			return t_mm == mm; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /* | 
 |  * OOM Reaper kernel thread which tries to reap the memory used by the OOM | 
 |  * victim (if that is possible) to help the OOM killer to move on. | 
 |  */ | 
 | static struct task_struct *oom_reaper_th; | 
 | static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); | 
 | static struct task_struct *oom_reaper_list; | 
 | static DEFINE_SPINLOCK(oom_reaper_lock); | 
 |  | 
 | bool __oom_reap_task_mm(struct mm_struct *mm) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	bool ret = true; | 
 |  | 
 | 	/* | 
 | 	 * Tell all users of get_user/copy_from_user etc... that the content | 
 | 	 * is no longer stable. No barriers really needed because unmapping | 
 | 	 * should imply barriers already and the reader would hit a page fault | 
 | 	 * if it stumbled over a reaped memory. | 
 | 	 */ | 
 | 	set_bit(MMF_UNSTABLE, &mm->flags); | 
 |  | 
 | 	for (vma = mm->mmap ; vma; vma = vma->vm_next) { | 
 | 		if (!can_madv_lru_vma(vma)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Only anonymous pages have a good chance to be dropped | 
 | 		 * without additional steps which we cannot afford as we | 
 | 		 * are OOM already. | 
 | 		 * | 
 | 		 * We do not even care about fs backed pages because all | 
 | 		 * which are reclaimable have already been reclaimed and | 
 | 		 * we do not want to block exit_mmap by keeping mm ref | 
 | 		 * count elevated without a good reason. | 
 | 		 */ | 
 | 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { | 
 | 			struct mmu_notifier_range range; | 
 | 			struct mmu_gather tlb; | 
 |  | 
 | 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, | 
 | 						vma, mm, vma->vm_start, | 
 | 						vma->vm_end); | 
 | 			tlb_gather_mmu(&tlb, mm); | 
 | 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) { | 
 | 				tlb_finish_mmu(&tlb); | 
 | 				ret = false; | 
 | 				continue; | 
 | 			} | 
 | 			unmap_page_range(&tlb, vma, range.start, range.end, NULL); | 
 | 			mmu_notifier_invalidate_range_end(&range); | 
 | 			tlb_finish_mmu(&tlb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Reaps the address space of the give task. | 
 |  * | 
 |  * Returns true on success and false if none or part of the address space | 
 |  * has been reclaimed and the caller should retry later. | 
 |  */ | 
 | static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) | 
 | { | 
 | 	bool ret = true; | 
 |  | 
 | 	if (!mmap_read_trylock(mm)) { | 
 | 		trace_skip_task_reaping(tsk->pid); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't | 
 | 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run | 
 | 	 * under mmap_lock for reading because it serializes against the | 
 | 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). | 
 | 	 */ | 
 | 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) { | 
 | 		trace_skip_task_reaping(tsk->pid); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	trace_start_task_reaping(tsk->pid); | 
 |  | 
 | 	/* failed to reap part of the address space. Try again later */ | 
 | 	ret = __oom_reap_task_mm(mm); | 
 | 	if (!ret) | 
 | 		goto out_finish; | 
 |  | 
 | 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", | 
 | 			task_pid_nr(tsk), tsk->comm, | 
 | 			K(get_mm_counter(mm, MM_ANONPAGES)), | 
 | 			K(get_mm_counter(mm, MM_FILEPAGES)), | 
 | 			K(get_mm_counter(mm, MM_SHMEMPAGES))); | 
 | out_finish: | 
 | 	trace_finish_task_reaping(tsk->pid); | 
 | out_unlock: | 
 | 	mmap_read_unlock(mm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define MAX_OOM_REAP_RETRIES 10 | 
 | static void oom_reap_task(struct task_struct *tsk) | 
 | { | 
 | 	int attempts = 0; | 
 | 	struct mm_struct *mm = tsk->signal->oom_mm; | 
 |  | 
 | 	/* Retry the mmap_read_trylock(mm) a few times */ | 
 | 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) | 
 | 		schedule_timeout_idle(HZ/10); | 
 |  | 
 | 	if (attempts <= MAX_OOM_REAP_RETRIES || | 
 | 	    test_bit(MMF_OOM_SKIP, &mm->flags)) | 
 | 		goto done; | 
 |  | 
 | 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n", | 
 | 		task_pid_nr(tsk), tsk->comm); | 
 | 	sched_show_task(tsk); | 
 | 	debug_show_all_locks(); | 
 |  | 
 | done: | 
 | 	tsk->oom_reaper_list = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Hide this mm from OOM killer because it has been either reaped or | 
 | 	 * somebody can't call mmap_write_unlock(mm). | 
 | 	 */ | 
 | 	set_bit(MMF_OOM_SKIP, &mm->flags); | 
 |  | 
 | 	/* Drop a reference taken by wake_oom_reaper */ | 
 | 	put_task_struct(tsk); | 
 | } | 
 |  | 
 | static int oom_reaper(void *unused) | 
 | { | 
 | 	while (true) { | 
 | 		struct task_struct *tsk = NULL; | 
 |  | 
 | 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); | 
 | 		spin_lock(&oom_reaper_lock); | 
 | 		if (oom_reaper_list != NULL) { | 
 | 			tsk = oom_reaper_list; | 
 | 			oom_reaper_list = tsk->oom_reaper_list; | 
 | 		} | 
 | 		spin_unlock(&oom_reaper_lock); | 
 |  | 
 | 		if (tsk) | 
 | 			oom_reap_task(tsk); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void wake_oom_reaper(struct task_struct *tsk) | 
 | { | 
 | 	/* mm is already queued? */ | 
 | 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) | 
 | 		return; | 
 |  | 
 | 	get_task_struct(tsk); | 
 |  | 
 | 	spin_lock(&oom_reaper_lock); | 
 | 	tsk->oom_reaper_list = oom_reaper_list; | 
 | 	oom_reaper_list = tsk; | 
 | 	spin_unlock(&oom_reaper_lock); | 
 | 	trace_wake_reaper(tsk->pid); | 
 | 	wake_up(&oom_reaper_wait); | 
 | } | 
 |  | 
 | static int __init oom_init(void) | 
 | { | 
 | 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(oom_init) | 
 | #else | 
 | static inline void wake_oom_reaper(struct task_struct *tsk) | 
 | { | 
 | } | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | /** | 
 |  * mark_oom_victim - mark the given task as OOM victim | 
 |  * @tsk: task to mark | 
 |  * | 
 |  * Has to be called with oom_lock held and never after | 
 |  * oom has been disabled already. | 
 |  * | 
 |  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either | 
 |  * under task_lock or operate on the current). | 
 |  */ | 
 | static void mark_oom_victim(struct task_struct *tsk) | 
 | { | 
 | 	struct mm_struct *mm = tsk->mm; | 
 |  | 
 | 	WARN_ON(oom_killer_disabled); | 
 | 	/* OOM killer might race with memcg OOM */ | 
 | 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) | 
 | 		return; | 
 |  | 
 | 	/* oom_mm is bound to the signal struct life time. */ | 
 | 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { | 
 | 		mmgrab(tsk->signal->oom_mm); | 
 | 		set_bit(MMF_OOM_VICTIM, &mm->flags); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure that the task is woken up from uninterruptible sleep | 
 | 	 * if it is frozen because OOM killer wouldn't be able to free | 
 | 	 * any memory and livelock. freezing_slow_path will tell the freezer | 
 | 	 * that TIF_MEMDIE tasks should be ignored. | 
 | 	 */ | 
 | 	__thaw_task(tsk); | 
 | 	atomic_inc(&oom_victims); | 
 | 	trace_mark_victim(tsk->pid); | 
 | } | 
 |  | 
 | /** | 
 |  * exit_oom_victim - note the exit of an OOM victim | 
 |  */ | 
 | void exit_oom_victim(void) | 
 | { | 
 | 	clear_thread_flag(TIF_MEMDIE); | 
 |  | 
 | 	if (!atomic_dec_return(&oom_victims)) | 
 | 		wake_up_all(&oom_victims_wait); | 
 | } | 
 |  | 
 | /** | 
 |  * oom_killer_enable - enable OOM killer | 
 |  */ | 
 | void oom_killer_enable(void) | 
 | { | 
 | 	oom_killer_disabled = false; | 
 | 	pr_info("OOM killer enabled.\n"); | 
 | } | 
 |  | 
 | /** | 
 |  * oom_killer_disable - disable OOM killer | 
 |  * @timeout: maximum timeout to wait for oom victims in jiffies | 
 |  * | 
 |  * Forces all page allocations to fail rather than trigger OOM killer. | 
 |  * Will block and wait until all OOM victims are killed or the given | 
 |  * timeout expires. | 
 |  * | 
 |  * The function cannot be called when there are runnable user tasks because | 
 |  * the userspace would see unexpected allocation failures as a result. Any | 
 |  * new usage of this function should be consulted with MM people. | 
 |  * | 
 |  * Returns true if successful and false if the OOM killer cannot be | 
 |  * disabled. | 
 |  */ | 
 | bool oom_killer_disable(signed long timeout) | 
 | { | 
 | 	signed long ret; | 
 |  | 
 | 	/* | 
 | 	 * Make sure to not race with an ongoing OOM killer. Check that the | 
 | 	 * current is not killed (possibly due to sharing the victim's memory). | 
 | 	 */ | 
 | 	if (mutex_lock_killable(&oom_lock)) | 
 | 		return false; | 
 | 	oom_killer_disabled = true; | 
 | 	mutex_unlock(&oom_lock); | 
 |  | 
 | 	ret = wait_event_interruptible_timeout(oom_victims_wait, | 
 | 			!atomic_read(&oom_victims), timeout); | 
 | 	if (ret <= 0) { | 
 | 		oom_killer_enable(); | 
 | 		return false; | 
 | 	} | 
 | 	pr_info("OOM killer disabled.\n"); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool __task_will_free_mem(struct task_struct *task) | 
 | { | 
 | 	struct signal_struct *sig = task->signal; | 
 |  | 
 | 	/* | 
 | 	 * A coredumping process may sleep for an extended period in exit_mm(), | 
 | 	 * so the oom killer cannot assume that the process will promptly exit | 
 | 	 * and release memory. | 
 | 	 */ | 
 | 	if (sig->flags & SIGNAL_GROUP_COREDUMP) | 
 | 		return false; | 
 |  | 
 | 	if (sig->flags & SIGNAL_GROUP_EXIT) | 
 | 		return true; | 
 |  | 
 | 	if (thread_group_empty(task) && (task->flags & PF_EXITING)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Checks whether the given task is dying or exiting and likely to | 
 |  * release its address space. This means that all threads and processes | 
 |  * sharing the same mm have to be killed or exiting. | 
 |  * Caller has to make sure that task->mm is stable (hold task_lock or | 
 |  * it operates on the current). | 
 |  */ | 
 | static bool task_will_free_mem(struct task_struct *task) | 
 | { | 
 | 	struct mm_struct *mm = task->mm; | 
 | 	struct task_struct *p; | 
 | 	bool ret = true; | 
 |  | 
 | 	/* | 
 | 	 * Skip tasks without mm because it might have passed its exit_mm and | 
 | 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely | 
 | 	 * on that for now. We can consider find_lock_task_mm in future. | 
 | 	 */ | 
 | 	if (!mm) | 
 | 		return false; | 
 |  | 
 | 	if (!__task_will_free_mem(task)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * This task has already been drained by the oom reaper so there are | 
 | 	 * only small chances it will free some more | 
 | 	 */ | 
 | 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) | 
 | 		return false; | 
 |  | 
 | 	if (atomic_read(&mm->mm_users) <= 1) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that all tasks which share the mm with the given tasks | 
 | 	 * are dying as well to make sure that a) nobody pins its mm and | 
 | 	 * b) the task is also reapable by the oom reaper. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_process(p) { | 
 | 		if (!process_shares_mm(p, mm)) | 
 | 			continue; | 
 | 		if (same_thread_group(task, p)) | 
 | 			continue; | 
 | 		ret = __task_will_free_mem(p); | 
 | 		if (!ret) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __oom_kill_process(struct task_struct *victim, const char *message) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct mm_struct *mm; | 
 | 	bool can_oom_reap = true; | 
 |  | 
 | 	p = find_lock_task_mm(victim); | 
 | 	if (!p) { | 
 | 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", | 
 | 			message, task_pid_nr(victim), victim->comm); | 
 | 		put_task_struct(victim); | 
 | 		return; | 
 | 	} else if (victim != p) { | 
 | 		get_task_struct(p); | 
 | 		put_task_struct(victim); | 
 | 		victim = p; | 
 | 	} | 
 |  | 
 | 	/* Get a reference to safely compare mm after task_unlock(victim) */ | 
 | 	mm = victim->mm; | 
 | 	mmgrab(mm); | 
 |  | 
 | 	/* Raise event before sending signal: task reaper must see this */ | 
 | 	count_vm_event(OOM_KILL); | 
 | 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL); | 
 |  | 
 | 	/* | 
 | 	 * We should send SIGKILL before granting access to memory reserves | 
 | 	 * in order to prevent the OOM victim from depleting the memory | 
 | 	 * reserves from the user space under its control. | 
 | 	 */ | 
 | 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); | 
 | 	mark_oom_victim(victim); | 
 | 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", | 
 | 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm), | 
 | 		K(get_mm_counter(mm, MM_ANONPAGES)), | 
 | 		K(get_mm_counter(mm, MM_FILEPAGES)), | 
 | 		K(get_mm_counter(mm, MM_SHMEMPAGES)), | 
 | 		from_kuid(&init_user_ns, task_uid(victim)), | 
 | 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); | 
 | 	task_unlock(victim); | 
 |  | 
 | 	/* | 
 | 	 * Kill all user processes sharing victim->mm in other thread groups, if | 
 | 	 * any.  They don't get access to memory reserves, though, to avoid | 
 | 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an | 
 | 	 * oom killed thread cannot exit because it requires the semaphore and | 
 | 	 * its contended by another thread trying to allocate memory itself. | 
 | 	 * That thread will now get access to memory reserves since it has a | 
 | 	 * pending fatal signal. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_process(p) { | 
 | 		if (!process_shares_mm(p, mm)) | 
 | 			continue; | 
 | 		if (same_thread_group(p, victim)) | 
 | 			continue; | 
 | 		if (is_global_init(p)) { | 
 | 			can_oom_reap = false; | 
 | 			set_bit(MMF_OOM_SKIP, &mm->flags); | 
 | 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", | 
 | 					task_pid_nr(victim), victim->comm, | 
 | 					task_pid_nr(p), p->comm); | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * No kthead_use_mm() user needs to read from the userspace so | 
 | 		 * we are ok to reap it. | 
 | 		 */ | 
 | 		if (unlikely(p->flags & PF_KTHREAD)) | 
 | 			continue; | 
 | 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (can_oom_reap) | 
 | 		wake_oom_reaper(victim); | 
 |  | 
 | 	mmdrop(mm); | 
 | 	put_task_struct(victim); | 
 | } | 
 | #undef K | 
 |  | 
 | /* | 
 |  * Kill provided task unless it's secured by setting | 
 |  * oom_score_adj to OOM_SCORE_ADJ_MIN. | 
 |  */ | 
 | static int oom_kill_memcg_member(struct task_struct *task, void *message) | 
 | { | 
 | 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && | 
 | 	    !is_global_init(task)) { | 
 | 		get_task_struct(task); | 
 | 		__oom_kill_process(task, message); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void oom_kill_process(struct oom_control *oc, const char *message) | 
 | { | 
 | 	struct task_struct *victim = oc->chosen; | 
 | 	struct mem_cgroup *oom_group; | 
 | 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
 | 					      DEFAULT_RATELIMIT_BURST); | 
 |  | 
 | 	/* | 
 | 	 * If the task is already exiting, don't alarm the sysadmin or kill | 
 | 	 * its children or threads, just give it access to memory reserves | 
 | 	 * so it can die quickly | 
 | 	 */ | 
 | 	task_lock(victim); | 
 | 	if (task_will_free_mem(victim)) { | 
 | 		mark_oom_victim(victim); | 
 | 		wake_oom_reaper(victim); | 
 | 		task_unlock(victim); | 
 | 		put_task_struct(victim); | 
 | 		return; | 
 | 	} | 
 | 	task_unlock(victim); | 
 |  | 
 | 	if (__ratelimit(&oom_rs)) | 
 | 		dump_header(oc, victim); | 
 |  | 
 | 	/* | 
 | 	 * Do we need to kill the entire memory cgroup? | 
 | 	 * Or even one of the ancestor memory cgroups? | 
 | 	 * Check this out before killing the victim task. | 
 | 	 */ | 
 | 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); | 
 |  | 
 | 	__oom_kill_process(victim, message); | 
 |  | 
 | 	/* | 
 | 	 * If necessary, kill all tasks in the selected memory cgroup. | 
 | 	 */ | 
 | 	if (oom_group) { | 
 | 		mem_cgroup_print_oom_group(oom_group); | 
 | 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, | 
 | 				      (void*)message); | 
 | 		mem_cgroup_put(oom_group); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Determines whether the kernel must panic because of the panic_on_oom sysctl. | 
 |  */ | 
 | static void check_panic_on_oom(struct oom_control *oc) | 
 | { | 
 | 	if (likely(!sysctl_panic_on_oom)) | 
 | 		return; | 
 | 	if (sysctl_panic_on_oom != 2) { | 
 | 		/* | 
 | 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel | 
 | 		 * does not panic for cpuset, mempolicy, or memcg allocation | 
 | 		 * failures. | 
 | 		 */ | 
 | 		if (oc->constraint != CONSTRAINT_NONE) | 
 | 			return; | 
 | 	} | 
 | 	/* Do not panic for oom kills triggered by sysrq */ | 
 | 	if (is_sysrq_oom(oc)) | 
 | 		return; | 
 | 	dump_header(oc, NULL); | 
 | 	panic("Out of memory: %s panic_on_oom is enabled\n", | 
 | 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); | 
 | } | 
 |  | 
 | static BLOCKING_NOTIFIER_HEAD(oom_notify_list); | 
 |  | 
 | int register_oom_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_register(&oom_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(register_oom_notifier); | 
 |  | 
 | int unregister_oom_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_unregister(&oom_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unregister_oom_notifier); | 
 |  | 
 | /** | 
 |  * out_of_memory - kill the "best" process when we run out of memory | 
 |  * @oc: pointer to struct oom_control | 
 |  * | 
 |  * If we run out of memory, we have the choice between either | 
 |  * killing a random task (bad), letting the system crash (worse) | 
 |  * OR try to be smart about which process to kill. Note that we | 
 |  * don't have to be perfect here, we just have to be good. | 
 |  */ | 
 | bool out_of_memory(struct oom_control *oc) | 
 | { | 
 | 	unsigned long freed = 0; | 
 |  | 
 | 	if (oom_killer_disabled) | 
 | 		return false; | 
 |  | 
 | 	if (!is_memcg_oom(oc)) { | 
 | 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | 
 | 		if (freed > 0) | 
 | 			/* Got some memory back in the last second. */ | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If current has a pending SIGKILL or is exiting, then automatically | 
 | 	 * select it.  The goal is to allow it to allocate so that it may | 
 | 	 * quickly exit and free its memory. | 
 | 	 */ | 
 | 	if (task_will_free_mem(current)) { | 
 | 		mark_oom_victim(current); | 
 | 		wake_oom_reaper(current); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The OOM killer does not compensate for IO-less reclaim. | 
 | 	 * pagefault_out_of_memory lost its gfp context so we have to | 
 | 	 * make sure exclude 0 mask - all other users should have at least | 
 | 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to | 
 | 	 * invoke the OOM killer even if it is a GFP_NOFS allocation. | 
 | 	 */ | 
 | 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Check if there were limitations on the allocation (only relevant for | 
 | 	 * NUMA and memcg) that may require different handling. | 
 | 	 */ | 
 | 	oc->constraint = constrained_alloc(oc); | 
 | 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY) | 
 | 		oc->nodemask = NULL; | 
 | 	check_panic_on_oom(oc); | 
 |  | 
 | 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && | 
 | 	    current->mm && !oom_unkillable_task(current) && | 
 | 	    oom_cpuset_eligible(current, oc) && | 
 | 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { | 
 | 		get_task_struct(current); | 
 | 		oc->chosen = current; | 
 | 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	select_bad_process(oc); | 
 | 	/* Found nothing?!?! */ | 
 | 	if (!oc->chosen) { | 
 | 		dump_header(oc, NULL); | 
 | 		pr_warn("Out of memory and no killable processes...\n"); | 
 | 		/* | 
 | 		 * If we got here due to an actual allocation at the | 
 | 		 * system level, we cannot survive this and will enter | 
 | 		 * an endless loop in the allocator. Bail out now. | 
 | 		 */ | 
 | 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) | 
 | 			panic("System is deadlocked on memory\n"); | 
 | 	} | 
 | 	if (oc->chosen && oc->chosen != (void *)-1UL) | 
 | 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : | 
 | 				 "Memory cgroup out of memory"); | 
 | 	return !!oc->chosen; | 
 | } | 
 |  | 
 | /* | 
 |  * The pagefault handler calls here because it is out of memory, so kill a | 
 |  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom | 
 |  * killing is already in progress so do nothing. | 
 |  */ | 
 | void pagefault_out_of_memory(void) | 
 | { | 
 | 	struct oom_control oc = { | 
 | 		.zonelist = NULL, | 
 | 		.nodemask = NULL, | 
 | 		.memcg = NULL, | 
 | 		.gfp_mask = 0, | 
 | 		.order = 0, | 
 | 	}; | 
 |  | 
 | 	if (mem_cgroup_oom_synchronize(true)) | 
 | 		return; | 
 |  | 
 | 	if (!mutex_trylock(&oom_lock)) | 
 | 		return; | 
 | 	out_of_memory(&oc); | 
 | 	mutex_unlock(&oom_lock); | 
 | } |