blob: 4900b37d2240e87ae6b37290ea998c87481a7f15 [file] [log] [blame]
/*
* linux/drivers/video/sa1100fb.c
*
* Copyright (C) 1999 Eric A. Thomas
* Based on acornfb.c Copyright (C) Russell King.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
* StrongARM 1100 LCD Controller Frame Buffer Driver
*
* Please direct your questions and comments on this driver to the following
* email address:
*
* linux-arm-kernel@lists.arm.linux.org.uk
*
* Clean patches should be sent to the ARM Linux Patch System. Please see the
* following web page for more information:
*
* http://www.arm.linux.org.uk/developer/patches/info.shtml
*
* Thank you.
*
* Known problems:
* - With the Neponset plugged into an Assabet, LCD powerdown
* doesn't work (LCD stays powered up). Therefore we shouldn't
* blank the screen.
* - We don't limit the CPU clock rate nor the mode selection
* according to the available SDRAM bandwidth.
*
* Other notes:
* - Linear grayscale palettes and the kernel.
* Such code does not belong in the kernel. The kernel frame buffer
* drivers do not expect a linear colourmap, but a colourmap based on
* the VT100 standard mapping.
*
* If your _userspace_ requires a linear colourmap, then the setup of
* such a colourmap belongs _in userspace_, not in the kernel. Code
* to set the colourmap correctly from user space has been sent to
* David Neuer. It's around 8 lines of C code, plus another 4 to
* detect if we are using grayscale.
*
* - The following must never be specified in a panel definition:
* LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
*
* - The following should be specified:
* either LCCR0_Color or LCCR0_Mono
* either LCCR0_Sngl or LCCR0_Dual
* either LCCR0_Act or LCCR0_Pas
* either LCCR3_OutEnH or LCCD3_OutEnL
* either LCCR3_PixRsEdg or LCCR3_PixFlEdg
* either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
*
* Code Status:
* 1999/04/01:
* - Driver appears to be working for Brutus 320x200x8bpp mode. Other
* resolutions are working, but only the 8bpp mode is supported.
* Changes need to be made to the palette encode and decode routines
* to support 4 and 16 bpp modes.
* Driver is not designed to be a module. The FrameBuffer is statically
* allocated since dynamic allocation of a 300k buffer cannot be
* guaranteed.
*
* 1999/06/17:
* - FrameBuffer memory is now allocated at run-time when the
* driver is initialized.
*
* 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
* - Big cleanup for dynamic selection of machine type at run time.
*
* 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
* - Support for Bitsy aka Compaq iPAQ H3600 added.
*
* 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
* Jeff Sutherland <jsutherland@accelent.com>
* - Resolved an issue caused by a change made to the Assabet's PLD
* earlier this year which broke the framebuffer driver for newer
* Phase 4 Assabets. Some other parameters were changed to optimize
* for the Sharp display.
*
* 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
* - XP860 support added
*
* 2000/08/19: Mark Huang <mhuang@livetoy.com>
* - Allows standard options to be passed on the kernel command line
* for most common passive displays.
*
* 2000/08/29:
* - s/save_flags_cli/local_irq_save/
* - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
*
* 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
* - Updated LART stuff. Fixed some minor bugs.
*
* 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
* - Pangolin support added
*
* 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
* - Huw Webpanel support added
*
* 2000/11/23: Eric Peng <ericpeng@coventive.com>
* - Freebird add
*
* 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
* Cliff Brake <cbrake@accelent.com>
* - Added PM callback
*
* 2001/05/26: <rmk@arm.linux.org.uk>
* - Fix 16bpp so that (a) we use the right colours rather than some
* totally random colour depending on what was in page 0, and (b)
* we don't de-reference a NULL pointer.
* - remove duplicated implementation of consistent_alloc()
* - convert dma address types to dma_addr_t
* - remove unused 'montype' stuff
* - remove redundant zero inits of init_var after the initial
* memset.
* - remove allow_modeset (acornfb idea does not belong here)
*
* 2001/05/28: <rmk@arm.linux.org.uk>
* - massive cleanup - move machine dependent data into structures
* - I've left various #warnings in - if you see one, and know
* the hardware concerned, please get in contact with me.
*
* 2001/05/31: <rmk@arm.linux.org.uk>
* - Fix LCCR1 HSW value, fix all machine type specifications to
* keep values in line. (Please check your machine type specs)
*
* 2001/06/10: <rmk@arm.linux.org.uk>
* - Fiddle with the LCD controller from task context only; mainly
* so that we can run with interrupts on, and sleep.
* - Convert #warnings into #errors. No pain, no gain. ;)
*
* 2001/06/14: <rmk@arm.linux.org.uk>
* - Make the palette BPS value for 12bpp come out correctly.
* - Take notice of "greyscale" on any colour depth.
* - Make truecolor visuals use the RGB channel encoding information.
*
* 2001/07/02: <rmk@arm.linux.org.uk>
* - Fix colourmap problems.
*
* 2001/07/13: <abraham@2d3d.co.za>
* - Added support for the ICP LCD-Kit01 on LART. This LCD is
* manufactured by Prime View, model no V16C6448AB
*
* 2001/07/23: <rmk@arm.linux.org.uk>
* - Hand merge version from handhelds.org CVS tree. See patch
* notes for 595/1 for more information.
* - Drop 12bpp (it's 16bpp with different colour register mappings).
* - This hardware can not do direct colour. Therefore we don't
* support it.
*
* 2001/07/27: <rmk@arm.linux.org.uk>
* - Halve YRES on dual scan LCDs.
*
* 2001/08/22: <rmk@arm.linux.org.uk>
* - Add b/w iPAQ pixclock value.
*
* 2001/10/12: <rmk@arm.linux.org.uk>
* - Add patch 681/1 and clean up stork definitions.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/cpufreq.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include <video/sa1100fb.h>
#include <mach/hardware.h>
#include <asm/mach-types.h>
#include <mach/shannon.h>
/*
* Complain if VAR is out of range.
*/
#define DEBUG_VAR 1
#include "sa1100fb.h"
static const struct sa1100fb_rgb rgb_4 = {
.red = { .offset = 0, .length = 4, },
.green = { .offset = 0, .length = 4, },
.blue = { .offset = 0, .length = 4, },
.transp = { .offset = 0, .length = 0, },
};
static const struct sa1100fb_rgb rgb_8 = {
.red = { .offset = 0, .length = 8, },
.green = { .offset = 0, .length = 8, },
.blue = { .offset = 0, .length = 8, },
.transp = { .offset = 0, .length = 0, },
};
static const struct sa1100fb_rgb def_rgb_16 = {
.red = { .offset = 11, .length = 5, },
.green = { .offset = 5, .length = 6, },
.blue = { .offset = 0, .length = 5, },
.transp = { .offset = 0, .length = 0, },
};
static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
{
unsigned long flags;
local_irq_save(flags);
/*
* We need to handle two requests being made at the same time.
* There are two important cases:
* 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
* We must perform the unblanking, which will do our REENABLE for us.
* 2. When we are blanking, but immediately unblank before we have
* blanked. We do the "REENABLE" thing here as well, just to be sure.
*/
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
state = (u_int) -1;
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
state = C_REENABLE;
if (state != (u_int)-1) {
fbi->task_state = state;
schedule_work(&fbi->task);
}
local_irq_restore(flags);
}
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
/*
* Convert bits-per-pixel to a hardware palette PBS value.
*/
static inline u_int palette_pbs(struct fb_var_screeninfo *var)
{
int ret = 0;
switch (var->bits_per_pixel) {
case 4: ret = 0 << 12; break;
case 8: ret = 1 << 12; break;
case 16: ret = 2 << 12; break;
}
return ret;
}
static int
sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct sa1100fb_info *fbi =
container_of(info, struct sa1100fb_info, fb);
u_int val, ret = 1;
if (regno < fbi->palette_size) {
val = ((red >> 4) & 0xf00);
val |= ((green >> 8) & 0x0f0);
val |= ((blue >> 12) & 0x00f);
if (regno == 0)
val |= palette_pbs(&fbi->fb.var);
fbi->palette_cpu[regno] = val;
ret = 0;
}
return ret;
}
static int
sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct sa1100fb_info *fbi =
container_of(info, struct sa1100fb_info, fb);
unsigned int val;
int ret = 1;
/*
* If inverse mode was selected, invert all the colours
* rather than the register number. The register number
* is what you poke into the framebuffer to produce the
* colour you requested.
*/
if (fbi->inf->cmap_inverse) {
red = 0xffff - red;
green = 0xffff - green;
blue = 0xffff - blue;
}
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no mater what visual we are using.
*/
if (fbi->fb.var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fbi->fb.fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 12 or 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno < 16) {
u32 *pal = fbi->fb.pseudo_palette;
val = chan_to_field(red, &fbi->fb.var.red);
val |= chan_to_field(green, &fbi->fb.var.green);
val |= chan_to_field(blue, &fbi->fb.var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
break;
}
return ret;
}
#ifdef CONFIG_CPU_FREQ
/*
* sa1100fb_display_dma_period()
* Calculate the minimum period (in picoseconds) between two DMA
* requests for the LCD controller. If we hit this, it means we're
* doing nothing but LCD DMA.
*/
static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
{
/*
* Period = pixclock * bits_per_byte * bytes_per_transfer
* / memory_bits_per_pixel;
*/
return var->pixclock * 8 * 16 / var->bits_per_pixel;
}
#endif
/*
* sa1100fb_check_var():
* Round up in the following order: bits_per_pixel, xres,
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
* bitfields, horizontal timing, vertical timing.
*/
static int
sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct sa1100fb_info *fbi =
container_of(info, struct sa1100fb_info, fb);
int rgbidx;
if (var->xres < MIN_XRES)
var->xres = MIN_XRES;
if (var->yres < MIN_YRES)
var->yres = MIN_YRES;
if (var->xres > fbi->inf->xres)
var->xres = fbi->inf->xres;
if (var->yres > fbi->inf->yres)
var->yres = fbi->inf->yres;
var->xres_virtual = max(var->xres_virtual, var->xres);
var->yres_virtual = max(var->yres_virtual, var->yres);
dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
switch (var->bits_per_pixel) {
case 4:
rgbidx = RGB_4;
break;
case 8:
rgbidx = RGB_8;
break;
case 16:
rgbidx = RGB_16;
break;
default:
return -EINVAL;
}
/*
* Copy the RGB parameters for this display
* from the machine specific parameters.
*/
var->red = fbi->rgb[rgbidx]->red;
var->green = fbi->rgb[rgbidx]->green;
var->blue = fbi->rgb[rgbidx]->blue;
var->transp = fbi->rgb[rgbidx]->transp;
dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
var->red.length, var->green.length, var->blue.length,
var->transp.length);
dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
var->red.offset, var->green.offset, var->blue.offset,
var->transp.offset);
#ifdef CONFIG_CPU_FREQ
dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
sa1100fb_display_dma_period(var),
cpufreq_get(smp_processor_id()));
#endif
return 0;
}
static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
{
if (fbi->inf->set_visual)
fbi->inf->set_visual(visual);
}
/*
* sa1100fb_set_par():
* Set the user defined part of the display for the specified console
*/
static int sa1100fb_set_par(struct fb_info *info)
{
struct sa1100fb_info *fbi =
container_of(info, struct sa1100fb_info, fb);
struct fb_var_screeninfo *var = &info->var;
unsigned long palette_mem_size;
dev_dbg(fbi->dev, "set_par\n");
if (var->bits_per_pixel == 16)
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
else if (!fbi->inf->cmap_static)
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
else {
/*
* Some people have weird ideas about wanting static
* pseudocolor maps. I suspect their user space
* applications are broken.
*/
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
}
fbi->fb.fix.line_length = var->xres_virtual *
var->bits_per_pixel / 8;
fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
palette_mem_size = fbi->palette_size * sizeof(u16);
dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
/*
* Set (any) board control register to handle new color depth
*/
sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
sa1100fb_activate_var(var, fbi);
return 0;
}
#if 0
static int
sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
struct fb_info *info)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
/*
* Make sure the user isn't doing something stupid.
*/
if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
return -EINVAL;
return gen_set_cmap(cmap, kspc, con, info);
}
#endif
/*
* Formal definition of the VESA spec:
* On
* This refers to the state of the display when it is in full operation
* Stand-By
* This defines an optional operating state of minimal power reduction with
* the shortest recovery time
* Suspend
* This refers to a level of power management in which substantial power
* reduction is achieved by the display. The display can have a longer
* recovery time from this state than from the Stand-by state
* Off
* This indicates that the display is consuming the lowest level of power
* and is non-operational. Recovery from this state may optionally require
* the user to manually power on the monitor
*
* Now, the fbdev driver adds an additional state, (blank), where they
* turn off the video (maybe by colormap tricks), but don't mess with the
* video itself: think of it semantically between on and Stand-By.
*
* So here's what we should do in our fbdev blank routine:
*
* VESA_NO_BLANKING (mode 0) Video on, front/back light on
* VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
* VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
* VESA_POWERDOWN (mode 3) Video off, front/back light off
*
* This will match the matrox implementation.
*/
/*
* sa1100fb_blank():
* Blank the display by setting all palette values to zero. Note, the
* 12 and 16 bpp modes don't really use the palette, so this will not
* blank the display in all modes.
*/
static int sa1100fb_blank(int blank, struct fb_info *info)
{
struct sa1100fb_info *fbi =
container_of(info, struct sa1100fb_info, fb);
int i;
dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
for (i = 0; i < fbi->palette_size; i++)
sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
sa1100fb_schedule_work(fbi, C_DISABLE);
break;
case FB_BLANK_UNBLANK:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
fb_set_cmap(&fbi->fb.cmap, info);
sa1100fb_schedule_work(fbi, C_ENABLE);
}
return 0;
}
static int sa1100fb_mmap(struct fb_info *info,
struct vm_area_struct *vma)
{
struct sa1100fb_info *fbi =
container_of(info, struct sa1100fb_info, fb);
unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
if (off < info->fix.smem_len) {
vma->vm_pgoff += 1; /* skip over the palette */
return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
fbi->map_dma, fbi->map_size);
}
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
}
static struct fb_ops sa1100fb_ops = {
.owner = THIS_MODULE,
.fb_check_var = sa1100fb_check_var,
.fb_set_par = sa1100fb_set_par,
// .fb_set_cmap = sa1100fb_set_cmap,
.fb_setcolreg = sa1100fb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = sa1100fb_blank,
.fb_mmap = sa1100fb_mmap,
};
/*
* Calculate the PCD value from the clock rate (in picoseconds).
* We take account of the PPCR clock setting.
*/
static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
{
unsigned int pcd = cpuclock / 100;
pcd *= pixclock;
pcd /= 10000000;
return pcd + 1; /* make up for integer math truncations */
}
/*
* sa1100fb_activate_var():
* Configures LCD Controller based on entries in var parameter. Settings are
* only written to the controller if changes were made.
*/
static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
{
struct sa1100fb_lcd_reg new_regs;
u_int half_screen_size, yres, pcd;
u_long flags;
dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
var->xres, var->hsync_len,
var->left_margin, var->right_margin);
dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
var->yres, var->vsync_len,
var->upper_margin, var->lower_margin);
#if DEBUG_VAR
if (var->xres < 16 || var->xres > 1024)
dev_err(fbi->dev, "%s: invalid xres %d\n",
fbi->fb.fix.id, var->xres);
if (var->hsync_len < 1 || var->hsync_len > 64)
dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
fbi->fb.fix.id, var->hsync_len);
if (var->left_margin < 1 || var->left_margin > 255)
dev_err(fbi->dev, "%s: invalid left_margin %d\n",
fbi->fb.fix.id, var->left_margin);
if (var->right_margin < 1 || var->right_margin > 255)
dev_err(fbi->dev, "%s: invalid right_margin %d\n",
fbi->fb.fix.id, var->right_margin);
if (var->yres < 1 || var->yres > 1024)
dev_err(fbi->dev, "%s: invalid yres %d\n",
fbi->fb.fix.id, var->yres);
if (var->vsync_len < 1 || var->vsync_len > 64)
dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
fbi->fb.fix.id, var->vsync_len);
if (var->upper_margin < 0 || var->upper_margin > 255)
dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
fbi->fb.fix.id, var->upper_margin);
if (var->lower_margin < 0 || var->lower_margin > 255)
dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
fbi->fb.fix.id, var->lower_margin);
#endif
new_regs.lccr0 = fbi->inf->lccr0 |
LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
new_regs.lccr1 =
LCCR1_DisWdth(var->xres) +
LCCR1_HorSnchWdth(var->hsync_len) +
LCCR1_BegLnDel(var->left_margin) +
LCCR1_EndLnDel(var->right_margin);
/*
* If we have a dual scan LCD, then we need to halve
* the YRES parameter.
*/
yres = var->yres;
if (fbi->inf->lccr0 & LCCR0_Dual)
yres /= 2;
new_regs.lccr2 =
LCCR2_DisHght(yres) +
LCCR2_VrtSnchWdth(var->vsync_len) +
LCCR2_BegFrmDel(var->upper_margin) +
LCCR2_EndFrmDel(var->lower_margin);
pcd = get_pcd(var->pixclock, cpufreq_get(0));
new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
half_screen_size = var->bits_per_pixel;
half_screen_size = half_screen_size * var->xres * var->yres / 16;
/* Update shadow copy atomically */
local_irq_save(flags);
fbi->dbar1 = fbi->palette_dma;
fbi->dbar2 = fbi->screen_dma + half_screen_size;
fbi->reg_lccr0 = new_regs.lccr0;
fbi->reg_lccr1 = new_regs.lccr1;
fbi->reg_lccr2 = new_regs.lccr2;
fbi->reg_lccr3 = new_regs.lccr3;
local_irq_restore(flags);
/*
* Only update the registers if the controller is enabled
* and something has changed.
*/
if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
sa1100fb_schedule_work(fbi, C_REENABLE);
return 0;
}
/*
* NOTE! The following functions are purely helpers for set_ctrlr_state.
* Do not call them directly; set_ctrlr_state does the correct serialisation
* to ensure that things happen in the right way 100% of time time.
* -- rmk
*/
static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
{
dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
if (fbi->inf->backlight_power)
fbi->inf->backlight_power(on);
}
static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
{
dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
if (fbi->inf->lcd_power)
fbi->inf->lcd_power(on);
}
static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
{
u_int mask = 0;
/*
* Enable GPIO<9:2> for LCD use if:
* 1. Active display, or
* 2. Color Dual Passive display
*
* see table 11.8 on page 11-27 in the SA1100 manual
* -- Erik.
*
* SA1110 spec update nr. 25 says we can and should
* clear LDD15 to 12 for 4 or 8bpp modes with active
* panels.
*/
if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
(fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
if (fbi->fb.var.bits_per_pixel > 8 ||
(fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
}
if (mask) {
unsigned long flags;
/*
* SA-1100 requires the GPIO direction register set
* appropriately for the alternate function. Hence
* we set it here via bitmask rather than excessive
* fiddling via the GPIO subsystem - and even then
* we'll still have to deal with GAFR.
*/
local_irq_save(flags);
GPDR |= mask;
GAFR |= mask;
local_irq_restore(flags);
}
}
static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
{
dev_dbg(fbi->dev, "Enabling LCD controller\n");
/*
* Make sure the mode bits are present in the first palette entry
*/
fbi->palette_cpu[0] &= 0xcfff;
fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
/* Sequence from 11.7.10 */
writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
if (machine_is_shannon())
gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
}
static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
{
DECLARE_WAITQUEUE(wait, current);
u32 lccr0;
dev_dbg(fbi->dev, "Disabling LCD controller\n");
if (machine_is_shannon())
gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&fbi->ctrlr_wait, &wait);
/* Clear LCD Status Register */
writel_relaxed(~0, fbi->base + LCSR);
lccr0 = readl_relaxed(fbi->base + LCCR0);
lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
writel_relaxed(lccr0, fbi->base + LCCR0);
lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */
writel_relaxed(lccr0, fbi->base + LCCR0);
schedule_timeout(20 * HZ / 1000);
remove_wait_queue(&fbi->ctrlr_wait, &wait);
}
/*
* sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
*/
static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
{
struct sa1100fb_info *fbi = dev_id;
unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
if (lcsr & LCSR_LDD) {
u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
writel_relaxed(lccr0, fbi->base + LCCR0);
wake_up(&fbi->ctrlr_wait);
}
writel_relaxed(lcsr, fbi->base + LCSR);
return IRQ_HANDLED;
}
/*
* This function must be called from task context only, since it will
* sleep when disabling the LCD controller, or if we get two contending
* processes trying to alter state.
*/
static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
{
u_int old_state;
mutex_lock(&fbi->ctrlr_lock);
old_state = fbi->state;
/*
* Hack around fbcon initialisation.
*/
if (old_state == C_STARTUP && state == C_REENABLE)
state = C_ENABLE;
switch (state) {
case C_DISABLE_CLKCHANGE:
/*
* Disable controller for clock change. If the
* controller is already disabled, then do nothing.
*/
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
fbi->state = state;
sa1100fb_disable_controller(fbi);
}
break;
case C_DISABLE_PM:
case C_DISABLE:
/*
* Disable controller
*/
if (old_state != C_DISABLE) {
fbi->state = state;
__sa1100fb_backlight_power(fbi, 0);
if (old_state != C_DISABLE_CLKCHANGE)
sa1100fb_disable_controller(fbi);
__sa1100fb_lcd_power(fbi, 0);
}
break;
case C_ENABLE_CLKCHANGE:
/*
* Enable the controller after clock change. Only
* do this if we were disabled for the clock change.
*/
if (old_state == C_DISABLE_CLKCHANGE) {
fbi->state = C_ENABLE;
sa1100fb_enable_controller(fbi);
}
break;
case C_REENABLE:
/*
* Re-enable the controller only if it was already
* enabled. This is so we reprogram the control
* registers.
*/
if (old_state == C_ENABLE) {
sa1100fb_disable_controller(fbi);
sa1100fb_setup_gpio(fbi);
sa1100fb_enable_controller(fbi);
}
break;
case C_ENABLE_PM:
/*
* Re-enable the controller after PM. This is not
* perfect - think about the case where we were doing
* a clock change, and we suspended half-way through.
*/
if (old_state != C_DISABLE_PM)
break;
/* fall through */
case C_ENABLE:
/*
* Power up the LCD screen, enable controller, and
* turn on the backlight.
*/
if (old_state != C_ENABLE) {
fbi->state = C_ENABLE;
sa1100fb_setup_gpio(fbi);
__sa1100fb_lcd_power(fbi, 1);
sa1100fb_enable_controller(fbi);
__sa1100fb_backlight_power(fbi, 1);
}
break;
}
mutex_unlock(&fbi->ctrlr_lock);
}
/*
* Our LCD controller task (which is called when we blank or unblank)
* via keventd.
*/
static void sa1100fb_task(struct work_struct *w)
{
struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
u_int state = xchg(&fbi->task_state, -1);
set_ctrlr_state(fbi, state);
}
#ifdef CONFIG_CPU_FREQ
/*
* Calculate the minimum DMA period over all displays that we own.
* This, together with the SDRAM bandwidth defines the slowest CPU
* frequency that can be selected.
*/
static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
{
#if 0
unsigned int min_period = (unsigned int)-1;
int i;
for (i = 0; i < MAX_NR_CONSOLES; i++) {
struct display *disp = &fb_display[i];
unsigned int period;
/*
* Do we own this display?
*/
if (disp->fb_info != &fbi->fb)
continue;
/*
* Ok, calculate its DMA period
*/
period = sa1100fb_display_dma_period(&disp->var);
if (period < min_period)
min_period = period;
}
return min_period;
#else
/*
* FIXME: we need to verify _all_ consoles.
*/
return sa1100fb_display_dma_period(&fbi->fb.var);
#endif
}
/*
* CPU clock speed change handler. We need to adjust the LCD timing
* parameters when the CPU clock is adjusted by the power management
* subsystem.
*/
static int
sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
void *data)
{
struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
struct cpufreq_freqs *f = data;
u_int pcd;
switch (val) {
case CPUFREQ_PRECHANGE:
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
break;
case CPUFREQ_POSTCHANGE:
pcd = get_pcd(fbi->fb.var.pixclock, f->new);
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
break;
}
return 0;
}
static int
sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
void *data)
{
struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
struct cpufreq_policy *policy = data;
switch (val) {
case CPUFREQ_ADJUST:
case CPUFREQ_INCOMPATIBLE:
dev_dbg(fbi->dev, "min dma period: %d ps, "
"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
policy->max);
/* todo: fill in min/max values */
break;
case CPUFREQ_NOTIFY:
do {} while(0);
/* todo: panic if min/max values aren't fulfilled
* [can't really happen unless there's a bug in the
* CPU policy verififcation process *
*/
break;
}
return 0;
}
#endif
#ifdef CONFIG_PM
/*
* Power management hooks. Note that we won't be called from IRQ context,
* unlike the blank functions above, so we may sleep.
*/
static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
{
struct sa1100fb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_DISABLE_PM);
return 0;
}
static int sa1100fb_resume(struct platform_device *dev)
{
struct sa1100fb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_ENABLE_PM);
return 0;
}
#else
#define sa1100fb_suspend NULL
#define sa1100fb_resume NULL
#endif
/*
* sa1100fb_map_video_memory():
* Allocates the DRAM memory for the frame buffer. This buffer is
* remapped into a non-cached, non-buffered, memory region to
* allow palette and pixel writes to occur without flushing the
* cache. Once this area is remapped, all virtual memory
* access to the video memory should occur at the new region.
*/
static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
{
/*
* We reserve one page for the palette, plus the size
* of the framebuffer.
*/
fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
&fbi->map_dma, GFP_KERNEL);
if (fbi->map_cpu) {
fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
/*
* FIXME: this is actually the wrong thing to place in
* smem_start. But fbdev suffers from the problem that
* it needs an API which doesn't exist (in this case,
* dma_writecombine_mmap)
*/
fbi->fb.fix.smem_start = fbi->screen_dma;
}
return fbi->map_cpu ? 0 : -ENOMEM;
}
/* Fake monspecs to fill in fbinfo structure */
static struct fb_monspecs monspecs = {
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 50,
.vfmax = 65,
};
static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
{
struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
struct sa1100fb_info *fbi;
unsigned i;
fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
GFP_KERNEL);
if (!fbi)
return NULL;
memset(fbi, 0, sizeof(struct sa1100fb_info));
fbi->dev = dev;
strcpy(fbi->fb.fix.id, SA1100_NAME);
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
fbi->fb.fix.type_aux = 0;
fbi->fb.fix.xpanstep = 0;
fbi->fb.fix.ypanstep = 0;
fbi->fb.fix.ywrapstep = 0;
fbi->fb.fix.accel = FB_ACCEL_NONE;
fbi->fb.var.nonstd = 0;
fbi->fb.var.activate = FB_ACTIVATE_NOW;
fbi->fb.var.height = -1;
fbi->fb.var.width = -1;
fbi->fb.var.accel_flags = 0;
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
fbi->fb.fbops = &sa1100fb_ops;
fbi->fb.flags = FBINFO_DEFAULT;
fbi->fb.monspecs = monspecs;
fbi->fb.pseudo_palette = (fbi + 1);
fbi->rgb[RGB_4] = &rgb_4;
fbi->rgb[RGB_8] = &rgb_8;
fbi->rgb[RGB_16] = &def_rgb_16;
/*
* People just don't seem to get this. We don't support
* anything but correct entries now, so panic if someone
* does something stupid.
*/
if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
inf->pixclock == 0)
panic("sa1100fb error: invalid LCCR3 fields set or zero "
"pixclock.");
fbi->fb.var.xres = inf->xres;
fbi->fb.var.xres_virtual = inf->xres;
fbi->fb.var.yres = inf->yres;
fbi->fb.var.yres_virtual = inf->yres;
fbi->fb.var.bits_per_pixel = inf->bpp;
fbi->fb.var.pixclock = inf->pixclock;
fbi->fb.var.hsync_len = inf->hsync_len;
fbi->fb.var.left_margin = inf->left_margin;
fbi->fb.var.right_margin = inf->right_margin;
fbi->fb.var.vsync_len = inf->vsync_len;
fbi->fb.var.upper_margin = inf->upper_margin;
fbi->fb.var.lower_margin = inf->lower_margin;
fbi->fb.var.sync = inf->sync;
fbi->fb.var.grayscale = inf->cmap_greyscale;
fbi->state = C_STARTUP;
fbi->task_state = (u_char)-1;
fbi->fb.fix.smem_len = inf->xres * inf->yres *
inf->bpp / 8;
fbi->inf = inf;
/* Copy the RGB bitfield overrides */
for (i = 0; i < NR_RGB; i++)
if (inf->rgb[i])
fbi->rgb[i] = inf->rgb[i];
init_waitqueue_head(&fbi->ctrlr_wait);
INIT_WORK(&fbi->task, sa1100fb_task);
mutex_init(&fbi->ctrlr_lock);
return fbi;
}
static int sa1100fb_probe(struct platform_device *pdev)
{
struct sa1100fb_info *fbi;
struct resource *res;
int ret, irq;
if (!dev_get_platdata(&pdev->dev)) {
dev_err(&pdev->dev, "no platform LCD data\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (irq < 0 || !res)
return -EINVAL;
if (!request_mem_region(res->start, resource_size(res), "LCD"))
return -EBUSY;
fbi = sa1100fb_init_fbinfo(&pdev->dev);
ret = -ENOMEM;
if (!fbi)
goto failed;
fbi->base = ioremap(res->start, resource_size(res));
if (!fbi->base)
goto failed;
/* Initialize video memory */
ret = sa1100fb_map_video_memory(fbi);
if (ret)
goto failed;
ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
if (ret) {
dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
goto failed;
}
if (machine_is_shannon()) {
ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
GPIOF_OUT_INIT_LOW, "display enable");
if (ret)
goto err_free_irq;
}
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
*/
sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
platform_set_drvdata(pdev, fbi);
ret = register_framebuffer(&fbi->fb);
if (ret < 0)
goto err_reg_fb;
#ifdef CONFIG_CPU_FREQ
fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
#endif
/* This driver cannot be unloaded at the moment */
return 0;
err_reg_fb:
if (machine_is_shannon())
gpio_free(SHANNON_GPIO_DISP_EN);
err_free_irq:
free_irq(irq, fbi);
failed:
if (fbi)
iounmap(fbi->base);
kfree(fbi);
release_mem_region(res->start, resource_size(res));
return ret;
}
static struct platform_driver sa1100fb_driver = {
.probe = sa1100fb_probe,
.suspend = sa1100fb_suspend,
.resume = sa1100fb_resume,
.driver = {
.name = "sa11x0-fb",
},
};
int __init sa1100fb_init(void)
{
if (fb_get_options("sa1100fb", NULL))
return -ENODEV;
return platform_driver_register(&sa1100fb_driver);
}
int __init sa1100fb_setup(char *options)
{
#if 0
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "bpp:", 4))
current_par.max_bpp =
simple_strtoul(this_opt + 4, NULL, 0);
if (!strncmp(this_opt, "lccr0:", 6))
lcd_shadow.lccr0 =
simple_strtoul(this_opt + 6, NULL, 0);
if (!strncmp(this_opt, "lccr1:", 6)) {
lcd_shadow.lccr1 =
simple_strtoul(this_opt + 6, NULL, 0);
current_par.max_xres =
(lcd_shadow.lccr1 & 0x3ff) + 16;
}
if (!strncmp(this_opt, "lccr2:", 6)) {
lcd_shadow.lccr2 =
simple_strtoul(this_opt + 6, NULL, 0);
current_par.max_yres =
(lcd_shadow.
lccr0 & LCCR0_SDS) ? ((lcd_shadow.
lccr2 & 0x3ff) +
1) *
2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
}
if (!strncmp(this_opt, "lccr3:", 6))
lcd_shadow.lccr3 =
simple_strtoul(this_opt + 6, NULL, 0);
}
#endif
return 0;
}
module_init(sa1100fb_init);
MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
MODULE_LICENSE("GPL");