blob: 768012243b44040c76cb09a504349e37f99a1543 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/sort.h>
#include <linux/debugfs.h>
#include <linux/ktime.h>
#include <linux/bits.h>
#include <drm/drm_atomic.h>
#include <drm/drm_crtc.h>
#include <drm/drm_flip_work.h>
#include <drm/drm_mode.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_rect.h>
#include <drm/drm_vblank.h>
#include "dpu_kms.h"
#include "dpu_hw_lm.h"
#include "dpu_hw_ctl.h"
#include "dpu_hw_dspp.h"
#include "dpu_crtc.h"
#include "dpu_plane.h"
#include "dpu_encoder.h"
#include "dpu_vbif.h"
#include "dpu_core_perf.h"
#include "dpu_trace.h"
/* layer mixer index on dpu_crtc */
#define LEFT_MIXER 0
#define RIGHT_MIXER 1
/* timeout in ms waiting for frame done */
#define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
#define CONVERT_S3_15(val) \
(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
{
struct msm_drm_private *priv = crtc->dev->dev_private;
return to_dpu_kms(priv->kms);
}
static void dpu_crtc_destroy(struct drm_crtc *crtc)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
if (!crtc)
return;
drm_crtc_cleanup(crtc);
kfree(dpu_crtc);
}
static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_encoder *encoder;
drm_for_each_encoder(encoder, dev)
if (encoder->crtc == crtc)
return encoder;
return NULL;
}
static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
encoder = get_encoder_from_crtc(crtc);
if (!encoder) {
DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
return false;
}
return dpu_encoder_get_frame_count(encoder);
}
static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
bool in_vblank_irq,
int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
unsigned int pipe = crtc->index;
struct drm_encoder *encoder;
int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
encoder = get_encoder_from_crtc(crtc);
if (!encoder) {
DRM_ERROR("no encoder found for crtc %d\n", pipe);
return false;
}
vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
/*
* the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
* the end of VFP. Translate the porch values relative to the line
* counter positions.
*/
vactive_start = vsw + vbp + 1;
vactive_end = vactive_start + mode->crtc_vdisplay;
/* last scan line before VSYNC */
vfp_end = mode->crtc_vtotal;
if (stime)
*stime = ktime_get();
line = dpu_encoder_get_linecount(encoder);
if (line < vactive_start)
line -= vactive_start;
else if (line > vactive_end)
line = line - vfp_end - vactive_start;
else
line -= vactive_start;
*vpos = line;
*hpos = 0;
if (etime)
*etime = ktime_get();
return true;
}
static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
struct dpu_plane_state *pstate, struct dpu_format *format)
{
struct dpu_hw_mixer *lm = mixer->hw_lm;
uint32_t blend_op;
uint32_t fg_alpha, bg_alpha;
fg_alpha = pstate->base.alpha >> 8;
bg_alpha = 0xff - fg_alpha;
/* default to opaque blending */
if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
!format->alpha_enable) {
blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
DPU_BLEND_BG_ALPHA_BG_CONST;
} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
DPU_BLEND_BG_ALPHA_FG_PIXEL;
if (fg_alpha != 0xff) {
bg_alpha = fg_alpha;
blend_op |= DPU_BLEND_BG_MOD_ALPHA |
DPU_BLEND_BG_INV_MOD_ALPHA;
} else {
blend_op |= DPU_BLEND_BG_INV_ALPHA;
}
} else {
/* coverage blending */
blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
DPU_BLEND_BG_ALPHA_FG_PIXEL;
if (fg_alpha != 0xff) {
bg_alpha = fg_alpha;
blend_op |= DPU_BLEND_FG_MOD_ALPHA |
DPU_BLEND_FG_INV_MOD_ALPHA |
DPU_BLEND_BG_MOD_ALPHA |
DPU_BLEND_BG_INV_MOD_ALPHA;
} else {
blend_op |= DPU_BLEND_BG_INV_ALPHA;
}
}
lm->ops.setup_blend_config(lm, pstate->stage,
fg_alpha, bg_alpha, blend_op);
DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
&format->base.pixel_format, format->alpha_enable, blend_op);
}
static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
{
struct dpu_crtc_state *crtc_state;
int lm_idx, lm_horiz_position;
crtc_state = to_dpu_crtc_state(crtc->state);
lm_horiz_position = 0;
for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
struct dpu_hw_mixer_cfg cfg;
if (!lm_roi || !drm_rect_visible(lm_roi))
continue;
cfg.out_width = drm_rect_width(lm_roi);
cfg.out_height = drm_rect_height(lm_roi);
cfg.right_mixer = lm_horiz_position++;
cfg.flags = 0;
hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
}
}
static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer)
{
struct drm_plane *plane;
struct drm_framebuffer *fb;
struct drm_plane_state *state;
struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
struct dpu_plane_state *pstate = NULL;
struct dpu_format *format;
struct dpu_hw_ctl *ctl = mixer->lm_ctl;
struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg;
u32 flush_mask;
uint32_t stage_idx, lm_idx;
int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
bool bg_alpha_enable = false;
DECLARE_BITMAP(fetch_active, SSPP_MAX);
memset(fetch_active, 0, sizeof(fetch_active));
drm_atomic_crtc_for_each_plane(plane, crtc) {
state = plane->state;
if (!state)
continue;
pstate = to_dpu_plane_state(state);
fb = state->fb;
dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
set_bit(dpu_plane_pipe(plane), fetch_active);
DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
crtc->base.id,
pstate->stage,
plane->base.id,
dpu_plane_pipe(plane) - SSPP_VIG0,
state->fb ? state->fb->base.id : -1);
format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
bg_alpha_enable = true;
stage_idx = zpos_cnt[pstate->stage]++;
stage_cfg->stage[pstate->stage][stage_idx] =
dpu_plane_pipe(plane);
stage_cfg->multirect_index[pstate->stage][stage_idx] =
pstate->multirect_index;
trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
state, pstate, stage_idx,
dpu_plane_pipe(plane) - SSPP_VIG0,
format->base.pixel_format,
fb ? fb->modifier : 0);
/* blend config update */
for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
_dpu_crtc_setup_blend_cfg(mixer + lm_idx,
pstate, format);
mixer[lm_idx].flush_mask |= flush_mask;
if (bg_alpha_enable && !format->alpha_enable)
mixer[lm_idx].mixer_op_mode = 0;
else
mixer[lm_idx].mixer_op_mode |=
1 << pstate->stage;
}
}
if (ctl->ops.set_active_pipes)
ctl->ops.set_active_pipes(ctl, fetch_active);
_dpu_crtc_program_lm_output_roi(crtc);
}
/**
* _dpu_crtc_blend_setup - configure crtc mixers
* @crtc: Pointer to drm crtc structure
*/
static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
struct dpu_crtc_mixer *mixer = cstate->mixers;
struct dpu_hw_ctl *ctl;
struct dpu_hw_mixer *lm;
int i;
DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
for (i = 0; i < cstate->num_mixers; i++) {
mixer[i].mixer_op_mode = 0;
mixer[i].flush_mask = 0;
if (mixer[i].lm_ctl->ops.clear_all_blendstages)
mixer[i].lm_ctl->ops.clear_all_blendstages(
mixer[i].lm_ctl);
}
/* initialize stage cfg */
memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer);
for (i = 0; i < cstate->num_mixers; i++) {
ctl = mixer[i].lm_ctl;
lm = mixer[i].hw_lm;
lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
mixer[i].hw_lm->idx);
/* stage config flush mask */
ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
mixer[i].hw_lm->idx - LM_0,
mixer[i].mixer_op_mode,
ctl->idx - CTL_0,
mixer[i].flush_mask);
ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
&dpu_crtc->stage_cfg);
}
}
/**
* _dpu_crtc_complete_flip - signal pending page_flip events
* Any pending vblank events are added to the vblank_event_list
* so that the next vblank interrupt shall signal them.
* However PAGE_FLIP events are not handled through the vblank_event_list.
* This API signals any pending PAGE_FLIP events requested through
* DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
* @crtc: Pointer to drm crtc structure
*/
static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (dpu_crtc->event) {
DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
dpu_crtc->event);
trace_dpu_crtc_complete_flip(DRMID(crtc));
drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
dpu_crtc->event = NULL;
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
/*
* TODO: This function is called from dpu debugfs and as part of atomic
* check. When called from debugfs, the crtc->mutex must be held to
* read crtc->state. However reading crtc->state from atomic check isn't
* allowed (unless you have a good reason, a big comment, and a deep
* understanding of how the atomic/modeset locks work (<- and this is
* probably not possible)). So we'll keep the WARN_ON here for now, but
* really we need to figure out a better way to track our operating mode
*/
WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
/* TODO: Returns the first INTF_MODE, could there be multiple values? */
drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
return dpu_encoder_get_intf_mode(encoder);
return INTF_MODE_NONE;
}
void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
/* keep statistics on vblank callback - with auto reset via debugfs */
if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
dpu_crtc->vblank_cb_time = ktime_get();
else
dpu_crtc->vblank_cb_count++;
drm_crtc_handle_vblank(crtc);
trace_dpu_crtc_vblank_cb(DRMID(crtc));
}
static void dpu_crtc_frame_event_work(struct kthread_work *work)
{
struct dpu_crtc_frame_event *fevent = container_of(work,
struct dpu_crtc_frame_event, work);
struct drm_crtc *crtc = fevent->crtc;
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
unsigned long flags;
bool frame_done = false;
DPU_ATRACE_BEGIN("crtc_frame_event");
DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
ktime_to_ns(fevent->ts));
if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
| DPU_ENCODER_FRAME_EVENT_ERROR
| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
if (atomic_read(&dpu_crtc->frame_pending) < 1) {
/* ignore vblank when not pending */
} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
/* release bandwidth and other resources */
trace_dpu_crtc_frame_event_done(DRMID(crtc),
fevent->event);
dpu_core_perf_crtc_release_bw(crtc);
} else {
trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
fevent->event);
}
if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
| DPU_ENCODER_FRAME_EVENT_ERROR))
frame_done = true;
}
if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
crtc->base.id, ktime_to_ns(fevent->ts));
if (frame_done)
complete_all(&dpu_crtc->frame_done_comp);
spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
DPU_ATRACE_END("crtc_frame_event");
}
/*
* dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
* registers this API to encoder for all frame event callbacks like
* frame_error, frame_done, idle_timeout, etc. Encoder may call different events
* from different context - IRQ, user thread, commit_thread, etc. Each event
* should be carefully reviewed and should be processed in proper task context
* to avoid schedulin delay or properly manage the irq context's bottom half
* processing.
*/
static void dpu_crtc_frame_event_cb(void *data, u32 event)
{
struct drm_crtc *crtc = (struct drm_crtc *)data;
struct dpu_crtc *dpu_crtc;
struct msm_drm_private *priv;
struct dpu_crtc_frame_event *fevent;
unsigned long flags;
u32 crtc_id;
/* Nothing to do on idle event */
if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
return;
dpu_crtc = to_dpu_crtc(crtc);
priv = crtc->dev->dev_private;
crtc_id = drm_crtc_index(crtc);
trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
struct dpu_crtc_frame_event, list);
if (fevent)
list_del_init(&fevent->list);
spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
if (!fevent) {
DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
return;
}
fevent->event = event;
fevent->crtc = crtc;
fevent->ts = ktime_get();
kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
}
void dpu_crtc_complete_commit(struct drm_crtc *crtc)
{
trace_dpu_crtc_complete_commit(DRMID(crtc));
dpu_core_perf_crtc_update(crtc, 0, false);
_dpu_crtc_complete_flip(crtc);
}
static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
struct drm_display_mode *adj_mode = &state->adjusted_mode;
u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
int i;
for (i = 0; i < cstate->num_mixers; i++) {
struct drm_rect *r = &cstate->lm_bounds[i];
r->x1 = crtc_split_width * i;
r->y1 = 0;
r->x2 = r->x1 + crtc_split_width;
r->y2 = adj_mode->vdisplay;
trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
}
}
static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
struct dpu_hw_pcc_cfg *cfg)
{
struct drm_color_ctm *ctm;
memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
ctm = (struct drm_color_ctm *)state->ctm->data;
if (!ctm)
return;
cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
}
static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
{
struct drm_crtc_state *state = crtc->state;
struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
struct dpu_crtc_mixer *mixer = cstate->mixers;
struct dpu_hw_pcc_cfg cfg;
struct dpu_hw_ctl *ctl;
struct dpu_hw_dspp *dspp;
int i;
if (!state->color_mgmt_changed)
return;
for (i = 0; i < cstate->num_mixers; i++) {
ctl = mixer[i].lm_ctl;
dspp = mixer[i].hw_dspp;
if (!dspp || !dspp->ops.setup_pcc)
continue;
if (!state->ctm) {
dspp->ops.setup_pcc(dspp, NULL);
} else {
_dpu_crtc_get_pcc_coeff(state, &cfg);
dspp->ops.setup_pcc(dspp, &cfg);
}
mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl,
mixer[i].hw_dspp->idx);
/* stage config flush mask */
ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
DRM_DEBUG_ATOMIC("lm %d, ctl %d, flush mask 0x%x\n",
mixer[i].hw_lm->idx - DSPP_0,
ctl->idx - CTL_0,
mixer[i].flush_mask);
}
}
static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
struct drm_encoder *encoder;
if (!crtc->state->enable) {
DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
crtc->base.id, crtc->state->enable);
return;
}
DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
_dpu_crtc_setup_lm_bounds(crtc, crtc->state);
/* encoder will trigger pending mask now */
drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
dpu_encoder_trigger_kickoff_pending(encoder);
/*
* If no mixers have been allocated in dpu_crtc_atomic_check(),
* it means we are trying to flush a CRTC whose state is disabled:
* nothing else needs to be done.
*/
if (unlikely(!cstate->num_mixers))
return;
_dpu_crtc_blend_setup(crtc);
_dpu_crtc_setup_cp_blocks(crtc);
/*
* PP_DONE irq is only used by command mode for now.
* It is better to request pending before FLUSH and START trigger
* to make sure no pp_done irq missed.
* This is safe because no pp_done will happen before SW trigger
* in command mode.
*/
}
static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct dpu_crtc *dpu_crtc;
struct drm_device *dev;
struct drm_plane *plane;
struct msm_drm_private *priv;
unsigned long flags;
struct dpu_crtc_state *cstate;
if (!crtc->state->enable) {
DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
crtc->base.id, crtc->state->enable);
return;
}
DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
dpu_crtc = to_dpu_crtc(crtc);
cstate = to_dpu_crtc_state(crtc->state);
dev = crtc->dev;
priv = dev->dev_private;
if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
return;
}
WARN_ON(dpu_crtc->event);
spin_lock_irqsave(&dev->event_lock, flags);
dpu_crtc->event = crtc->state->event;
crtc->state->event = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
/*
* If no mixers has been allocated in dpu_crtc_atomic_check(),
* it means we are trying to flush a CRTC whose state is disabled:
* nothing else needs to be done.
*/
if (unlikely(!cstate->num_mixers))
return;
/* update performance setting before crtc kickoff */
dpu_core_perf_crtc_update(crtc, 1, false);
/*
* Final plane updates: Give each plane a chance to complete all
* required writes/flushing before crtc's "flush
* everything" call below.
*/
drm_atomic_crtc_for_each_plane(plane, crtc) {
if (dpu_crtc->smmu_state.transition_error)
dpu_plane_set_error(plane, true);
dpu_plane_flush(plane);
}
/* Kickoff will be scheduled by outer layer */
}
/**
* dpu_crtc_destroy_state - state destroy hook
* @crtc: drm CRTC
* @state: CRTC state object to release
*/
static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
__drm_atomic_helper_crtc_destroy_state(state);
kfree(cstate);
}
static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
int ret, rc = 0;
if (!atomic_read(&dpu_crtc->frame_pending)) {
DRM_DEBUG_ATOMIC("no frames pending\n");
return 0;
}
DPU_ATRACE_BEGIN("frame done completion wait");
ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
if (!ret) {
DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
rc = -ETIMEDOUT;
}
DPU_ATRACE_END("frame done completion wait");
return rc;
}
void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
/*
* If no mixers has been allocated in dpu_crtc_atomic_check(),
* it means we are trying to start a CRTC whose state is disabled:
* nothing else needs to be done.
*/
if (unlikely(!cstate->num_mixers))
return;
DPU_ATRACE_BEGIN("crtc_commit");
/*
* Encoder will flush/start now, unless it has a tx pending. If so, it
* may delay and flush at an irq event (e.g. ppdone)
*/
drm_for_each_encoder_mask(encoder, crtc->dev,
crtc->state->encoder_mask)
dpu_encoder_prepare_for_kickoff(encoder);
if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
/* acquire bandwidth and other resources */
DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
} else
DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
dpu_crtc->play_count++;
dpu_vbif_clear_errors(dpu_kms);
drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
dpu_encoder_kickoff(encoder);
reinit_completion(&dpu_crtc->frame_done_comp);
DPU_ATRACE_END("crtc_commit");
}
static void dpu_crtc_reset(struct drm_crtc *crtc)
{
struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
if (crtc->state)
dpu_crtc_destroy_state(crtc, crtc->state);
__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
}
/**
* dpu_crtc_duplicate_state - state duplicate hook
* @crtc: Pointer to drm crtc structure
*/
static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
if (!cstate) {
DPU_ERROR("failed to allocate state\n");
return NULL;
}
/* duplicate base helper */
__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
return &cstate->base;
}
static void dpu_crtc_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
struct drm_encoder *encoder;
unsigned long flags;
bool release_bandwidth = false;
DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
/* Disable/save vblank irq handling */
drm_crtc_vblank_off(crtc);
drm_for_each_encoder_mask(encoder, crtc->dev,
old_crtc_state->encoder_mask) {
/* in video mode, we hold an extra bandwidth reference
* as we cannot drop bandwidth at frame-done if any
* crtc is being used in video mode.
*/
if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
release_bandwidth = true;
dpu_encoder_assign_crtc(encoder, NULL);
}
/* wait for frame_event_done completion */
if (_dpu_crtc_wait_for_frame_done(crtc))
DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
crtc->base.id,
atomic_read(&dpu_crtc->frame_pending));
trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
dpu_crtc->enabled = false;
if (atomic_read(&dpu_crtc->frame_pending)) {
trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
atomic_read(&dpu_crtc->frame_pending));
if (release_bandwidth)
dpu_core_perf_crtc_release_bw(crtc);
atomic_set(&dpu_crtc->frame_pending, 0);
}
dpu_core_perf_crtc_update(crtc, 0, true);
drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
memset(cstate->mixers, 0, sizeof(cstate->mixers));
cstate->num_mixers = 0;
/* disable clk & bw control until clk & bw properties are set */
cstate->bw_control = false;
cstate->bw_split_vote = false;
if (crtc->state->event && !crtc->state->active) {
spin_lock_irqsave(&crtc->dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
}
pm_runtime_put_sync(crtc->dev->dev);
}
static void dpu_crtc_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
struct drm_encoder *encoder;
bool request_bandwidth = false;
pm_runtime_get_sync(crtc->dev->dev);
DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
/* in video mode, we hold an extra bandwidth reference
* as we cannot drop bandwidth at frame-done if any
* crtc is being used in video mode.
*/
if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
request_bandwidth = true;
dpu_encoder_register_frame_event_callback(encoder,
dpu_crtc_frame_event_cb, (void *)crtc);
}
if (request_bandwidth)
atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
dpu_crtc->enabled = true;
drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
dpu_encoder_assign_crtc(encoder, crtc);
/* Enable/restore vblank irq handling */
drm_crtc_vblank_on(crtc);
}
struct plane_state {
struct dpu_plane_state *dpu_pstate;
const struct drm_plane_state *drm_pstate;
int stage;
u32 pipe_id;
};
static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
struct plane_state *pstates;
const struct drm_plane_state *pstate;
struct drm_plane *plane;
struct drm_display_mode *mode;
int cnt = 0, rc = 0, mixer_width = 0, i, z_pos;
struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
int multirect_count = 0;
const struct drm_plane_state *pipe_staged[SSPP_MAX];
int left_zpos_cnt = 0, right_zpos_cnt = 0;
struct drm_rect crtc_rect = { 0 };
pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
if (!crtc_state->enable || !crtc_state->active) {
DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
crtc->base.id, crtc_state->enable,
crtc_state->active);
memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
goto end;
}
mode = &crtc_state->adjusted_mode;
DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
/* force a full mode set if active state changed */
if (crtc_state->active_changed)
crtc_state->mode_changed = true;
memset(pipe_staged, 0, sizeof(pipe_staged));
if (cstate->num_mixers) {
mixer_width = mode->hdisplay / cstate->num_mixers;
_dpu_crtc_setup_lm_bounds(crtc, crtc_state);
}
crtc_rect.x2 = mode->hdisplay;
crtc_rect.y2 = mode->vdisplay;
/* get plane state for all drm planes associated with crtc state */
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
struct drm_rect dst, clip = crtc_rect;
if (IS_ERR_OR_NULL(pstate)) {
rc = PTR_ERR(pstate);
DPU_ERROR("%s: failed to get plane%d state, %d\n",
dpu_crtc->name, plane->base.id, rc);
goto end;
}
if (cnt >= DPU_STAGE_MAX * 4)
continue;
pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate);
pstates[cnt].drm_pstate = pstate;
pstates[cnt].stage = pstate->normalized_zpos;
pstates[cnt].pipe_id = dpu_plane_pipe(plane);
if (pipe_staged[pstates[cnt].pipe_id]) {
multirect_plane[multirect_count].r0 =
pipe_staged[pstates[cnt].pipe_id];
multirect_plane[multirect_count].r1 = pstate;
multirect_count++;
pipe_staged[pstates[cnt].pipe_id] = NULL;
} else {
pipe_staged[pstates[cnt].pipe_id] = pstate;
}
cnt++;
dst = drm_plane_state_dest(pstate);
if (!drm_rect_intersect(&clip, &dst)) {
DPU_ERROR("invalid vertical/horizontal destination\n");
DPU_ERROR("display: " DRM_RECT_FMT " plane: "
DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
DRM_RECT_ARG(&dst));
rc = -E2BIG;
goto end;
}
}
for (i = 1; i < SSPP_MAX; i++) {
if (pipe_staged[i]) {
dpu_plane_clear_multirect(pipe_staged[i]);
if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
DPU_ERROR(
"r1 only virt plane:%d not supported\n",
pipe_staged[i]->plane->base.id);
rc = -EINVAL;
goto end;
}
}
}
z_pos = -1;
for (i = 0; i < cnt; i++) {
/* reset counts at every new blend stage */
if (pstates[i].stage != z_pos) {
left_zpos_cnt = 0;
right_zpos_cnt = 0;
z_pos = pstates[i].stage;
}
/* verify z_pos setting before using it */
if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
DPU_ERROR("> %d plane stages assigned\n",
DPU_STAGE_MAX - DPU_STAGE_0);
rc = -EINVAL;
goto end;
} else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
if (left_zpos_cnt == 2) {
DPU_ERROR("> 2 planes @ stage %d on left\n",
z_pos);
rc = -EINVAL;
goto end;
}
left_zpos_cnt++;
} else {
if (right_zpos_cnt == 2) {
DPU_ERROR("> 2 planes @ stage %d on right\n",
z_pos);
rc = -EINVAL;
goto end;
}
right_zpos_cnt++;
}
pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos);
}
for (i = 0; i < multirect_count; i++) {
if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
DPU_ERROR(
"multirect validation failed for planes (%d - %d)\n",
multirect_plane[i].r0->plane->base.id,
multirect_plane[i].r1->plane->base.id);
rc = -EINVAL;
goto end;
}
}
atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
rc = dpu_core_perf_crtc_check(crtc, crtc_state);
if (rc) {
DPU_ERROR("crtc%d failed performance check %d\n",
crtc->base.id, rc);
goto end;
}
/* validate source split:
* use pstates sorted by stage to check planes on same stage
* we assume that all pipes are in source split so its valid to compare
* without taking into account left/right mixer placement
*/
for (i = 1; i < cnt; i++) {
struct plane_state *prv_pstate, *cur_pstate;
struct drm_rect left_rect, right_rect;
int32_t left_pid, right_pid;
int32_t stage;
prv_pstate = &pstates[i - 1];
cur_pstate = &pstates[i];
if (prv_pstate->stage != cur_pstate->stage)
continue;
stage = cur_pstate->stage;
left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
if (right_rect.x1 < left_rect.x1) {
swap(left_pid, right_pid);
swap(left_rect, right_rect);
}
/**
* - planes are enumerated in pipe-priority order such that
* planes with lower drm_id must be left-most in a shared
* blend-stage when using source split.
* - planes in source split must be contiguous in width
* - planes in source split must have same dest yoff and height
*/
if (right_pid < left_pid) {
DPU_ERROR(
"invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
stage, left_pid, right_pid);
rc = -EINVAL;
goto end;
} else if (right_rect.x1 != drm_rect_width(&left_rect)) {
DPU_ERROR("non-contiguous coordinates for src split. "
"stage: %d left: " DRM_RECT_FMT " right: "
DRM_RECT_FMT "\n", stage,
DRM_RECT_ARG(&left_rect),
DRM_RECT_ARG(&right_rect));
rc = -EINVAL;
goto end;
} else if (left_rect.y1 != right_rect.y1 ||
drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
DPU_ERROR("source split at stage: %d. invalid "
"yoff/height: left: " DRM_RECT_FMT " right: "
DRM_RECT_FMT "\n", stage,
DRM_RECT_ARG(&left_rect),
DRM_RECT_ARG(&right_rect));
rc = -EINVAL;
goto end;
}
}
end:
kfree(pstates);
return rc;
}
int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
struct drm_encoder *enc;
trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
/*
* Normally we would iterate through encoder_mask in crtc state to find
* attached encoders. In this case, we might be disabling vblank _after_
* encoder_mask has been cleared.
*
* Instead, we "assign" a crtc to the encoder in enable and clear it in
* disable (which is also after encoder_mask is cleared). So instead of
* using encoder mask, we'll ask the encoder to toggle itself iff it's
* currently assigned to our crtc.
*
* Note also that this function cannot be called while crtc is disabled
* since we use drm_crtc_vblank_on/off. So we don't need to worry
* about the assigned crtcs being inconsistent with the current state
* (which means no need to worry about modeset locks).
*/
list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
dpu_crtc);
dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
}
return 0;
}
#ifdef CONFIG_DEBUG_FS
static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
{
struct dpu_crtc *dpu_crtc;
struct dpu_plane_state *pstate = NULL;
struct dpu_crtc_mixer *m;
struct drm_crtc *crtc;
struct drm_plane *plane;
struct drm_display_mode *mode;
struct drm_framebuffer *fb;
struct drm_plane_state *state;
struct dpu_crtc_state *cstate;
int i, out_width;
dpu_crtc = s->private;
crtc = &dpu_crtc->base;
drm_modeset_lock_all(crtc->dev);
cstate = to_dpu_crtc_state(crtc->state);
mode = &crtc->state->adjusted_mode;
out_width = mode->hdisplay / cstate->num_mixers;
seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
mode->hdisplay, mode->vdisplay);
seq_puts(s, "\n");
for (i = 0; i < cstate->num_mixers; ++i) {
m = &cstate->mixers[i];
seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
out_width, mode->vdisplay);
}
seq_puts(s, "\n");
drm_atomic_crtc_for_each_plane(plane, crtc) {
pstate = to_dpu_plane_state(plane->state);
state = plane->state;
if (!pstate || !state)
continue;
seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
pstate->stage);
if (plane->state->fb) {
fb = plane->state->fb;
seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
fb->base.id, (char *) &fb->format->format,
fb->width, fb->height);
for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
seq_printf(s, "cpp[%d]:%u ",
i, fb->format->cpp[i]);
seq_puts(s, "\n\t");
seq_printf(s, "modifier:%8llu ", fb->modifier);
seq_puts(s, "\n");
seq_puts(s, "\t");
for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
seq_printf(s, "pitches[%d]:%8u ", i,
fb->pitches[i]);
seq_puts(s, "\n");
seq_puts(s, "\t");
for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
seq_printf(s, "offsets[%d]:%8u ", i,
fb->offsets[i]);
seq_puts(s, "\n");
}
seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
state->src_x, state->src_y, state->src_w, state->src_h);
seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
state->crtc_x, state->crtc_y, state->crtc_w,
state->crtc_h);
seq_printf(s, "\tmultirect: mode: %d index: %d\n",
pstate->multirect_mode, pstate->multirect_index);
seq_puts(s, "\n");
}
if (dpu_crtc->vblank_cb_count) {
ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
s64 diff_ms = ktime_to_ms(diff);
s64 fps = diff_ms ? div_s64(
dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
seq_printf(s,
"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
fps, dpu_crtc->vblank_cb_count,
ktime_to_ms(diff), dpu_crtc->play_count);
/* reset time & count for next measurement */
dpu_crtc->vblank_cb_count = 0;
dpu_crtc->vblank_cb_time = ktime_set(0, 0);
}
drm_modeset_unlock_all(crtc->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
{
struct drm_crtc *crtc = (struct drm_crtc *) s->private;
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
seq_printf(s, "core_clk_rate: %llu\n",
dpu_crtc->cur_perf.core_clk_rate);
seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
seq_printf(s, "max_per_pipe_ib: %llu\n",
dpu_crtc->cur_perf.max_per_pipe_ib);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name,
crtc->dev->primary->debugfs_root);
debugfs_create_file("status", 0400,
dpu_crtc->debugfs_root,
dpu_crtc, &_dpu_debugfs_status_fops);
debugfs_create_file("state", 0600,
dpu_crtc->debugfs_root,
&dpu_crtc->base,
&dpu_crtc_debugfs_state_fops);
return 0;
}
#else
static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
{
return 0;
}
#endif /* CONFIG_DEBUG_FS */
static int dpu_crtc_late_register(struct drm_crtc *crtc)
{
return _dpu_crtc_init_debugfs(crtc);
}
static void dpu_crtc_early_unregister(struct drm_crtc *crtc)
{
struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
debugfs_remove_recursive(dpu_crtc->debugfs_root);
}
static const struct drm_crtc_funcs dpu_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.destroy = dpu_crtc_destroy,
.page_flip = drm_atomic_helper_page_flip,
.reset = dpu_crtc_reset,
.atomic_duplicate_state = dpu_crtc_duplicate_state,
.atomic_destroy_state = dpu_crtc_destroy_state,
.late_register = dpu_crtc_late_register,
.early_unregister = dpu_crtc_early_unregister,
.enable_vblank = msm_crtc_enable_vblank,
.disable_vblank = msm_crtc_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
.get_vblank_counter = dpu_crtc_get_vblank_counter,
};
static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
.atomic_disable = dpu_crtc_disable,
.atomic_enable = dpu_crtc_enable,
.atomic_check = dpu_crtc_atomic_check,
.atomic_begin = dpu_crtc_atomic_begin,
.atomic_flush = dpu_crtc_atomic_flush,
.get_scanout_position = dpu_crtc_get_scanout_position,
};
/* initialize crtc */
struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
struct drm_plane *cursor)
{
struct drm_crtc *crtc = NULL;
struct dpu_crtc *dpu_crtc = NULL;
int i;
dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
if (!dpu_crtc)
return ERR_PTR(-ENOMEM);
crtc = &dpu_crtc->base;
crtc->dev = dev;
spin_lock_init(&dpu_crtc->spin_lock);
atomic_set(&dpu_crtc->frame_pending, 0);
init_completion(&dpu_crtc->frame_done_comp);
INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
list_add(&dpu_crtc->frame_events[i].list,
&dpu_crtc->frame_event_list);
kthread_init_work(&dpu_crtc->frame_events[i].work,
dpu_crtc_frame_event_work);
}
drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
NULL);
drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
/* save user friendly CRTC name for later */
snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
/* initialize event handling */
spin_lock_init(&dpu_crtc->event_lock);
DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
return crtc;
}