blob: 0e9d3fa1544bebc1f6bee4fb806671d27a7e82c8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/debugfs.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <drm/drm_crtc.h>
#include <drm/drm_file.h>
#include <drm/drm_probe_helper.h>
#include "msm_drv.h"
#include "dpu_kms.h"
#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_intf.h"
#include "dpu_hw_ctl.h"
#include "dpu_hw_dspp.h"
#include "dpu_formats.h"
#include "dpu_encoder_phys.h"
#include "dpu_crtc.h"
#include "dpu_trace.h"
#include "dpu_core_irq.h"
#include "disp/msm_disp_snapshot.h"
#define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define DPU_DEBUG_PHYS(p, fmt, ...) DRM_DEBUG_ATOMIC("enc%d intf%d pp%d " fmt,\
(p) ? (p)->parent->base.id : -1, \
(p) ? (p)->intf_idx - INTF_0 : -1, \
(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
##__VA_ARGS__)
#define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
(p) ? (p)->parent->base.id : -1, \
(p) ? (p)->intf_idx - INTF_0 : -1, \
(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
##__VA_ARGS__)
/*
* Two to anticipate panels that can do cmd/vid dynamic switching
* plan is to create all possible physical encoder types, and switch between
* them at runtime
*/
#define NUM_PHYS_ENCODER_TYPES 2
#define MAX_PHYS_ENCODERS_PER_VIRTUAL \
(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
#define MAX_CHANNELS_PER_ENC 2
#define IDLE_SHORT_TIMEOUT 1
#define MAX_HDISPLAY_SPLIT 1080
/* timeout in frames waiting for frame done */
#define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
/**
* enum dpu_enc_rc_events - events for resource control state machine
* @DPU_ENC_RC_EVENT_KICKOFF:
* This event happens at NORMAL priority.
* Event that signals the start of the transfer. When this event is
* received, enable MDP/DSI core clocks. Regardless of the previous
* state, the resource should be in ON state at the end of this event.
* @DPU_ENC_RC_EVENT_FRAME_DONE:
* This event happens at INTERRUPT level.
* Event signals the end of the data transfer after the PP FRAME_DONE
* event. At the end of this event, a delayed work is scheduled to go to
* IDLE_PC state after IDLE_TIMEOUT time.
* @DPU_ENC_RC_EVENT_PRE_STOP:
* This event happens at NORMAL priority.
* This event, when received during the ON state, leave the RC STATE
* in the PRE_OFF state. It should be followed by the STOP event as
* part of encoder disable.
* If received during IDLE or OFF states, it will do nothing.
* @DPU_ENC_RC_EVENT_STOP:
* This event happens at NORMAL priority.
* When this event is received, disable all the MDP/DSI core clocks, and
* disable IRQs. It should be called from the PRE_OFF or IDLE states.
* IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
* PRE_OFF is expected when PRE_STOP was executed during the ON state.
* Resource state should be in OFF at the end of the event.
* @DPU_ENC_RC_EVENT_ENTER_IDLE:
* This event happens at NORMAL priority from a work item.
* Event signals that there were no frame updates for IDLE_TIMEOUT time.
* This would disable MDP/DSI core clocks and change the resource state
* to IDLE.
*/
enum dpu_enc_rc_events {
DPU_ENC_RC_EVENT_KICKOFF = 1,
DPU_ENC_RC_EVENT_FRAME_DONE,
DPU_ENC_RC_EVENT_PRE_STOP,
DPU_ENC_RC_EVENT_STOP,
DPU_ENC_RC_EVENT_ENTER_IDLE
};
/*
* enum dpu_enc_rc_states - states that the resource control maintains
* @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
* @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
* @DPU_ENC_RC_STATE_ON: Resource is in ON state
* @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
* @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
*/
enum dpu_enc_rc_states {
DPU_ENC_RC_STATE_OFF,
DPU_ENC_RC_STATE_PRE_OFF,
DPU_ENC_RC_STATE_ON,
DPU_ENC_RC_STATE_IDLE
};
/**
* struct dpu_encoder_virt - virtual encoder. Container of one or more physical
* encoders. Virtual encoder manages one "logical" display. Physical
* encoders manage one intf block, tied to a specific panel/sub-panel.
* Virtual encoder defers as much as possible to the physical encoders.
* Virtual encoder registers itself with the DRM Framework as the encoder.
* @base: drm_encoder base class for registration with DRM
* @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
* @bus_scaling_client: Client handle to the bus scaling interface
* @enabled: True if the encoder is active, protected by enc_lock
* @num_phys_encs: Actual number of physical encoders contained.
* @phys_encs: Container of physical encoders managed.
* @cur_master: Pointer to the current master in this mode. Optimization
* Only valid after enable. Cleared as disable.
* @cur_slave: As above but for the slave encoder.
* @hw_pp: Handle to the pingpong blocks used for the display. No.
* pingpong blocks can be different than num_phys_encs.
* @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
* for partial update right-only cases, such as pingpong
* split where virtual pingpong does not generate IRQs
* @crtc: Pointer to the currently assigned crtc. Normally you
* would use crtc->state->encoder_mask to determine the
* link between encoder/crtc. However in this case we need
* to track crtc in the disable() hook which is called
* _after_ encoder_mask is cleared.
* @crtc_kickoff_cb: Callback into CRTC that will flush & start
* all CTL paths
* @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
* @debugfs_root: Debug file system root file node
* @enc_lock: Lock around physical encoder
* create/destroy/enable/disable
* @frame_busy_mask: Bitmask tracking which phys_enc we are still
* busy processing current command.
* Bit0 = phys_encs[0] etc.
* @crtc_frame_event_cb: callback handler for frame event
* @crtc_frame_event_cb_data: callback handler private data
* @frame_done_timeout_ms: frame done timeout in ms
* @frame_done_timer: watchdog timer for frame done event
* @vsync_event_timer: vsync timer
* @disp_info: local copy of msm_display_info struct
* @idle_pc_supported: indicate if idle power collaps is supported
* @rc_lock: resource control mutex lock to protect
* virt encoder over various state changes
* @rc_state: resource controller state
* @delayed_off_work: delayed worker to schedule disabling of
* clks and resources after IDLE_TIMEOUT time.
* @vsync_event_work: worker to handle vsync event for autorefresh
* @topology: topology of the display
* @idle_timeout: idle timeout duration in milliseconds
*/
struct dpu_encoder_virt {
struct drm_encoder base;
spinlock_t enc_spinlock;
uint32_t bus_scaling_client;
bool enabled;
unsigned int num_phys_encs;
struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
struct dpu_encoder_phys *cur_master;
struct dpu_encoder_phys *cur_slave;
struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
bool intfs_swapped;
struct drm_crtc *crtc;
struct dentry *debugfs_root;
struct mutex enc_lock;
DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
void (*crtc_frame_event_cb)(void *, u32 event);
void *crtc_frame_event_cb_data;
atomic_t frame_done_timeout_ms;
struct timer_list frame_done_timer;
struct timer_list vsync_event_timer;
struct msm_display_info disp_info;
bool idle_pc_supported;
struct mutex rc_lock;
enum dpu_enc_rc_states rc_state;
struct delayed_work delayed_off_work;
struct kthread_work vsync_event_work;
struct msm_display_topology topology;
u32 idle_timeout;
};
#define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
static u32 dither_matrix[DITHER_MATRIX_SZ] = {
15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
};
static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
{
struct dpu_hw_dither_cfg dither_cfg = { 0 };
if (!hw_pp->ops.setup_dither)
return;
switch (bpc) {
case 6:
dither_cfg.c0_bitdepth = 6;
dither_cfg.c1_bitdepth = 6;
dither_cfg.c2_bitdepth = 6;
dither_cfg.c3_bitdepth = 6;
dither_cfg.temporal_en = 0;
break;
default:
hw_pp->ops.setup_dither(hw_pp, NULL);
return;
}
memcpy(&dither_cfg.matrix, dither_matrix,
sizeof(u32) * DITHER_MATRIX_SZ);
hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
}
void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
enum dpu_intr_idx intr_idx)
{
DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
if (phys_enc->parent_ops->handle_frame_done)
phys_enc->parent_ops->handle_frame_done(
phys_enc->parent, phys_enc,
DPU_ENCODER_FRAME_EVENT_ERROR);
}
static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
u32 irq_idx, struct dpu_encoder_wait_info *info);
int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
enum dpu_intr_idx intr_idx,
struct dpu_encoder_wait_info *wait_info)
{
struct dpu_encoder_irq *irq;
u32 irq_status;
int ret;
if (!wait_info || intr_idx >= INTR_IDX_MAX) {
DPU_ERROR("invalid params\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
/* note: do master / slave checking outside */
/* return EWOULDBLOCK since we know the wait isn't necessary */
if (phys_enc->enable_state == DPU_ENC_DISABLED) {
DRM_ERROR("encoder is disabled id=%u, intr=%d, irq=%d\n",
DRMID(phys_enc->parent), intr_idx,
irq->irq_idx);
return -EWOULDBLOCK;
}
if (irq->irq_idx < 0) {
DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, irq=%s\n",
DRMID(phys_enc->parent), intr_idx,
irq->name);
return 0;
}
DRM_DEBUG_KMS("id=%u, intr=%d, irq=%d, pp=%d, pending_cnt=%d\n",
DRMID(phys_enc->parent), intr_idx,
irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
ret = dpu_encoder_helper_wait_event_timeout(
DRMID(phys_enc->parent),
irq->irq_idx,
wait_info);
if (ret <= 0) {
irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
irq->irq_idx, true);
if (irq_status) {
unsigned long flags;
DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
DRMID(phys_enc->parent), intr_idx,
irq->irq_idx,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
local_irq_save(flags);
irq->cb.func(phys_enc, irq->irq_idx);
local_irq_restore(flags);
ret = 0;
} else {
ret = -ETIMEDOUT;
DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
DRMID(phys_enc->parent), intr_idx,
irq->irq_idx,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
}
} else {
ret = 0;
trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
intr_idx, irq->irq_idx,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
}
return ret;
}
int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
enum dpu_intr_idx intr_idx)
{
struct dpu_encoder_irq *irq;
int ret = 0;
if (intr_idx >= INTR_IDX_MAX) {
DPU_ERROR("invalid params\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
if (irq->irq_idx < 0) {
DPU_ERROR_PHYS(phys_enc,
"invalid IRQ index:%d\n", irq->irq_idx);
return -EINVAL;
}
ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
&irq->cb);
if (ret) {
DPU_ERROR_PHYS(phys_enc,
"failed to register IRQ callback for %s\n",
irq->name);
irq->irq_idx = -EINVAL;
return ret;
}
trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
irq->irq_idx);
return ret;
}
int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
enum dpu_intr_idx intr_idx)
{
struct dpu_encoder_irq *irq;
int ret;
irq = &phys_enc->irq[intr_idx];
/* silently skip irqs that weren't registered */
if (irq->irq_idx < 0) {
DRM_ERROR("duplicate unregister id=%u, intr=%d, irq=%d",
DRMID(phys_enc->parent), intr_idx,
irq->irq_idx);
return 0;
}
ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
&irq->cb);
if (ret) {
DRM_ERROR("unreg cb fail id=%u, intr=%d, irq=%d ret=%d",
DRMID(phys_enc->parent), intr_idx,
irq->irq_idx, ret);
}
trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
irq->irq_idx);
return 0;
}
int dpu_encoder_get_frame_count(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
int framecount = 0;
dpu_enc = to_dpu_encoder_virt(drm_enc);
phys = dpu_enc ? dpu_enc->cur_master : NULL;
if (phys && phys->ops.get_frame_count)
framecount = phys->ops.get_frame_count(phys);
return framecount;
}
int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
int linecount = 0;
dpu_enc = to_dpu_encoder_virt(drm_enc);
phys = dpu_enc ? dpu_enc->cur_master : NULL;
if (phys && phys->ops.get_line_count)
linecount = phys->ops.get_line_count(phys);
return linecount;
}
void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
struct dpu_encoder_hw_resources *hw_res)
{
struct dpu_encoder_virt *dpu_enc = NULL;
int i = 0;
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
/* Query resources used by phys encs, expected to be without overlap */
memset(hw_res, 0, sizeof(*hw_res));
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.get_hw_resources)
phys->ops.get_hw_resources(phys, hw_res);
}
}
static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = NULL;
int i = 0;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
mutex_lock(&dpu_enc->enc_lock);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.destroy) {
phys->ops.destroy(phys);
--dpu_enc->num_phys_encs;
dpu_enc->phys_encs[i] = NULL;
}
}
if (dpu_enc->num_phys_encs)
DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
dpu_enc->num_phys_encs);
dpu_enc->num_phys_encs = 0;
mutex_unlock(&dpu_enc->enc_lock);
drm_encoder_cleanup(drm_enc);
mutex_destroy(&dpu_enc->enc_lock);
}
void dpu_encoder_helper_split_config(
struct dpu_encoder_phys *phys_enc,
enum dpu_intf interface)
{
struct dpu_encoder_virt *dpu_enc;
struct split_pipe_cfg cfg = { 0 };
struct dpu_hw_mdp *hw_mdptop;
struct msm_display_info *disp_info;
if (!phys_enc->hw_mdptop || !phys_enc->parent) {
DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
return;
}
dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
hw_mdptop = phys_enc->hw_mdptop;
disp_info = &dpu_enc->disp_info;
if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
return;
/**
* disable split modes since encoder will be operating in as the only
* encoder, either for the entire use case in the case of, for example,
* single DSI, or for this frame in the case of left/right only partial
* update.
*/
if (phys_enc->split_role == ENC_ROLE_SOLO) {
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
return;
}
cfg.en = true;
cfg.mode = phys_enc->intf_mode;
cfg.intf = interface;
if (cfg.en && phys_enc->ops.needs_single_flush &&
phys_enc->ops.needs_single_flush(phys_enc))
cfg.split_flush_en = true;
if (phys_enc->split_role == ENC_ROLE_MASTER) {
DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
}
}
static struct msm_display_topology dpu_encoder_get_topology(
struct dpu_encoder_virt *dpu_enc,
struct dpu_kms *dpu_kms,
struct drm_display_mode *mode)
{
struct msm_display_topology topology = {0};
int i, intf_count = 0;
for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
if (dpu_enc->phys_encs[i])
intf_count++;
/* Datapath topology selection
*
* Dual display
* 2 LM, 2 INTF ( Split display using 2 interfaces)
*
* Single display
* 1 LM, 1 INTF
* 2 LM, 1 INTF (stream merge to support high resolution interfaces)
*
* Adding color blocks only to primary interface if available in
* sufficient number
*/
if (intf_count == 2)
topology.num_lm = 2;
else if (!dpu_kms->catalog->caps->has_3d_merge)
topology.num_lm = 1;
else
topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
if (dpu_kms->catalog->dspp &&
(dpu_kms->catalog->dspp_count >= topology.num_lm))
topology.num_dspp = topology.num_lm;
}
topology.num_enc = 0;
topology.num_intf = intf_count;
return topology;
}
static int dpu_encoder_virt_atomic_check(
struct drm_encoder *drm_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct dpu_encoder_virt *dpu_enc;
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
const struct drm_display_mode *mode;
struct drm_display_mode *adj_mode;
struct msm_display_topology topology;
struct dpu_global_state *global_state;
int i = 0;
int ret = 0;
if (!drm_enc || !crtc_state || !conn_state) {
DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
return -EINVAL;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
mode = &crtc_state->mode;
adj_mode = &crtc_state->adjusted_mode;
global_state = dpu_kms_get_global_state(crtc_state->state);
if (IS_ERR(global_state))
return PTR_ERR(global_state);
trace_dpu_enc_atomic_check(DRMID(drm_enc));
/* perform atomic check on the first physical encoder (master) */
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.atomic_check)
ret = phys->ops.atomic_check(phys, crtc_state,
conn_state);
else if (phys->ops.mode_fixup)
if (!phys->ops.mode_fixup(phys, mode, adj_mode))
ret = -EINVAL;
if (ret) {
DPU_ERROR_ENC(dpu_enc,
"mode unsupported, phys idx %d\n", i);
break;
}
}
topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
/* Reserve dynamic resources now. */
if (!ret) {
/*
* Release and Allocate resources on every modeset
* Dont allocate when active is false.
*/
if (drm_atomic_crtc_needs_modeset(crtc_state)) {
dpu_rm_release(global_state, drm_enc);
if (!crtc_state->active_changed || crtc_state->active)
ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
drm_enc, crtc_state, topology);
}
}
trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
return ret;
}
static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
struct msm_display_info *disp_info)
{
struct dpu_vsync_source_cfg vsync_cfg = { 0 };
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct dpu_hw_mdp *hw_mdptop;
struct drm_encoder *drm_enc;
int i;
if (!dpu_enc || !disp_info) {
DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
dpu_enc != NULL, disp_info != NULL);
return;
} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
DPU_ERROR("invalid num phys enc %d/%d\n",
dpu_enc->num_phys_encs,
(int) ARRAY_SIZE(dpu_enc->hw_pp));
return;
}
drm_enc = &dpu_enc->base;
/* this pointers are checked in virt_enable_helper */
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
hw_mdptop = dpu_kms->hw_mdp;
if (!hw_mdptop) {
DPU_ERROR("invalid mdptop\n");
return;
}
if (hw_mdptop->ops.setup_vsync_source &&
disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
for (i = 0; i < dpu_enc->num_phys_encs; i++)
vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
vsync_cfg.pp_count = dpu_enc->num_phys_encs;
if (disp_info->is_te_using_watchdog_timer)
vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
else
vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
}
}
static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
{
struct dpu_encoder_virt *dpu_enc;
int i;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.irq_control)
phys->ops.irq_control(phys, enable);
}
}
static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
bool enable)
{
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct dpu_encoder_virt *dpu_enc;
dpu_enc = to_dpu_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
if (!dpu_enc->cur_master) {
DPU_ERROR("encoder master not set\n");
return;
}
if (enable) {
/* enable DPU core clks */
pm_runtime_get_sync(&dpu_kms->pdev->dev);
/* enable all the irq */
_dpu_encoder_irq_control(drm_enc, true);
} else {
/* disable all the irq */
_dpu_encoder_irq_control(drm_enc, false);
/* disable DPU core clks */
pm_runtime_put_sync(&dpu_kms->pdev->dev);
}
}
static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
u32 sw_event)
{
struct dpu_encoder_virt *dpu_enc;
struct msm_drm_private *priv;
bool is_vid_mode = false;
if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
DPU_ERROR("invalid parameters\n");
return -EINVAL;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
is_vid_mode = dpu_enc->disp_info.capabilities &
MSM_DISPLAY_CAP_VID_MODE;
/*
* when idle_pc is not supported, process only KICKOFF, STOP and MODESET
* events and return early for other events (ie wb display).
*/
if (!dpu_enc->idle_pc_supported &&
(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
sw_event != DPU_ENC_RC_EVENT_STOP &&
sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
return 0;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
dpu_enc->rc_state, "begin");
switch (sw_event) {
case DPU_ENC_RC_EVENT_KICKOFF:
/* cancel delayed off work, if any */
if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
sw_event);
mutex_lock(&dpu_enc->rc_lock);
/* return if the resource control is already in ON state */
if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
DRMID(drm_enc), sw_event);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
DRMID(drm_enc), sw_event,
dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return -EINVAL;
}
if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
_dpu_encoder_irq_control(drm_enc, true);
else
_dpu_encoder_resource_control_helper(drm_enc, true);
dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"kickoff");
mutex_unlock(&dpu_enc->rc_lock);
break;
case DPU_ENC_RC_EVENT_FRAME_DONE:
/*
* mutex lock is not used as this event happens at interrupt
* context. And locking is not required as, the other events
* like KICKOFF and STOP does a wait-for-idle before executing
* the resource_control
*/
if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
DRMID(drm_enc), sw_event,
dpu_enc->rc_state);
return -EINVAL;
}
/*
* schedule off work item only when there are no
* frames pending
*/
if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
DRM_DEBUG_KMS("id:%d skip schedule work\n",
DRMID(drm_enc));
return 0;
}
queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
msecs_to_jiffies(dpu_enc->idle_timeout));
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"frame done");
break;
case DPU_ENC_RC_EVENT_PRE_STOP:
/* cancel delayed off work, if any */
if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
sw_event);
mutex_lock(&dpu_enc->rc_lock);
if (is_vid_mode &&
dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
_dpu_encoder_irq_control(drm_enc, true);
}
/* skip if is already OFF or IDLE, resources are off already */
else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
DRMID(drm_enc), sw_event,
dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
}
dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"pre stop");
mutex_unlock(&dpu_enc->rc_lock);
break;
case DPU_ENC_RC_EVENT_STOP:
mutex_lock(&dpu_enc->rc_lock);
/* return if the resource control is already in OFF state */
if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
DRMID(drm_enc), sw_event);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
DRMID(drm_enc), sw_event, dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return -EINVAL;
}
/**
* expect to arrive here only if in either idle state or pre-off
* and in IDLE state the resources are already disabled
*/
if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
_dpu_encoder_resource_control_helper(drm_enc, false);
dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"stop");
mutex_unlock(&dpu_enc->rc_lock);
break;
case DPU_ENC_RC_EVENT_ENTER_IDLE:
mutex_lock(&dpu_enc->rc_lock);
if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
DRMID(drm_enc), sw_event, dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
}
/*
* if we are in ON but a frame was just kicked off,
* ignore the IDLE event, it's probably a stale timer event
*/
if (dpu_enc->frame_busy_mask[0]) {
DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
DRMID(drm_enc), sw_event, dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
}
if (is_vid_mode)
_dpu_encoder_irq_control(drm_enc, false);
else
_dpu_encoder_resource_control_helper(drm_enc, false);
dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"idle");
mutex_unlock(&dpu_enc->rc_lock);
break;
default:
DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
sw_event);
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"error");
break;
}
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"end");
return 0;
}
static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct dpu_encoder_virt *dpu_enc;
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct list_head *connector_list;
struct drm_connector *conn = NULL, *conn_iter;
struct drm_crtc *drm_crtc;
struct dpu_crtc_state *cstate;
struct dpu_global_state *global_state;
struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
int num_lm, num_ctl, num_pp;
int i, j;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
connector_list = &dpu_kms->dev->mode_config.connector_list;
global_state = dpu_kms_get_existing_global_state(dpu_kms);
if (IS_ERR_OR_NULL(global_state)) {
DPU_ERROR("Failed to get global state");
return;
}
trace_dpu_enc_mode_set(DRMID(drm_enc));
if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp)
msm_dp_display_mode_set(priv->dp, drm_enc, mode, adj_mode);
list_for_each_entry(conn_iter, connector_list, head)
if (conn_iter->encoder == drm_enc)
conn = conn_iter;
if (!conn) {
DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
return;
} else if (!conn->state) {
DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
return;
}
drm_for_each_crtc(drm_crtc, drm_enc->dev)
if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
break;
/* Query resource that have been reserved in atomic check step. */
num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
ARRAY_SIZE(hw_pp));
num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
ARRAY_SIZE(hw_dspp));
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
: NULL;
cstate = to_dpu_crtc_state(drm_crtc->state);
for (i = 0; i < num_lm; i++) {
int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
}
cstate->num_mixers = num_lm;
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
int num_blk;
struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (!dpu_enc->hw_pp[i]) {
DPU_ERROR_ENC(dpu_enc,
"no pp block assigned at idx: %d\n", i);
return;
}
if (!hw_ctl[i]) {
DPU_ERROR_ENC(dpu_enc,
"no ctl block assigned at idx: %d\n", i);
return;
}
phys->hw_pp = dpu_enc->hw_pp[i];
phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
hw_blk, ARRAY_SIZE(hw_blk));
for (j = 0; j < num_blk; j++) {
struct dpu_hw_intf *hw_intf;
hw_intf = to_dpu_hw_intf(hw_blk[i]);
if (hw_intf->idx == phys->intf_idx)
phys->hw_intf = hw_intf;
}
if (!phys->hw_intf) {
DPU_ERROR_ENC(dpu_enc,
"no intf block assigned at idx: %d\n", i);
return;
}
phys->connector = conn->state->connector;
if (phys->ops.mode_set)
phys->ops.mode_set(phys, mode, adj_mode);
}
}
static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = NULL;
int i;
if (!drm_enc || !drm_enc->dev) {
DPU_ERROR("invalid parameters\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
if (!dpu_enc || !dpu_enc->cur_master) {
DPU_ERROR("invalid dpu encoder/master\n");
return;
}
if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
dpu_enc->cur_master->hw_mdptop &&
dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
dpu_enc->cur_master->hw_mdptop);
_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
!WARN_ON(dpu_enc->num_phys_encs == 0)) {
unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
if (!dpu_enc->hw_pp[i])
continue;
_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
}
}
}
void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
mutex_lock(&dpu_enc->enc_lock);
if (!dpu_enc->enabled)
goto out;
if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
_dpu_encoder_virt_enable_helper(drm_enc);
out:
mutex_unlock(&dpu_enc->enc_lock);
}
static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = NULL;
int ret = 0;
struct msm_drm_private *priv;
struct drm_display_mode *cur_mode = NULL;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
mutex_lock(&dpu_enc->enc_lock);
cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
priv = drm_enc->dev->dev_private;
trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
cur_mode->vdisplay);
/* always enable slave encoder before master */
if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
if (ret) {
DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
ret);
goto out;
}
_dpu_encoder_virt_enable_helper(drm_enc);
if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
ret = msm_dp_display_enable(priv->dp,
drm_enc);
if (ret) {
DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
ret);
goto out;
}
}
dpu_enc->enabled = true;
out:
mutex_unlock(&dpu_enc->enc_lock);
}
static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = NULL;
struct msm_drm_private *priv;
int i = 0;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
} else if (!drm_enc->dev) {
DPU_ERROR("invalid dev\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
mutex_lock(&dpu_enc->enc_lock);
dpu_enc->enabled = false;
priv = drm_enc->dev->dev_private;
trace_dpu_enc_disable(DRMID(drm_enc));
/* wait for idle */
dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
if (msm_dp_display_pre_disable(priv->dp, drm_enc))
DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
}
dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.disable)
phys->ops.disable(phys);
}
/* after phys waits for frame-done, should be no more frames pending */
if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
del_timer_sync(&dpu_enc->frame_done_timer);
}
dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
dpu_enc->phys_encs[i]->connector = NULL;
}
DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
if (msm_dp_display_disable(priv->dp, drm_enc))
DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
}
mutex_unlock(&dpu_enc->enc_lock);
}
static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
enum dpu_intf_type type, u32 controller_id)
{
int i = 0;
for (i = 0; i < catalog->intf_count; i++) {
if (catalog->intf[i].type == type
&& catalog->intf[i].controller_id == controller_id) {
return catalog->intf[i].id;
}
}
return INTF_MAX;
}
static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
struct dpu_encoder_phys *phy_enc)
{
struct dpu_encoder_virt *dpu_enc = NULL;
unsigned long lock_flags;
if (!drm_enc || !phy_enc)
return;
DPU_ATRACE_BEGIN("encoder_vblank_callback");
dpu_enc = to_dpu_encoder_virt(drm_enc);
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
if (dpu_enc->crtc)
dpu_crtc_vblank_callback(dpu_enc->crtc);
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
atomic_inc(&phy_enc->vsync_cnt);
DPU_ATRACE_END("encoder_vblank_callback");
}
static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
struct dpu_encoder_phys *phy_enc)
{
if (!phy_enc)
return;
DPU_ATRACE_BEGIN("encoder_underrun_callback");
atomic_inc(&phy_enc->underrun_cnt);
/* trigger dump only on the first underrun */
if (atomic_read(&phy_enc->underrun_cnt) == 1)
msm_disp_snapshot_state(drm_enc->dev);
trace_dpu_enc_underrun_cb(DRMID(drm_enc),
atomic_read(&phy_enc->underrun_cnt));
DPU_ATRACE_END("encoder_underrun_callback");
}
void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned long lock_flags;
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
/* crtc should always be cleared before re-assigning */
WARN_ON(crtc && dpu_enc->crtc);
dpu_enc->crtc = crtc;
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}
void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
struct drm_crtc *crtc, bool enable)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned long lock_flags;
int i;
trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
if (dpu_enc->crtc != crtc) {
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
return;
}
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.control_vblank_irq)
phys->ops.control_vblank_irq(phys, enable);
}
}
void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
void (*frame_event_cb)(void *, u32 event),
void *frame_event_cb_data)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned long lock_flags;
bool enable;
enable = frame_event_cb ? true : false;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
dpu_enc->crtc_frame_event_cb = frame_event_cb;
dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}
static void dpu_encoder_frame_done_callback(
struct drm_encoder *drm_enc,
struct dpu_encoder_phys *ready_phys, u32 event)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned int i;
if (event & (DPU_ENCODER_FRAME_EVENT_DONE
| DPU_ENCODER_FRAME_EVENT_ERROR
| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
if (!dpu_enc->frame_busy_mask[0]) {
/**
* suppress frame_done without waiter,
* likely autorefresh
*/
trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
event, ready_phys->intf_idx);
return;
}
/* One of the physical encoders has become idle */
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
if (dpu_enc->phys_encs[i] == ready_phys) {
trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
dpu_enc->frame_busy_mask[0]);
clear_bit(i, dpu_enc->frame_busy_mask);
}
}
if (!dpu_enc->frame_busy_mask[0]) {
atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
del_timer(&dpu_enc->frame_done_timer);
dpu_encoder_resource_control(drm_enc,
DPU_ENC_RC_EVENT_FRAME_DONE);
if (dpu_enc->crtc_frame_event_cb)
dpu_enc->crtc_frame_event_cb(
dpu_enc->crtc_frame_event_cb_data,
event);
}
} else {
if (dpu_enc->crtc_frame_event_cb)
dpu_enc->crtc_frame_event_cb(
dpu_enc->crtc_frame_event_cb_data, event);
}
}
static void dpu_encoder_off_work(struct work_struct *work)
{
struct dpu_encoder_virt *dpu_enc = container_of(work,
struct dpu_encoder_virt, delayed_off_work.work);
dpu_encoder_resource_control(&dpu_enc->base,
DPU_ENC_RC_EVENT_ENTER_IDLE);
dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
DPU_ENCODER_FRAME_EVENT_IDLE);
}
/**
* _dpu_encoder_trigger_flush - trigger flush for a physical encoder
* @drm_enc: Pointer to drm encoder structure
* @phys: Pointer to physical encoder structure
* @extra_flush_bits: Additional bit mask to include in flush trigger
*/
static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
{
struct dpu_hw_ctl *ctl;
int pending_kickoff_cnt;
u32 ret = UINT_MAX;
if (!phys->hw_pp) {
DPU_ERROR("invalid pingpong hw\n");
return;
}
ctl = phys->hw_ctl;
if (!ctl->ops.trigger_flush) {
DPU_ERROR("missing trigger cb\n");
return;
}
pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
if (extra_flush_bits && ctl->ops.update_pending_flush)
ctl->ops.update_pending_flush(ctl, extra_flush_bits);
ctl->ops.trigger_flush(ctl);
if (ctl->ops.get_pending_flush)
ret = ctl->ops.get_pending_flush(ctl);
trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
pending_kickoff_cnt, ctl->idx,
extra_flush_bits, ret);
}
/**
* _dpu_encoder_trigger_start - trigger start for a physical encoder
* @phys: Pointer to physical encoder structure
*/
static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
{
if (!phys) {
DPU_ERROR("invalid argument(s)\n");
return;
}
if (!phys->hw_pp) {
DPU_ERROR("invalid pingpong hw\n");
return;
}
if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
phys->ops.trigger_start(phys);
}
void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_ctl *ctl;
ctl = phys_enc->hw_ctl;
if (ctl->ops.trigger_start) {
ctl->ops.trigger_start(ctl);
trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
}
}
static int dpu_encoder_helper_wait_event_timeout(
int32_t drm_id,
u32 irq_idx,
struct dpu_encoder_wait_info *info)
{
int rc = 0;
s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
s64 jiffies = msecs_to_jiffies(info->timeout_ms);
s64 time;
do {
rc = wait_event_timeout(*(info->wq),
atomic_read(info->atomic_cnt) == 0, jiffies);
time = ktime_to_ms(ktime_get());
trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
expected_time,
atomic_read(info->atomic_cnt));
/* If we timed out, counter is valid and time is less, wait again */
} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
(time < expected_time));
return rc;
}
static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_hw_ctl *ctl;
int rc;
struct drm_encoder *drm_enc;
dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
ctl = phys_enc->hw_ctl;
drm_enc = phys_enc->parent;
if (!ctl->ops.reset)
return;
DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
ctl->idx);
rc = ctl->ops.reset(ctl);
if (rc) {
DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
msm_disp_snapshot_state(drm_enc->dev);
}
phys_enc->enable_state = DPU_ENC_ENABLED;
}
/**
* _dpu_encoder_kickoff_phys - handle physical encoder kickoff
* Iterate through the physical encoders and perform consolidated flush
* and/or control start triggering as needed. This is done in the virtual
* encoder rather than the individual physical ones in order to handle
* use cases that require visibility into multiple physical encoders at
* a time.
* @dpu_enc: Pointer to virtual encoder structure
*/
static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
{
struct dpu_hw_ctl *ctl;
uint32_t i, pending_flush;
unsigned long lock_flags;
pending_flush = 0x0;
/* update pending counts and trigger kickoff ctl flush atomically */
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
/* don't perform flush/start operations for slave encoders */
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->enable_state == DPU_ENC_DISABLED)
continue;
ctl = phys->hw_ctl;
/*
* This is cleared in frame_done worker, which isn't invoked
* for async commits. So don't set this for async, since it'll
* roll over to the next commit.
*/
if (phys->split_role != ENC_ROLE_SLAVE)
set_bit(i, dpu_enc->frame_busy_mask);
if (!phys->ops.needs_single_flush ||
!phys->ops.needs_single_flush(phys))
_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
else if (ctl->ops.get_pending_flush)
pending_flush |= ctl->ops.get_pending_flush(ctl);
}
/* for split flush, combine pending flush masks and send to master */
if (pending_flush && dpu_enc->cur_master) {
_dpu_encoder_trigger_flush(
&dpu_enc->base,
dpu_enc->cur_master,
pending_flush);
}
_dpu_encoder_trigger_start(dpu_enc->cur_master);
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}
void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
unsigned int i;
struct dpu_hw_ctl *ctl;
struct msm_display_info *disp_info;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
disp_info = &dpu_enc->disp_info;
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
ctl = phys->hw_ctl;
if (ctl->ops.clear_pending_flush)
ctl->ops.clear_pending_flush(ctl);
/* update only for command mode primary ctl */
if ((phys == dpu_enc->cur_master) &&
(disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
&& ctl->ops.trigger_pending)
ctl->ops.trigger_pending(ctl);
}
}
static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
struct drm_display_mode *mode)
{
u64 pclk_rate;
u32 pclk_period;
u32 line_time;
/*
* For linetime calculation, only operate on master encoder.
*/
if (!dpu_enc->cur_master)
return 0;
if (!dpu_enc->cur_master->ops.get_line_count) {
DPU_ERROR("get_line_count function not defined\n");
return 0;
}
pclk_rate = mode->clock; /* pixel clock in kHz */
if (pclk_rate == 0) {
DPU_ERROR("pclk is 0, cannot calculate line time\n");
return 0;
}
pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
if (pclk_period == 0) {
DPU_ERROR("pclk period is 0\n");
return 0;
}
/*
* Line time calculation based on Pixel clock and HTOTAL.
* Final unit is in ns.
*/
line_time = (pclk_period * mode->htotal) / 1000;
if (line_time == 0) {
DPU_ERROR("line time calculation is 0\n");
return 0;
}
DPU_DEBUG_ENC(dpu_enc,
"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
pclk_rate, pclk_period, line_time);
return line_time;
}
int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
{
struct drm_display_mode *mode;
struct dpu_encoder_virt *dpu_enc;
u32 cur_line;
u32 line_time;
u32 vtotal, time_to_vsync;
ktime_t cur_time;
dpu_enc = to_dpu_encoder_virt(drm_enc);
if (!drm_enc->crtc || !drm_enc->crtc->state) {
DPU_ERROR("crtc/crtc state object is NULL\n");
return -EINVAL;
}
mode = &drm_enc->crtc->state->adjusted_mode;
line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
if (!line_time)
return -EINVAL;
cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
vtotal = mode->vtotal;
if (cur_line >= vtotal)
time_to_vsync = line_time * vtotal;
else
time_to_vsync = line_time * (vtotal - cur_line);
if (time_to_vsync == 0) {
DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
vtotal);
return -EINVAL;
}
cur_time = ktime_get();
*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
DPU_DEBUG_ENC(dpu_enc,
"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
cur_line, vtotal, time_to_vsync,
ktime_to_ms(cur_time),
ktime_to_ms(*wakeup_time));
return 0;
}
static void dpu_encoder_vsync_event_handler(struct timer_list *t)
{
struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
vsync_event_timer);
struct drm_encoder *drm_enc = &dpu_enc->base;
struct msm_drm_private *priv;
struct msm_drm_thread *event_thread;
if (!drm_enc->dev || !drm_enc->crtc) {
DPU_ERROR("invalid parameters\n");
return;
}
priv = drm_enc->dev->dev_private;
if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
DPU_ERROR("invalid crtc index\n");
return;
}
event_thread = &priv->event_thread[drm_enc->crtc->index];
if (!event_thread) {
DPU_ERROR("event_thread not found for crtc:%d\n",
drm_enc->crtc->index);
return;
}
del_timer(&dpu_enc->vsync_event_timer);
}
static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
{
struct dpu_encoder_virt *dpu_enc = container_of(work,
struct dpu_encoder_virt, vsync_event_work);
ktime_t wakeup_time;
if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
return;
trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
mod_timer(&dpu_enc->vsync_event_timer,
nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
}
void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
bool needs_hw_reset = false;
unsigned int i;
dpu_enc = to_dpu_encoder_virt(drm_enc);
trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
/* prepare for next kickoff, may include waiting on previous kickoff */
DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
if (phys->ops.prepare_for_kickoff)
phys->ops.prepare_for_kickoff(phys);
if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
needs_hw_reset = true;
}
DPU_ATRACE_END("enc_prepare_for_kickoff");
dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
/* if any phys needs reset, reset all phys, in-order */
if (needs_hw_reset) {
trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
}
}
}
void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
ktime_t wakeup_time;
unsigned long timeout_ms;
unsigned int i;
DPU_ATRACE_BEGIN("encoder_kickoff");
dpu_enc = to_dpu_encoder_virt(drm_enc);
trace_dpu_enc_kickoff(DRMID(drm_enc));
timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
mod_timer(&dpu_enc->frame_done_timer,
jiffies + msecs_to_jiffies(timeout_ms));
/* All phys encs are ready to go, trigger the kickoff */
_dpu_encoder_kickoff_phys(dpu_enc);
/* allow phys encs to handle any post-kickoff business */
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
if (phys->ops.handle_post_kickoff)
phys->ops.handle_post_kickoff(phys);
}
if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
trace_dpu_enc_early_kickoff(DRMID(drm_enc),
ktime_to_ms(wakeup_time));
mod_timer(&dpu_enc->vsync_event_timer,
nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
}
DPU_ATRACE_END("encoder_kickoff");
}
void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
int i;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
if (phys->ops.prepare_commit)
phys->ops.prepare_commit(phys);
}
}
#ifdef CONFIG_DEBUG_FS
static int _dpu_encoder_status_show(struct seq_file *s, void *data)
{
struct dpu_encoder_virt *dpu_enc = s->private;
int i;
mutex_lock(&dpu_enc->enc_lock);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
phys->intf_idx - INTF_0,
atomic_read(&phys->vsync_cnt),
atomic_read(&phys->underrun_cnt));
switch (phys->intf_mode) {
case INTF_MODE_VIDEO:
seq_puts(s, "mode: video\n");
break;
case INTF_MODE_CMD:
seq_puts(s, "mode: command\n");
break;
default:
seq_puts(s, "mode: ???\n");
break;
}
}
mutex_unlock(&dpu_enc->enc_lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
int i;
char name[DPU_NAME_SIZE];
if (!drm_enc->dev) {
DPU_ERROR("invalid encoder or kms\n");
return -EINVAL;
}
snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
/* create overall sub-directory for the encoder */
dpu_enc->debugfs_root = debugfs_create_dir(name,
drm_enc->dev->primary->debugfs_root);
/* don't error check these */
debugfs_create_file("status", 0600,
dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
for (i = 0; i < dpu_enc->num_phys_encs; i++)
if (dpu_enc->phys_encs[i]->ops.late_register)
dpu_enc->phys_encs[i]->ops.late_register(
dpu_enc->phys_encs[i],
dpu_enc->debugfs_root);
return 0;
}
#else
static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
return 0;
}
#endif
static int dpu_encoder_late_register(struct drm_encoder *encoder)
{
return _dpu_encoder_init_debugfs(encoder);
}
static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
debugfs_remove_recursive(dpu_enc->debugfs_root);
}
static int dpu_encoder_virt_add_phys_encs(
u32 display_caps,
struct dpu_encoder_virt *dpu_enc,
struct dpu_enc_phys_init_params *params)
{
struct dpu_encoder_phys *enc = NULL;
DPU_DEBUG_ENC(dpu_enc, "\n");
/*
* We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
* in this function, check up-front.
*/
if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
ARRAY_SIZE(dpu_enc->phys_encs)) {
DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
dpu_enc->num_phys_encs);
return -EINVAL;
}
if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
enc = dpu_encoder_phys_vid_init(params);
if (IS_ERR_OR_NULL(enc)) {
DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
PTR_ERR(enc));
return enc == NULL ? -EINVAL : PTR_ERR(enc);
}
dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
++dpu_enc->num_phys_encs;
}
if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
enc = dpu_encoder_phys_cmd_init(params);
if (IS_ERR_OR_NULL(enc)) {
DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
PTR_ERR(enc));
return enc == NULL ? -EINVAL : PTR_ERR(enc);
}
dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
++dpu_enc->num_phys_encs;
}
if (params->split_role == ENC_ROLE_SLAVE)
dpu_enc->cur_slave = enc;
else
dpu_enc->cur_master = enc;
return 0;
}
static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
.handle_vblank_virt = dpu_encoder_vblank_callback,
.handle_underrun_virt = dpu_encoder_underrun_callback,
.handle_frame_done = dpu_encoder_frame_done_callback,
};
static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
struct dpu_kms *dpu_kms,
struct msm_display_info *disp_info)
{
int ret = 0;
int i = 0;
enum dpu_intf_type intf_type = INTF_NONE;
struct dpu_enc_phys_init_params phys_params;
if (!dpu_enc) {
DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
return -EINVAL;
}
dpu_enc->cur_master = NULL;
memset(&phys_params, 0, sizeof(phys_params));
phys_params.dpu_kms = dpu_kms;
phys_params.parent = &dpu_enc->base;
phys_params.parent_ops = &dpu_encoder_parent_ops;
phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
switch (disp_info->intf_type) {
case DRM_MODE_ENCODER_DSI:
intf_type = INTF_DSI;
break;
case DRM_MODE_ENCODER_TMDS:
intf_type = INTF_DP;
break;
}
WARN_ON(disp_info->num_of_h_tiles < 1);
DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
(disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
dpu_enc->idle_pc_supported =
dpu_kms->catalog->caps->has_idle_pc;
mutex_lock(&dpu_enc->enc_lock);
for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
/*
* Left-most tile is at index 0, content is controller id
* h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
* h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
*/
u32 controller_id = disp_info->h_tile_instance[i];
if (disp_info->num_of_h_tiles > 1) {
if (i == 0)
phys_params.split_role = ENC_ROLE_MASTER;
else
phys_params.split_role = ENC_ROLE_SLAVE;
} else {
phys_params.split_role = ENC_ROLE_SOLO;
}
DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
i, controller_id, phys_params.split_role);
phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
intf_type,
controller_id);
if (phys_params.intf_idx == INTF_MAX) {
DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
intf_type, controller_id);
ret = -EINVAL;
}
if (!ret) {
ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
dpu_enc,
&phys_params);
if (ret)
DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
}
}
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
atomic_set(&phys->vsync_cnt, 0);
atomic_set(&phys->underrun_cnt, 0);
}
mutex_unlock(&dpu_enc->enc_lock);
return ret;
}
static void dpu_encoder_frame_done_timeout(struct timer_list *t)
{
struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
frame_done_timer);
struct drm_encoder *drm_enc = &dpu_enc->base;
u32 event;
if (!drm_enc->dev) {
DPU_ERROR("invalid parameters\n");
return;
}
if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
return;
} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
return;
}
DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
event = DPU_ENCODER_FRAME_EVENT_ERROR;
trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
}
static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
.mode_set = dpu_encoder_virt_mode_set,
.disable = dpu_encoder_virt_disable,
.enable = dpu_kms_encoder_enable,
.atomic_check = dpu_encoder_virt_atomic_check,
/* This is called by dpu_kms_encoder_enable */
.commit = dpu_encoder_virt_enable,
};
static const struct drm_encoder_funcs dpu_encoder_funcs = {
.destroy = dpu_encoder_destroy,
.late_register = dpu_encoder_late_register,
.early_unregister = dpu_encoder_early_unregister,
};
int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
struct msm_display_info *disp_info)
{
struct msm_drm_private *priv = dev->dev_private;
struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
struct drm_encoder *drm_enc = NULL;
struct dpu_encoder_virt *dpu_enc = NULL;
int ret = 0;
dpu_enc = to_dpu_encoder_virt(enc);
ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
if (ret)
goto fail;
atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
timer_setup(&dpu_enc->frame_done_timer,
dpu_encoder_frame_done_timeout, 0);
if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
timer_setup(&dpu_enc->vsync_event_timer,
dpu_encoder_vsync_event_handler,
0);
INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
dpu_encoder_off_work);
dpu_enc->idle_timeout = IDLE_TIMEOUT;
kthread_init_work(&dpu_enc->vsync_event_work,
dpu_encoder_vsync_event_work_handler);
memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
DPU_DEBUG_ENC(dpu_enc, "created\n");
return ret;
fail:
DPU_ERROR("failed to create encoder\n");
if (drm_enc)
dpu_encoder_destroy(drm_enc);
return ret;
}
struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
int drm_enc_mode)
{
struct dpu_encoder_virt *dpu_enc = NULL;
int rc = 0;
dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
if (!dpu_enc)
return ERR_PTR(-ENOMEM);
rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
drm_enc_mode, NULL);
if (rc) {
devm_kfree(dev->dev, dpu_enc);
return ERR_PTR(rc);
}
drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
spin_lock_init(&dpu_enc->enc_spinlock);
dpu_enc->enabled = false;
mutex_init(&dpu_enc->enc_lock);
mutex_init(&dpu_enc->rc_lock);
return &dpu_enc->base;
}
int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
enum msm_event_wait event)
{
int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
struct dpu_encoder_virt *dpu_enc = NULL;
int i, ret = 0;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return -EINVAL;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
switch (event) {
case MSM_ENC_COMMIT_DONE:
fn_wait = phys->ops.wait_for_commit_done;
break;
case MSM_ENC_TX_COMPLETE:
fn_wait = phys->ops.wait_for_tx_complete;
break;
case MSM_ENC_VBLANK:
fn_wait = phys->ops.wait_for_vblank;
break;
default:
DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
event);
return -EINVAL;
}
if (fn_wait) {
DPU_ATRACE_BEGIN("wait_for_completion_event");
ret = fn_wait(phys);
DPU_ATRACE_END("wait_for_completion_event");
if (ret)
return ret;
}
}
return ret;
}
enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
{
struct dpu_encoder_virt *dpu_enc = NULL;
if (!encoder) {
DPU_ERROR("invalid encoder\n");
return INTF_MODE_NONE;
}
dpu_enc = to_dpu_encoder_virt(encoder);
if (dpu_enc->cur_master)
return dpu_enc->cur_master->intf_mode;
if (dpu_enc->num_phys_encs)
return dpu_enc->phys_encs[0]->intf_mode;
return INTF_MODE_NONE;
}