blob: 2e816f232e859ec2347e7b1abff1833c5a1101d7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/slab.h>
#include "dpu_kms.h"
#include "dpu_hw_interrupts.h"
#include "dpu_hw_util.h"
#include "dpu_hw_mdss.h"
/**
* Register offsets in MDSS register file for the interrupt registers
* w.r.t. to the MDP base
*/
#define MDP_SSPP_TOP0_OFF 0x0
#define MDP_INTF_0_OFF 0x6A000
#define MDP_INTF_1_OFF 0x6A800
#define MDP_INTF_2_OFF 0x6B000
#define MDP_INTF_3_OFF 0x6B800
#define MDP_INTF_4_OFF 0x6C000
#define MDP_AD4_0_OFF 0x7C000
#define MDP_AD4_1_OFF 0x7D000
#define MDP_AD4_INTR_EN_OFF 0x41c
#define MDP_AD4_INTR_CLEAR_OFF 0x424
#define MDP_AD4_INTR_STATUS_OFF 0x420
#define MDP_INTF_0_OFF_REV_7xxx 0x34000
#define MDP_INTF_1_OFF_REV_7xxx 0x35000
#define MDP_INTF_5_OFF_REV_7xxx 0x39000
/**
* struct dpu_intr_reg - array of DPU register sets
* @clr_off: offset to CLEAR reg
* @en_off: offset to ENABLE reg
* @status_off: offset to STATUS reg
*/
struct dpu_intr_reg {
u32 clr_off;
u32 en_off;
u32 status_off;
};
/*
* struct dpu_intr_reg - List of DPU interrupt registers
*
* When making changes be sure to sync with dpu_hw_intr_reg
*/
static const struct dpu_intr_reg dpu_intr_set[] = {
{
MDP_SSPP_TOP0_OFF+INTR_CLEAR,
MDP_SSPP_TOP0_OFF+INTR_EN,
MDP_SSPP_TOP0_OFF+INTR_STATUS
},
{
MDP_SSPP_TOP0_OFF+INTR2_CLEAR,
MDP_SSPP_TOP0_OFF+INTR2_EN,
MDP_SSPP_TOP0_OFF+INTR2_STATUS
},
{
MDP_SSPP_TOP0_OFF+HIST_INTR_CLEAR,
MDP_SSPP_TOP0_OFF+HIST_INTR_EN,
MDP_SSPP_TOP0_OFF+HIST_INTR_STATUS
},
{
MDP_INTF_0_OFF+INTF_INTR_CLEAR,
MDP_INTF_0_OFF+INTF_INTR_EN,
MDP_INTF_0_OFF+INTF_INTR_STATUS
},
{
MDP_INTF_1_OFF+INTF_INTR_CLEAR,
MDP_INTF_1_OFF+INTF_INTR_EN,
MDP_INTF_1_OFF+INTF_INTR_STATUS
},
{
MDP_INTF_2_OFF+INTF_INTR_CLEAR,
MDP_INTF_2_OFF+INTF_INTR_EN,
MDP_INTF_2_OFF+INTF_INTR_STATUS
},
{
MDP_INTF_3_OFF+INTF_INTR_CLEAR,
MDP_INTF_3_OFF+INTF_INTR_EN,
MDP_INTF_3_OFF+INTF_INTR_STATUS
},
{
MDP_INTF_4_OFF+INTF_INTR_CLEAR,
MDP_INTF_4_OFF+INTF_INTR_EN,
MDP_INTF_4_OFF+INTF_INTR_STATUS
},
{
MDP_AD4_0_OFF + MDP_AD4_INTR_CLEAR_OFF,
MDP_AD4_0_OFF + MDP_AD4_INTR_EN_OFF,
MDP_AD4_0_OFF + MDP_AD4_INTR_STATUS_OFF,
},
{
MDP_AD4_1_OFF + MDP_AD4_INTR_CLEAR_OFF,
MDP_AD4_1_OFF + MDP_AD4_INTR_EN_OFF,
MDP_AD4_1_OFF + MDP_AD4_INTR_STATUS_OFF,
},
{
MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_STATUS
},
{
MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_STATUS
},
{
MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_STATUS
},
};
#define DPU_IRQ_REG(irq_idx) (irq_idx / 32)
#define DPU_IRQ_MASK(irq_idx) (BIT(irq_idx % 32))
static void dpu_hw_intr_clear_intr_status_nolock(struct dpu_hw_intr *intr,
int irq_idx)
{
int reg_idx;
if (!intr)
return;
reg_idx = DPU_IRQ_REG(irq_idx);
DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, DPU_IRQ_MASK(irq_idx));
/* ensure register writes go through */
wmb();
}
static void dpu_hw_intr_dispatch_irq(struct dpu_hw_intr *intr,
void (*cbfunc)(void *, int),
void *arg)
{
int reg_idx;
int irq_idx;
u32 irq_status;
u32 enable_mask;
int bit;
unsigned long irq_flags;
if (!intr)
return;
/*
* The dispatcher will save the IRQ status before calling here.
* Now need to go through each IRQ status and find matching
* irq lookup index.
*/
spin_lock_irqsave(&intr->irq_lock, irq_flags);
for (reg_idx = 0; reg_idx < ARRAY_SIZE(dpu_intr_set); reg_idx++) {
if (!test_bit(reg_idx, &intr->irq_mask))
continue;
/* Read interrupt status */
irq_status = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].status_off);
/* Read enable mask */
enable_mask = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].en_off);
/* and clear the interrupt */
if (irq_status)
DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off,
irq_status);
/* Finally update IRQ status based on enable mask */
irq_status &= enable_mask;
if (!irq_status)
continue;
/*
* Search through matching intr status.
*/
while ((bit = ffs(irq_status)) != 0) {
irq_idx = DPU_IRQ_IDX(reg_idx, bit - 1);
/*
* Once a match on irq mask, perform a callback
* to the given cbfunc. cbfunc will take care
* the interrupt status clearing. If cbfunc is
* not provided, then the interrupt clearing
* is here.
*/
if (cbfunc)
cbfunc(arg, irq_idx);
dpu_hw_intr_clear_intr_status_nolock(intr, irq_idx);
/*
* When callback finish, clear the irq_status
* with the matching mask. Once irq_status
* is all cleared, the search can be stopped.
*/
irq_status &= ~BIT(bit - 1);
}
}
/* ensure register writes go through */
wmb();
spin_unlock_irqrestore(&intr->irq_lock, irq_flags);
}
static int dpu_hw_intr_enable_irq_locked(struct dpu_hw_intr *intr, int irq_idx)
{
int reg_idx;
const struct dpu_intr_reg *reg;
const char *dbgstr = NULL;
uint32_t cache_irq_mask;
if (!intr)
return -EINVAL;
if (irq_idx < 0 || irq_idx >= intr->total_irqs) {
pr_err("invalid IRQ index: [%d]\n", irq_idx);
return -EINVAL;
}
/*
* The cache_irq_mask and hardware RMW operations needs to be done
* under irq_lock and it's the caller's responsibility to ensure that's
* held.
*/
assert_spin_locked(&intr->irq_lock);
reg_idx = DPU_IRQ_REG(irq_idx);
reg = &dpu_intr_set[reg_idx];
cache_irq_mask = intr->cache_irq_mask[reg_idx];
if (cache_irq_mask & DPU_IRQ_MASK(irq_idx)) {
dbgstr = "DPU IRQ already set:";
} else {
dbgstr = "DPU IRQ enabled:";
cache_irq_mask |= DPU_IRQ_MASK(irq_idx);
/* Cleaning any pending interrupt */
DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx));
/* Enabling interrupts with the new mask */
DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask);
/* ensure register write goes through */
wmb();
intr->cache_irq_mask[reg_idx] = cache_irq_mask;
}
pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr,
DPU_IRQ_MASK(irq_idx), cache_irq_mask);
return 0;
}
static int dpu_hw_intr_disable_irq_locked(struct dpu_hw_intr *intr, int irq_idx)
{
int reg_idx;
const struct dpu_intr_reg *reg;
const char *dbgstr = NULL;
uint32_t cache_irq_mask;
if (!intr)
return -EINVAL;
if (irq_idx < 0 || irq_idx >= intr->total_irqs) {
pr_err("invalid IRQ index: [%d]\n", irq_idx);
return -EINVAL;
}
/*
* The cache_irq_mask and hardware RMW operations needs to be done
* under irq_lock and it's the caller's responsibility to ensure that's
* held.
*/
assert_spin_locked(&intr->irq_lock);
reg_idx = DPU_IRQ_REG(irq_idx);
reg = &dpu_intr_set[reg_idx];
cache_irq_mask = intr->cache_irq_mask[reg_idx];
if ((cache_irq_mask & DPU_IRQ_MASK(irq_idx)) == 0) {
dbgstr = "DPU IRQ is already cleared:";
} else {
dbgstr = "DPU IRQ mask disable:";
cache_irq_mask &= ~DPU_IRQ_MASK(irq_idx);
/* Disable interrupts based on the new mask */
DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask);
/* Cleaning any pending interrupt */
DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx));
/* ensure register write goes through */
wmb();
intr->cache_irq_mask[reg_idx] = cache_irq_mask;
}
pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr,
DPU_IRQ_MASK(irq_idx), cache_irq_mask);
return 0;
}
static int dpu_hw_intr_clear_irqs(struct dpu_hw_intr *intr)
{
int i;
if (!intr)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) {
if (test_bit(i, &intr->irq_mask))
DPU_REG_WRITE(&intr->hw,
dpu_intr_set[i].clr_off, 0xffffffff);
}
/* ensure register writes go through */
wmb();
return 0;
}
static int dpu_hw_intr_disable_irqs(struct dpu_hw_intr *intr)
{
int i;
if (!intr)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) {
if (test_bit(i, &intr->irq_mask))
DPU_REG_WRITE(&intr->hw,
dpu_intr_set[i].en_off, 0x00000000);
}
/* ensure register writes go through */
wmb();
return 0;
}
static u32 dpu_hw_intr_get_interrupt_status(struct dpu_hw_intr *intr,
int irq_idx, bool clear)
{
int reg_idx;
unsigned long irq_flags;
u32 intr_status;
if (!intr)
return 0;
if (irq_idx < 0 || irq_idx >= intr->total_irqs) {
pr_err("invalid IRQ index: [%d]\n", irq_idx);
return 0;
}
spin_lock_irqsave(&intr->irq_lock, irq_flags);
reg_idx = DPU_IRQ_REG(irq_idx);
intr_status = DPU_REG_READ(&intr->hw,
dpu_intr_set[reg_idx].status_off) &
DPU_IRQ_MASK(irq_idx);
if (intr_status && clear)
DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off,
intr_status);
/* ensure register writes go through */
wmb();
spin_unlock_irqrestore(&intr->irq_lock, irq_flags);
return intr_status;
}
static unsigned long dpu_hw_intr_lock(struct dpu_hw_intr *intr)
{
unsigned long irq_flags;
spin_lock_irqsave(&intr->irq_lock, irq_flags);
return irq_flags;
}
static void dpu_hw_intr_unlock(struct dpu_hw_intr *intr, unsigned long irq_flags)
{
spin_unlock_irqrestore(&intr->irq_lock, irq_flags);
}
static void __setup_intr_ops(struct dpu_hw_intr_ops *ops)
{
ops->enable_irq_locked = dpu_hw_intr_enable_irq_locked;
ops->disable_irq_locked = dpu_hw_intr_disable_irq_locked;
ops->dispatch_irqs = dpu_hw_intr_dispatch_irq;
ops->clear_all_irqs = dpu_hw_intr_clear_irqs;
ops->disable_all_irqs = dpu_hw_intr_disable_irqs;
ops->get_interrupt_status = dpu_hw_intr_get_interrupt_status;
ops->lock = dpu_hw_intr_lock;
ops->unlock = dpu_hw_intr_unlock;
}
static void __intr_offset(struct dpu_mdss_cfg *m,
void __iomem *addr, struct dpu_hw_blk_reg_map *hw)
{
hw->base_off = addr;
hw->blk_off = m->mdp[0].base;
hw->hwversion = m->hwversion;
}
struct dpu_hw_intr *dpu_hw_intr_init(void __iomem *addr,
struct dpu_mdss_cfg *m)
{
struct dpu_hw_intr *intr;
if (!addr || !m)
return ERR_PTR(-EINVAL);
intr = kzalloc(sizeof(*intr), GFP_KERNEL);
if (!intr)
return ERR_PTR(-ENOMEM);
__intr_offset(m, addr, &intr->hw);
__setup_intr_ops(&intr->ops);
intr->total_irqs = ARRAY_SIZE(dpu_intr_set) * 32;
intr->cache_irq_mask = kcalloc(ARRAY_SIZE(dpu_intr_set), sizeof(u32),
GFP_KERNEL);
if (intr->cache_irq_mask == NULL) {
kfree(intr);
return ERR_PTR(-ENOMEM);
}
intr->irq_mask = m->mdss_irqs;
spin_lock_init(&intr->irq_lock);
return intr;
}
void dpu_hw_intr_destroy(struct dpu_hw_intr *intr)
{
if (intr) {
kfree(intr->cache_irq_mask);
kfree(intr);
}
}