| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (C) 2021, Intel Corporation. */ |
| |
| #include "ice.h" |
| #include "ice_lib.h" |
| |
| #define E810_OUT_PROP_DELAY_NS 1 |
| |
| /** |
| * ice_set_tx_tstamp - Enable or disable Tx timestamping |
| * @pf: The PF pointer to search in |
| * @on: bool value for whether timestamps are enabled or disabled |
| */ |
| static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) |
| { |
| struct ice_vsi *vsi; |
| u32 val; |
| u16 i; |
| |
| vsi = ice_get_main_vsi(pf); |
| if (!vsi) |
| return; |
| |
| /* Set the timestamp enable flag for all the Tx rings */ |
| ice_for_each_txq(vsi, i) { |
| if (!vsi->tx_rings[i]) |
| continue; |
| vsi->tx_rings[i]->ptp_tx = on; |
| } |
| |
| /* Configure the Tx timestamp interrupt */ |
| val = rd32(&pf->hw, PFINT_OICR_ENA); |
| if (on) |
| val |= PFINT_OICR_TSYN_TX_M; |
| else |
| val &= ~PFINT_OICR_TSYN_TX_M; |
| wr32(&pf->hw, PFINT_OICR_ENA, val); |
| } |
| |
| /** |
| * ice_set_rx_tstamp - Enable or disable Rx timestamping |
| * @pf: The PF pointer to search in |
| * @on: bool value for whether timestamps are enabled or disabled |
| */ |
| static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) |
| { |
| struct ice_vsi *vsi; |
| u16 i; |
| |
| vsi = ice_get_main_vsi(pf); |
| if (!vsi) |
| return; |
| |
| /* Set the timestamp flag for all the Rx rings */ |
| ice_for_each_rxq(vsi, i) { |
| if (!vsi->rx_rings[i]) |
| continue; |
| vsi->rx_rings[i]->ptp_rx = on; |
| } |
| } |
| |
| /** |
| * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit |
| * @pf: Board private structure |
| * @ena: bool value to enable or disable time stamp |
| * |
| * This function will configure timestamping during PTP initialization |
| * and deinitialization |
| */ |
| static void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) |
| { |
| ice_set_tx_tstamp(pf, ena); |
| ice_set_rx_tstamp(pf, ena); |
| |
| if (ena) { |
| pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL; |
| pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON; |
| } else { |
| pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; |
| pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF; |
| } |
| } |
| |
| /** |
| * ice_get_ptp_clock_index - Get the PTP clock index |
| * @pf: the PF pointer |
| * |
| * Determine the clock index of the PTP clock associated with this device. If |
| * this is the PF controlling the clock, just use the local access to the |
| * clock device pointer. |
| * |
| * Otherwise, read from the driver shared parameters to determine the clock |
| * index value. |
| * |
| * Returns: the index of the PTP clock associated with this device, or -1 if |
| * there is no associated clock. |
| */ |
| int ice_get_ptp_clock_index(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| enum ice_aqc_driver_params param_idx; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| u32 value; |
| int err; |
| |
| /* Use the ptp_clock structure if we're the main PF */ |
| if (pf->ptp.clock) |
| return ptp_clock_index(pf->ptp.clock); |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; |
| if (!tmr_idx) |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; |
| else |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; |
| |
| err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); |
| if (err) { |
| dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", |
| err, ice_aq_str(hw->adminq.sq_last_status)); |
| return -1; |
| } |
| |
| /* The PTP clock index is an integer, and will be between 0 and |
| * INT_MAX. The highest bit of the driver shared parameter is used to |
| * indicate whether or not the currently stored clock index is valid. |
| */ |
| if (!(value & PTP_SHARED_CLK_IDX_VALID)) |
| return -1; |
| |
| return value & ~PTP_SHARED_CLK_IDX_VALID; |
| } |
| |
| /** |
| * ice_set_ptp_clock_index - Set the PTP clock index |
| * @pf: the PF pointer |
| * |
| * Set the PTP clock index for this device into the shared driver parameters, |
| * so that other PFs associated with this device can read it. |
| * |
| * If the PF is unable to store the clock index, it will log an error, but |
| * will continue operating PTP. |
| */ |
| static void ice_set_ptp_clock_index(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| enum ice_aqc_driver_params param_idx; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| u32 value; |
| int err; |
| |
| if (!pf->ptp.clock) |
| return; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; |
| if (!tmr_idx) |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; |
| else |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; |
| |
| value = (u32)ptp_clock_index(pf->ptp.clock); |
| if (value > INT_MAX) { |
| dev_err(dev, "PTP Clock index is too large to store\n"); |
| return; |
| } |
| value |= PTP_SHARED_CLK_IDX_VALID; |
| |
| err = ice_aq_set_driver_param(hw, param_idx, value, NULL); |
| if (err) { |
| dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", |
| err, ice_aq_str(hw->adminq.sq_last_status)); |
| } |
| } |
| |
| /** |
| * ice_clear_ptp_clock_index - Clear the PTP clock index |
| * @pf: the PF pointer |
| * |
| * Clear the PTP clock index for this device. Must be called when |
| * unregistering the PTP clock, in order to ensure other PFs stop reporting |
| * a clock object that no longer exists. |
| */ |
| static void ice_clear_ptp_clock_index(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| enum ice_aqc_driver_params param_idx; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| int err; |
| |
| /* Do not clear the index if we don't own the timer */ |
| if (!hw->func_caps.ts_func_info.src_tmr_owned) |
| return; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; |
| if (!tmr_idx) |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; |
| else |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; |
| |
| err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); |
| if (err) { |
| dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", |
| err, ice_aq_str(hw->adminq.sq_last_status)); |
| } |
| } |
| |
| /** |
| * ice_ptp_read_src_clk_reg - Read the source clock register |
| * @pf: Board private structure |
| * @sts: Optional parameter for holding a pair of system timestamps from |
| * the system clock. Will be ignored if NULL is given. |
| */ |
| static u64 |
| ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) |
| { |
| struct ice_hw *hw = &pf->hw; |
| u32 hi, lo, lo2; |
| u8 tmr_idx; |
| |
| tmr_idx = ice_get_ptp_src_clock_index(hw); |
| /* Read the system timestamp pre PHC read */ |
| ptp_read_system_prets(sts); |
| |
| lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); |
| |
| /* Read the system timestamp post PHC read */ |
| ptp_read_system_postts(sts); |
| |
| hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); |
| lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); |
| |
| if (lo2 < lo) { |
| /* if TIME_L rolled over read TIME_L again and update |
| * system timestamps |
| */ |
| ptp_read_system_prets(sts); |
| lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); |
| ptp_read_system_postts(sts); |
| hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); |
| } |
| |
| return ((u64)hi << 32) | lo; |
| } |
| |
| /** |
| * ice_ptp_update_cached_phctime - Update the cached PHC time values |
| * @pf: Board specific private structure |
| * |
| * This function updates the system time values which are cached in the PF |
| * structure and the Rx rings. |
| * |
| * This function must be called periodically to ensure that the cached value |
| * is never more than 2 seconds old. It must also be called whenever the PHC |
| * time has been changed. |
| */ |
| static void ice_ptp_update_cached_phctime(struct ice_pf *pf) |
| { |
| u64 systime; |
| int i; |
| |
| /* Read the current PHC time */ |
| systime = ice_ptp_read_src_clk_reg(pf, NULL); |
| |
| /* Update the cached PHC time stored in the PF structure */ |
| WRITE_ONCE(pf->ptp.cached_phc_time, systime); |
| |
| ice_for_each_vsi(pf, i) { |
| struct ice_vsi *vsi = pf->vsi[i]; |
| int j; |
| |
| if (!vsi) |
| continue; |
| |
| if (vsi->type != ICE_VSI_PF) |
| continue; |
| |
| ice_for_each_rxq(vsi, j) { |
| if (!vsi->rx_rings[j]) |
| continue; |
| WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); |
| } |
| } |
| } |
| |
| /** |
| * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b |
| * @cached_phc_time: recently cached copy of PHC time |
| * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value |
| * |
| * Hardware captures timestamps which contain only 32 bits of nominal |
| * nanoseconds, as opposed to the 64bit timestamps that the stack expects. |
| * Note that the captured timestamp values may be 40 bits, but the lower |
| * 8 bits are sub-nanoseconds and generally discarded. |
| * |
| * Extend the 32bit nanosecond timestamp using the following algorithm and |
| * assumptions: |
| * |
| * 1) have a recently cached copy of the PHC time |
| * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 |
| * seconds) before or after the PHC time was captured. |
| * 3) calculate the delta between the cached time and the timestamp |
| * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was |
| * captured after the PHC time. In this case, the full timestamp is just |
| * the cached PHC time plus the delta. |
| * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the |
| * timestamp was captured *before* the PHC time, i.e. because the PHC |
| * cache was updated after the timestamp was captured by hardware. In this |
| * case, the full timestamp is the cached time minus the inverse delta. |
| * |
| * This algorithm works even if the PHC time was updated after a Tx timestamp |
| * was requested, but before the Tx timestamp event was reported from |
| * hardware. |
| * |
| * This calculation primarily relies on keeping the cached PHC time up to |
| * date. If the timestamp was captured more than 2^31 nanoseconds after the |
| * PHC time, it is possible that the lower 32bits of PHC time have |
| * overflowed more than once, and we might generate an incorrect timestamp. |
| * |
| * This is prevented by (a) periodically updating the cached PHC time once |
| * a second, and (b) discarding any Tx timestamp packet if it has waited for |
| * a timestamp for more than one second. |
| */ |
| static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) |
| { |
| u32 delta, phc_time_lo; |
| u64 ns; |
| |
| /* Extract the lower 32 bits of the PHC time */ |
| phc_time_lo = (u32)cached_phc_time; |
| |
| /* Calculate the delta between the lower 32bits of the cached PHC |
| * time and the in_tstamp value |
| */ |
| delta = (in_tstamp - phc_time_lo); |
| |
| /* Do not assume that the in_tstamp is always more recent than the |
| * cached PHC time. If the delta is large, it indicates that the |
| * in_tstamp was taken in the past, and should be converted |
| * forward. |
| */ |
| if (delta > (U32_MAX / 2)) { |
| /* reverse the delta calculation here */ |
| delta = (phc_time_lo - in_tstamp); |
| ns = cached_phc_time - delta; |
| } else { |
| ns = cached_phc_time + delta; |
| } |
| |
| return ns; |
| } |
| |
| /** |
| * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds |
| * @pf: Board private structure |
| * @in_tstamp: Ingress/egress 40b timestamp value |
| * |
| * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal |
| * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. |
| * |
| * *--------------------------------------------------------------* |
| * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | |
| * *--------------------------------------------------------------* |
| * |
| * The low bit is an indicator of whether the timestamp is valid. The next |
| * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, |
| * and the remaining 32 bits are the lower 32 bits of the PHC timer. |
| * |
| * It is assumed that the caller verifies the timestamp is valid prior to |
| * calling this function. |
| * |
| * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC |
| * time stored in the device private PTP structure as the basis for timestamp |
| * extension. |
| * |
| * See ice_ptp_extend_32b_ts for a detailed explanation of the extension |
| * algorithm. |
| */ |
| static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) |
| { |
| const u64 mask = GENMASK_ULL(31, 0); |
| |
| return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, |
| (in_tstamp >> 8) & mask); |
| } |
| |
| /** |
| * ice_ptp_read_time - Read the time from the device |
| * @pf: Board private structure |
| * @ts: timespec structure to hold the current time value |
| * @sts: Optional parameter for holding a pair of system timestamps from |
| * the system clock. Will be ignored if NULL is given. |
| * |
| * This function reads the source clock registers and stores them in a timespec. |
| * However, since the registers are 64 bits of nanoseconds, we must convert the |
| * result to a timespec before we can return. |
| */ |
| static void |
| ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); |
| |
| *ts = ns_to_timespec64(time_ns); |
| } |
| |
| /** |
| * ice_ptp_write_init - Set PHC time to provided value |
| * @pf: Board private structure |
| * @ts: timespec structure that holds the new time value |
| * |
| * Set the PHC time to the specified time provided in the timespec. |
| */ |
| static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) |
| { |
| u64 ns = timespec64_to_ns(ts); |
| struct ice_hw *hw = &pf->hw; |
| |
| return ice_ptp_init_time(hw, ns); |
| } |
| |
| /** |
| * ice_ptp_write_adj - Adjust PHC clock time atomically |
| * @pf: Board private structure |
| * @adj: Adjustment in nanoseconds |
| * |
| * Perform an atomic adjustment of the PHC time by the specified number of |
| * nanoseconds. |
| */ |
| static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) |
| { |
| struct ice_hw *hw = &pf->hw; |
| |
| return ice_ptp_adj_clock(hw, adj); |
| } |
| |
| /** |
| * ice_ptp_adjfine - Adjust clock increment rate |
| * @info: the driver's PTP info structure |
| * @scaled_ppm: Parts per million with 16-bit fractional field |
| * |
| * Adjust the frequency of the clock by the indicated scaled ppm from the |
| * base frequency. |
| */ |
| static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| u64 freq, divisor = 1000000ULL; |
| struct ice_hw *hw = &pf->hw; |
| s64 incval, diff; |
| int neg_adj = 0; |
| int err; |
| |
| incval = ICE_PTP_NOMINAL_INCVAL_E810; |
| |
| if (scaled_ppm < 0) { |
| neg_adj = 1; |
| scaled_ppm = -scaled_ppm; |
| } |
| |
| while ((u64)scaled_ppm > div_u64(U64_MAX, incval)) { |
| /* handle overflow by scaling down the scaled_ppm and |
| * the divisor, losing some precision |
| */ |
| scaled_ppm >>= 2; |
| divisor >>= 2; |
| } |
| |
| freq = (incval * (u64)scaled_ppm) >> 16; |
| diff = div_u64(freq, divisor); |
| |
| if (neg_adj) |
| incval -= diff; |
| else |
| incval += diff; |
| |
| err = ice_ptp_write_incval_locked(hw, incval); |
| if (err) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", |
| err); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_extts_work - Workqueue task function |
| * @work: external timestamp work structure |
| * |
| * Service for PTP external clock event |
| */ |
| static void ice_ptp_extts_work(struct kthread_work *work) |
| { |
| struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work); |
| struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); |
| struct ptp_clock_event event; |
| struct ice_hw *hw = &pf->hw; |
| u8 chan, tmr_idx; |
| u32 hi, lo; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| /* Event time is captured by one of the two matched registers |
| * GLTSYN_EVNT_L: 32 LSB of sampled time event |
| * GLTSYN_EVNT_H: 32 MSB of sampled time event |
| * Event is defined in GLTSYN_EVNT_0 register |
| */ |
| for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { |
| /* Check if channel is enabled */ |
| if (pf->ptp.ext_ts_irq & (1 << chan)) { |
| lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); |
| hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); |
| event.timestamp = (((u64)hi) << 32) | lo; |
| event.type = PTP_CLOCK_EXTTS; |
| event.index = chan; |
| |
| /* Fire event */ |
| ptp_clock_event(pf->ptp.clock, &event); |
| pf->ptp.ext_ts_irq &= ~(1 << chan); |
| } |
| } |
| } |
| |
| /** |
| * ice_ptp_cfg_extts - Configure EXTTS pin and channel |
| * @pf: Board private structure |
| * @ena: true to enable; false to disable |
| * @chan: GPIO channel (0-3) |
| * @gpio_pin: GPIO pin |
| * @extts_flags: request flags from the ptp_extts_request.flags |
| */ |
| static int |
| ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, |
| unsigned int extts_flags) |
| { |
| u32 func, aux_reg, gpio_reg, irq_reg; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| |
| if (chan > (unsigned int)pf->ptp.info.n_ext_ts) |
| return -EINVAL; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| irq_reg = rd32(hw, PFINT_OICR_ENA); |
| |
| if (ena) { |
| /* Enable the interrupt */ |
| irq_reg |= PFINT_OICR_TSYN_EVNT_M; |
| aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; |
| |
| #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) |
| #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) |
| |
| /* set event level to requested edge */ |
| if (extts_flags & PTP_FALLING_EDGE) |
| aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; |
| if (extts_flags & PTP_RISING_EDGE) |
| aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; |
| |
| /* Write GPIO CTL reg. |
| * 0x1 is input sampled by EVENT register(channel) |
| * + num_in_channels * tmr_idx |
| */ |
| func = 1 + chan + (tmr_idx * 3); |
| gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & |
| GLGEN_GPIO_CTL_PIN_FUNC_M); |
| pf->ptp.ext_ts_chan |= (1 << chan); |
| } else { |
| /* clear the values we set to reset defaults */ |
| aux_reg = 0; |
| gpio_reg = 0; |
| pf->ptp.ext_ts_chan &= ~(1 << chan); |
| if (!pf->ptp.ext_ts_chan) |
| irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; |
| } |
| |
| wr32(hw, PFINT_OICR_ENA, irq_reg); |
| wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); |
| wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_cfg_clkout - Configure clock to generate periodic wave |
| * @pf: Board private structure |
| * @chan: GPIO channel (0-3) |
| * @config: desired periodic clk configuration. NULL will disable channel |
| * @store: If set to true the values will be stored |
| * |
| * Configure the internal clock generator modules to generate the clock wave of |
| * specified period. |
| */ |
| static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, |
| struct ice_perout_channel *config, bool store) |
| { |
| u64 current_time, period, start_time, phase; |
| struct ice_hw *hw = &pf->hw; |
| u32 func, val, gpio_pin; |
| u8 tmr_idx; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* 0. Reset mode & out_en in AUX_OUT */ |
| wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); |
| |
| /* If we're disabling the output, clear out CLKO and TGT and keep |
| * output level low |
| */ |
| if (!config || !config->ena) { |
| wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); |
| wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); |
| wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); |
| |
| val = GLGEN_GPIO_CTL_PIN_DIR_M; |
| gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; |
| wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); |
| |
| /* Store the value if requested */ |
| if (store) |
| memset(&pf->ptp.perout_channels[chan], 0, |
| sizeof(struct ice_perout_channel)); |
| |
| return 0; |
| } |
| period = config->period; |
| start_time = config->start_time; |
| div64_u64_rem(start_time, period, &phase); |
| gpio_pin = config->gpio_pin; |
| |
| /* 1. Write clkout with half of required period value */ |
| if (period & 0x1) { |
| dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); |
| goto err; |
| } |
| |
| period >>= 1; |
| |
| /* For proper operation, the GLTSYN_CLKO must be larger than clock tick |
| */ |
| #define MIN_PULSE 3 |
| if (period <= MIN_PULSE || period > U32_MAX) { |
| dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", |
| MIN_PULSE * 2); |
| goto err; |
| } |
| |
| wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); |
| |
| /* Allow time for programming before start_time is hit */ |
| current_time = ice_ptp_read_src_clk_reg(pf, NULL); |
| |
| /* if start time is in the past start the timer at the nearest second |
| * maintaining phase |
| */ |
| if (start_time < current_time) |
| start_time = div64_u64(current_time + NSEC_PER_SEC - 1, |
| NSEC_PER_SEC) * NSEC_PER_SEC + phase; |
| |
| start_time -= E810_OUT_PROP_DELAY_NS; |
| |
| /* 2. Write TARGET time */ |
| wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); |
| wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); |
| |
| /* 3. Write AUX_OUT register */ |
| val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; |
| wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); |
| |
| /* 4. write GPIO CTL reg */ |
| func = 8 + chan + (tmr_idx * 4); |
| val = GLGEN_GPIO_CTL_PIN_DIR_M | |
| ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); |
| wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); |
| |
| /* Store the value if requested */ |
| if (store) { |
| memcpy(&pf->ptp.perout_channels[chan], config, |
| sizeof(struct ice_perout_channel)); |
| pf->ptp.perout_channels[chan].start_time = phase; |
| } |
| |
| return 0; |
| err: |
| dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); |
| return -EFAULT; |
| } |
| |
| /** |
| * ice_ptp_disable_all_clkout - Disable all currently configured outputs |
| * @pf: pointer to the PF structure |
| * |
| * Disable all currently configured clock outputs. This is necessary before |
| * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to |
| * re-enable the clocks again. |
| */ |
| static void ice_ptp_disable_all_clkout(struct ice_pf *pf) |
| { |
| uint i; |
| |
| for (i = 0; i < pf->ptp.info.n_per_out; i++) |
| if (pf->ptp.perout_channels[i].ena) |
| ice_ptp_cfg_clkout(pf, i, NULL, false); |
| } |
| |
| /** |
| * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs |
| * @pf: pointer to the PF structure |
| * |
| * Enable all currently configured clock outputs. Use this after |
| * ice_ptp_disable_all_clkout to reconfigure the output signals according to |
| * their configuration. |
| */ |
| static void ice_ptp_enable_all_clkout(struct ice_pf *pf) |
| { |
| uint i; |
| |
| for (i = 0; i < pf->ptp.info.n_per_out; i++) |
| if (pf->ptp.perout_channels[i].ena) |
| ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], |
| false); |
| } |
| |
| /** |
| * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC |
| * @info: the driver's PTP info structure |
| * @rq: The requested feature to change |
| * @on: Enable/disable flag |
| */ |
| static int |
| ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, |
| struct ptp_clock_request *rq, int on) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_perout_channel clk_cfg = {0}; |
| unsigned int chan; |
| u32 gpio_pin; |
| int err; |
| |
| switch (rq->type) { |
| case PTP_CLK_REQ_PEROUT: |
| chan = rq->perout.index; |
| if (chan == PPS_CLK_GEN_CHAN) |
| clk_cfg.gpio_pin = PPS_PIN_INDEX; |
| else |
| clk_cfg.gpio_pin = chan; |
| |
| clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + |
| rq->perout.period.nsec); |
| clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + |
| rq->perout.start.nsec); |
| clk_cfg.ena = !!on; |
| |
| err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); |
| break; |
| case PTP_CLK_REQ_EXTTS: |
| chan = rq->extts.index; |
| gpio_pin = chan; |
| |
| err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, |
| rq->extts.flags); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_gettimex64 - Get the time of the clock |
| * @info: the driver's PTP info structure |
| * @ts: timespec64 structure to hold the current time value |
| * @sts: Optional parameter for holding a pair of system timestamps from |
| * the system clock. Will be ignored if NULL is given. |
| * |
| * Read the device clock and return the correct value on ns, after converting it |
| * into a timespec struct. |
| */ |
| static int |
| ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_hw *hw = &pf->hw; |
| |
| if (!ice_ptp_lock(hw)) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); |
| return -EBUSY; |
| } |
| |
| ice_ptp_read_time(pf, ts, sts); |
| ice_ptp_unlock(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_settime64 - Set the time of the clock |
| * @info: the driver's PTP info structure |
| * @ts: timespec64 structure that holds the new time value |
| * |
| * Set the device clock to the user input value. The conversion from timespec |
| * to ns happens in the write function. |
| */ |
| static int |
| ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct timespec64 ts64 = *ts; |
| struct ice_hw *hw = &pf->hw; |
| int err; |
| |
| if (!ice_ptp_lock(hw)) { |
| err = -EBUSY; |
| goto exit; |
| } |
| |
| /* Disable periodic outputs */ |
| ice_ptp_disable_all_clkout(pf); |
| |
| err = ice_ptp_write_init(pf, &ts64); |
| ice_ptp_unlock(hw); |
| |
| if (!err) |
| ice_ptp_update_cached_phctime(pf); |
| |
| /* Reenable periodic outputs */ |
| ice_ptp_enable_all_clkout(pf); |
| exit: |
| if (err) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment |
| * @info: the driver's PTP info structure |
| * @delta: Offset in nanoseconds to adjust the time by |
| */ |
| static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) |
| { |
| struct timespec64 now, then; |
| |
| then = ns_to_timespec64(delta); |
| ice_ptp_gettimex64(info, &now, NULL); |
| now = timespec64_add(now, then); |
| |
| return ice_ptp_settime64(info, (const struct timespec64 *)&now); |
| } |
| |
| /** |
| * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta |
| * @info: the driver's PTP info structure |
| * @delta: Offset in nanoseconds to adjust the time by |
| */ |
| static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_hw *hw = &pf->hw; |
| struct device *dev; |
| int err; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| /* Hardware only supports atomic adjustments using signed 32-bit |
| * integers. For any adjustment outside this range, perform |
| * a non-atomic get->adjust->set flow. |
| */ |
| if (delta > S32_MAX || delta < S32_MIN) { |
| dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); |
| return ice_ptp_adjtime_nonatomic(info, delta); |
| } |
| |
| if (!ice_ptp_lock(hw)) { |
| dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); |
| return -EBUSY; |
| } |
| |
| /* Disable periodic outputs */ |
| ice_ptp_disable_all_clkout(pf); |
| |
| err = ice_ptp_write_adj(pf, delta); |
| |
| /* Reenable periodic outputs */ |
| ice_ptp_enable_all_clkout(pf); |
| |
| ice_ptp_unlock(hw); |
| |
| if (err) { |
| dev_err(dev, "PTP failed to adjust time, err %d\n", err); |
| return err; |
| } |
| |
| ice_ptp_update_cached_phctime(pf); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_get_ts_config - ioctl interface to read the timestamping config |
| * @pf: Board private structure |
| * @ifr: ioctl data |
| * |
| * Copy the timestamping config to user buffer |
| */ |
| int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) |
| { |
| struct hwtstamp_config *config; |
| |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return -EIO; |
| |
| config = &pf->ptp.tstamp_config; |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode |
| * @pf: Board private structure |
| * @config: hwtstamp settings requested or saved |
| */ |
| static int |
| ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) |
| { |
| /* Reserved for future extensions. */ |
| if (config->flags) |
| return -EINVAL; |
| |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| ice_set_tx_tstamp(pf, false); |
| break; |
| case HWTSTAMP_TX_ON: |
| ice_set_tx_tstamp(pf, true); |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| ice_set_rx_tstamp(pf, false); |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_NTP_ALL: |
| case HWTSTAMP_FILTER_ALL: |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| ice_set_rx_tstamp(pf, true); |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_set_ts_config - ioctl interface to control the timestamping |
| * @pf: Board private structure |
| * @ifr: ioctl data |
| * |
| * Get the user config and store it |
| */ |
| int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) |
| { |
| struct hwtstamp_config config; |
| int err; |
| |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return -EAGAIN; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| err = ice_ptp_set_timestamp_mode(pf, &config); |
| if (err) |
| return err; |
| |
| /* Save these settings for future reference */ |
| pf->ptp.tstamp_config = config; |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * ice_ptp_rx_hwtstamp - Check for an Rx timestamp |
| * @rx_ring: Ring to get the VSI info |
| * @rx_desc: Receive descriptor |
| * @skb: Particular skb to send timestamp with |
| * |
| * The driver receives a notification in the receive descriptor with timestamp. |
| * The timestamp is in ns, so we must convert the result first. |
| */ |
| void |
| ice_ptp_rx_hwtstamp(struct ice_ring *rx_ring, |
| union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) |
| { |
| u32 ts_high; |
| u64 ts_ns; |
| |
| /* Populate timesync data into skb */ |
| if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) { |
| struct skb_shared_hwtstamps *hwtstamps; |
| |
| /* Use ice_ptp_extend_32b_ts directly, using the ring-specific |
| * cached PHC value, rather than accessing the PF. This also |
| * allows us to simply pass the upper 32bits of nanoseconds |
| * directly. Calling ice_ptp_extend_40b_ts is unnecessary as |
| * it would just discard these bits itself. |
| */ |
| ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); |
| ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high); |
| |
| hwtstamps = skb_hwtstamps(skb); |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| hwtstamps->hwtstamp = ns_to_ktime(ts_ns); |
| } |
| } |
| |
| /** |
| * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs |
| * @info: PTP clock capabilities |
| */ |
| static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info) |
| { |
| info->n_per_out = E810_N_PER_OUT; |
| info->n_ext_ts = E810_N_EXT_TS; |
| } |
| |
| /** |
| * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support |
| * @pf: Board private structure |
| * @info: PTP info to fill |
| * |
| * Assign functions to the PTP capabiltiies structure for E810 devices. |
| * Functions which operate across all device families should be set directly |
| * in ice_ptp_set_caps. Only add functions here which are distinct for e810 |
| * devices. |
| */ |
| static void |
| ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) |
| { |
| info->enable = ice_ptp_gpio_enable_e810; |
| |
| ice_ptp_setup_pins_e810(info); |
| } |
| |
| /** |
| * ice_ptp_set_caps - Set PTP capabilities |
| * @pf: Board private structure |
| */ |
| static void ice_ptp_set_caps(struct ice_pf *pf) |
| { |
| struct ptp_clock_info *info = &pf->ptp.info; |
| struct device *dev = ice_pf_to_dev(pf); |
| |
| snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", |
| dev_driver_string(dev), dev_name(dev)); |
| info->owner = THIS_MODULE; |
| info->max_adj = 999999999; |
| info->adjtime = ice_ptp_adjtime; |
| info->adjfine = ice_ptp_adjfine; |
| info->gettimex64 = ice_ptp_gettimex64; |
| info->settime64 = ice_ptp_settime64; |
| |
| ice_ptp_set_funcs_e810(pf, info); |
| } |
| |
| /** |
| * ice_ptp_create_clock - Create PTP clock device for userspace |
| * @pf: Board private structure |
| * |
| * This function creates a new PTP clock device. It only creates one if we |
| * don't already have one. Will return error if it can't create one, but success |
| * if we already have a device. Should be used by ice_ptp_init to create clock |
| * initially, and prevent global resets from creating new clock devices. |
| */ |
| static long ice_ptp_create_clock(struct ice_pf *pf) |
| { |
| struct ptp_clock_info *info; |
| struct ptp_clock *clock; |
| struct device *dev; |
| |
| /* No need to create a clock device if we already have one */ |
| if (pf->ptp.clock) |
| return 0; |
| |
| ice_ptp_set_caps(pf); |
| |
| info = &pf->ptp.info; |
| dev = ice_pf_to_dev(pf); |
| |
| /* Attempt to register the clock before enabling the hardware. */ |
| clock = ptp_clock_register(info, dev); |
| if (IS_ERR(clock)) |
| return PTR_ERR(clock); |
| |
| pf->ptp.clock = clock; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port |
| * @work: pointer to the kthread_work struct |
| * |
| * Process timestamps captured by the PHY associated with this port. To do |
| * this, loop over each index with a waiting skb. |
| * |
| * If a given index has a valid timestamp, perform the following steps: |
| * |
| * 1) copy the timestamp out of the PHY register |
| * 4) clear the timestamp valid bit in the PHY register |
| * 5) unlock the index by clearing the associated in_use bit. |
| * 2) extend the 40b timestamp value to get a 64bit timestamp |
| * 3) send that timestamp to the stack |
| * |
| * After looping, if we still have waiting SKBs, then re-queue the work. This |
| * may cause us effectively poll even when not strictly necessary. We do this |
| * because it's possible a new timestamp was requested around the same time as |
| * the interrupt. In some cases hardware might not interrupt us again when the |
| * timestamp is captured. |
| * |
| * Note that we only take the tracking lock when clearing the bit and when |
| * checking if we need to re-queue this task. The only place where bits can be |
| * set is the hard xmit routine where an SKB has a request flag set. The only |
| * places where we clear bits are this work function, or the periodic cleanup |
| * thread. If the cleanup thread clears a bit we're processing we catch it |
| * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread |
| * starts a new timestamp, we might not begin processing it right away but we |
| * will notice it at the end when we re-queue the work item. If a Tx thread |
| * starts a new timestamp just after this function exits without re-queuing, |
| * the interrupt when the timestamp finishes should trigger. Avoiding holding |
| * the lock for the entire function is important in order to ensure that Tx |
| * threads do not get blocked while waiting for the lock. |
| */ |
| static void ice_ptp_tx_tstamp_work(struct kthread_work *work) |
| { |
| struct ice_ptp_port *ptp_port; |
| struct ice_ptp_tx *tx; |
| struct ice_pf *pf; |
| struct ice_hw *hw; |
| u8 idx; |
| |
| tx = container_of(work, struct ice_ptp_tx, work); |
| if (!tx->init) |
| return; |
| |
| ptp_port = container_of(tx, struct ice_ptp_port, tx); |
| pf = ptp_port_to_pf(ptp_port); |
| hw = &pf->hw; |
| |
| for_each_set_bit(idx, tx->in_use, tx->len) { |
| struct skb_shared_hwtstamps shhwtstamps = {}; |
| u8 phy_idx = idx + tx->quad_offset; |
| u64 raw_tstamp, tstamp; |
| struct sk_buff *skb; |
| int err; |
| |
| err = ice_read_phy_tstamp(hw, tx->quad, phy_idx, |
| &raw_tstamp); |
| if (err) |
| continue; |
| |
| /* Check if the timestamp is valid */ |
| if (!(raw_tstamp & ICE_PTP_TS_VALID)) |
| continue; |
| |
| /* clear the timestamp register, so that it won't show valid |
| * again when re-used. |
| */ |
| ice_clear_phy_tstamp(hw, tx->quad, phy_idx); |
| |
| /* The timestamp is valid, so we'll go ahead and clear this |
| * index and then send the timestamp up to the stack. |
| */ |
| spin_lock(&tx->lock); |
| clear_bit(idx, tx->in_use); |
| skb = tx->tstamps[idx].skb; |
| tx->tstamps[idx].skb = NULL; |
| spin_unlock(&tx->lock); |
| |
| /* it's (unlikely but) possible we raced with the cleanup |
| * thread for discarding old timestamp requests. |
| */ |
| if (!skb) |
| continue; |
| |
| /* Extend the timestamp using cached PHC time */ |
| tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); |
| shhwtstamps.hwtstamp = ns_to_ktime(tstamp); |
| |
| skb_tstamp_tx(skb, &shhwtstamps); |
| dev_kfree_skb_any(skb); |
| } |
| |
| /* Check if we still have work to do. If so, re-queue this task to |
| * poll for remaining timestamps. |
| */ |
| spin_lock(&tx->lock); |
| if (!bitmap_empty(tx->in_use, tx->len)) |
| kthread_queue_work(pf->ptp.kworker, &tx->work); |
| spin_unlock(&tx->lock); |
| } |
| |
| /** |
| * ice_ptp_request_ts - Request an available Tx timestamp index |
| * @tx: the PTP Tx timestamp tracker to request from |
| * @skb: the SKB to associate with this timestamp request |
| */ |
| s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) |
| { |
| u8 idx; |
| |
| /* Check if this tracker is initialized */ |
| if (!tx->init) |
| return -1; |
| |
| spin_lock(&tx->lock); |
| /* Find and set the first available index */ |
| idx = find_first_zero_bit(tx->in_use, tx->len); |
| if (idx < tx->len) { |
| /* We got a valid index that no other thread could have set. Store |
| * a reference to the skb and the start time to allow discarding old |
| * requests. |
| */ |
| set_bit(idx, tx->in_use); |
| tx->tstamps[idx].start = jiffies; |
| tx->tstamps[idx].skb = skb_get(skb); |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| } |
| |
| spin_unlock(&tx->lock); |
| |
| /* return the appropriate PHY timestamp register index, -1 if no |
| * indexes were available. |
| */ |
| if (idx >= tx->len) |
| return -1; |
| else |
| return idx + tx->quad_offset; |
| } |
| |
| /** |
| * ice_ptp_process_ts - Spawn kthread work to handle timestamps |
| * @pf: Board private structure |
| * |
| * Queue work required to process the PTP Tx timestamps outside of interrupt |
| * context. |
| */ |
| void ice_ptp_process_ts(struct ice_pf *pf) |
| { |
| if (pf->ptp.port.tx.init) |
| kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work); |
| } |
| |
| /** |
| * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps |
| * @tx: Tx tracking structure to initialize |
| * |
| * Assumes that the length has already been initialized. Do not call directly, |
| * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead. |
| */ |
| static int |
| ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) |
| { |
| tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL); |
| if (!tx->tstamps) |
| return -ENOMEM; |
| |
| tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL); |
| if (!tx->in_use) { |
| kfree(tx->tstamps); |
| tx->tstamps = NULL; |
| return -ENOMEM; |
| } |
| |
| spin_lock_init(&tx->lock); |
| kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work); |
| |
| tx->init = 1; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker |
| * @pf: Board private structure |
| * @tx: the tracker to flush |
| */ |
| static void |
| ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) |
| { |
| u8 idx; |
| |
| spin_lock(&tx->lock); |
| |
| for (idx = 0; idx < tx->len; idx++) { |
| u8 phy_idx = idx + tx->quad_offset; |
| |
| /* Clear any potential residual timestamp in the PHY block */ |
| if (!pf->hw.reset_ongoing) |
| ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx); |
| |
| if (tx->tstamps[idx].skb) { |
| dev_kfree_skb_any(tx->tstamps[idx].skb); |
| tx->tstamps[idx].skb = NULL; |
| } |
| } |
| |
| spin_unlock(&tx->lock); |
| } |
| |
| /** |
| * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker |
| * @pf: Board private structure |
| * @tx: Tx tracking structure to release |
| * |
| * Free memory associated with the Tx timestamp tracker. |
| */ |
| static void |
| ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) |
| { |
| tx->init = 0; |
| |
| kthread_cancel_work_sync(&tx->work); |
| |
| ice_ptp_flush_tx_tracker(pf, tx); |
| |
| kfree(tx->tstamps); |
| tx->tstamps = NULL; |
| |
| kfree(tx->in_use); |
| tx->in_use = NULL; |
| |
| tx->len = 0; |
| } |
| |
| /** |
| * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps |
| * @pf: Board private structure |
| * @tx: the Tx tracking structure to initialize |
| * |
| * Initialize the Tx timestamp tracker for this PF. For E810 devices, each |
| * port has its own block of timestamps, independent of the other ports. |
| */ |
| static int |
| ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) |
| { |
| tx->quad = pf->hw.port_info->lport; |
| tx->quad_offset = 0; |
| tx->len = INDEX_PER_QUAD; |
| |
| return ice_ptp_alloc_tx_tracker(tx); |
| } |
| |
| /** |
| * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped |
| * @tx: PTP Tx tracker to clean up |
| * |
| * Loop through the Tx timestamp requests and see if any of them have been |
| * waiting for a long time. Discard any SKBs that have been waiting for more |
| * than 2 seconds. This is long enough to be reasonably sure that the |
| * timestamp will never be captured. This might happen if the packet gets |
| * discarded before it reaches the PHY timestamping block. |
| */ |
| static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx) |
| { |
| u8 idx; |
| |
| if (!tx->init) |
| return; |
| |
| for_each_set_bit(idx, tx->in_use, tx->len) { |
| struct sk_buff *skb; |
| |
| /* Check if this SKB has been waiting for too long */ |
| if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ)) |
| continue; |
| |
| spin_lock(&tx->lock); |
| skb = tx->tstamps[idx].skb; |
| tx->tstamps[idx].skb = NULL; |
| clear_bit(idx, tx->in_use); |
| spin_unlock(&tx->lock); |
| |
| /* Free the SKB after we've cleared the bit */ |
| dev_kfree_skb_any(skb); |
| } |
| } |
| |
| static void ice_ptp_periodic_work(struct kthread_work *work) |
| { |
| struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); |
| struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); |
| |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return; |
| |
| ice_ptp_update_cached_phctime(pf); |
| |
| ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx); |
| |
| /* Run twice a second */ |
| kthread_queue_delayed_work(ptp->kworker, &ptp->work, |
| msecs_to_jiffies(500)); |
| } |
| |
| /** |
| * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device |
| * @pf: Board private structure |
| * |
| * Setup and initialize a PTP clock device that represents the device hardware |
| * clock. Save the clock index for other functions connected to the same |
| * hardware resource. |
| */ |
| static int ice_ptp_init_owner(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| struct timespec64 ts; |
| u8 src_idx; |
| int err; |
| |
| wr32(hw, GLTSYN_SYNC_DLAY, 0); |
| |
| /* Clear some HW residue and enable source clock */ |
| src_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* Enable source clocks */ |
| wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); |
| |
| /* Enable PHY time sync */ |
| err = ice_ptp_init_phy_e810(hw); |
| if (err) |
| goto err_exit; |
| |
| /* Clear event status indications for auxiliary pins */ |
| (void)rd32(hw, GLTSYN_STAT(src_idx)); |
| |
| /* Acquire the global hardware lock */ |
| if (!ice_ptp_lock(hw)) { |
| err = -EBUSY; |
| goto err_exit; |
| } |
| |
| /* Write the increment time value to PHY and LAN */ |
| err = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810); |
| if (err) { |
| ice_ptp_unlock(hw); |
| goto err_exit; |
| } |
| |
| ts = ktime_to_timespec64(ktime_get_real()); |
| /* Write the initial Time value to PHY and LAN */ |
| err = ice_ptp_write_init(pf, &ts); |
| if (err) { |
| ice_ptp_unlock(hw); |
| goto err_exit; |
| } |
| |
| /* Release the global hardware lock */ |
| ice_ptp_unlock(hw); |
| |
| /* Ensure we have a clock device */ |
| err = ice_ptp_create_clock(pf); |
| if (err) |
| goto err_clk; |
| |
| /* Store the PTP clock index for other PFs */ |
| ice_set_ptp_clock_index(pf); |
| |
| return 0; |
| |
| err_clk: |
| pf->ptp.clock = NULL; |
| err_exit: |
| dev_err(dev, "PTP failed to register clock, err %d\n", err); |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_init - Initialize the PTP support after device probe or reset |
| * @pf: Board private structure |
| * |
| * This function sets device up for PTP support. The first time it is run, it |
| * will create a clock device. It does not create a clock device if one |
| * already exists. It also reconfigures the device after a reset. |
| */ |
| void ice_ptp_init(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct kthread_worker *kworker; |
| struct ice_hw *hw = &pf->hw; |
| int err; |
| |
| /* PTP is currently only supported on E810 devices */ |
| if (!ice_is_e810(hw)) |
| return; |
| |
| /* Check if this PF owns the source timer */ |
| if (hw->func_caps.ts_func_info.src_tmr_owned) { |
| err = ice_ptp_init_owner(pf); |
| if (err) |
| return; |
| } |
| |
| /* Disable timestamping for both Tx and Rx */ |
| ice_ptp_cfg_timestamp(pf, false); |
| |
| /* Initialize the PTP port Tx timestamp tracker */ |
| ice_ptp_init_tx_e810(pf, &pf->ptp.port.tx); |
| |
| /* Initialize work functions */ |
| kthread_init_delayed_work(&pf->ptp.work, ice_ptp_periodic_work); |
| kthread_init_work(&pf->ptp.extts_work, ice_ptp_extts_work); |
| |
| /* Allocate a kworker for handling work required for the ports |
| * connected to the PTP hardware clock. |
| */ |
| kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(dev)); |
| if (IS_ERR(kworker)) { |
| err = PTR_ERR(kworker); |
| goto err_kworker; |
| } |
| pf->ptp.kworker = kworker; |
| |
| set_bit(ICE_FLAG_PTP, pf->flags); |
| |
| /* Start periodic work going */ |
| kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 0); |
| |
| dev_info(dev, "PTP init successful\n"); |
| return; |
| |
| err_kworker: |
| /* If we registered a PTP clock, release it */ |
| if (pf->ptp.clock) { |
| ptp_clock_unregister(pf->ptp.clock); |
| pf->ptp.clock = NULL; |
| } |
| dev_err(dev, "PTP failed %d\n", err); |
| } |
| |
| /** |
| * ice_ptp_release - Disable the driver/HW support and unregister the clock |
| * @pf: Board private structure |
| * |
| * This function handles the cleanup work required from the initialization by |
| * clearing out the important information and unregistering the clock |
| */ |
| void ice_ptp_release(struct ice_pf *pf) |
| { |
| /* Disable timestamping for both Tx and Rx */ |
| ice_ptp_cfg_timestamp(pf, false); |
| |
| ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); |
| |
| clear_bit(ICE_FLAG_PTP, pf->flags); |
| |
| kthread_cancel_delayed_work_sync(&pf->ptp.work); |
| |
| if (pf->ptp.kworker) { |
| kthread_destroy_worker(pf->ptp.kworker); |
| pf->ptp.kworker = NULL; |
| } |
| |
| if (!pf->ptp.clock) |
| return; |
| |
| /* Disable periodic outputs */ |
| ice_ptp_disable_all_clkout(pf); |
| |
| ice_clear_ptp_clock_index(pf); |
| ptp_clock_unregister(pf->ptp.clock); |
| pf->ptp.clock = NULL; |
| |
| dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); |
| } |