blob: f1690cf541998d0aa5b638ef7a8da4be9614b91b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Test cases for KFENCE memory safety error detector. Since the interface with
* which KFENCE's reports are obtained is via the console, this is the output we
* should verify. For each test case checks the presence (or absence) of
* generated reports. Relies on 'console' tracepoint to capture reports as they
* appear in the kernel log.
*
* Copyright (C) 2020, Google LLC.
* Author: Alexander Potapenko <glider@google.com>
* Marco Elver <elver@google.com>
*/
#include <kunit/test.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/kfence.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/tracepoint.h>
#include <trace/events/printk.h>
#include <asm/kfence.h>
#include "kfence.h"
/* May be overridden by <asm/kfence.h>. */
#ifndef arch_kfence_test_address
#define arch_kfence_test_address(addr) (addr)
#endif
/* Report as observed from console. */
static struct {
spinlock_t lock;
int nlines;
char lines[2][256];
} observed = {
.lock = __SPIN_LOCK_UNLOCKED(observed.lock),
};
/* Probe for console output: obtains observed lines of interest. */
static void probe_console(void *ignore, const char *buf, size_t len)
{
unsigned long flags;
int nlines;
spin_lock_irqsave(&observed.lock, flags);
nlines = observed.nlines;
if (strnstr(buf, "BUG: KFENCE: ", len) && strnstr(buf, "test_", len)) {
/*
* KFENCE report and related to the test.
*
* The provided @buf is not NUL-terminated; copy no more than
* @len bytes and let strscpy() add the missing NUL-terminator.
*/
strscpy(observed.lines[0], buf, min(len + 1, sizeof(observed.lines[0])));
nlines = 1;
} else if (nlines == 1 && (strnstr(buf, "at 0x", len) || strnstr(buf, "of 0x", len))) {
strscpy(observed.lines[nlines++], buf, min(len + 1, sizeof(observed.lines[0])));
}
WRITE_ONCE(observed.nlines, nlines); /* Publish new nlines. */
spin_unlock_irqrestore(&observed.lock, flags);
}
/* Check if a report related to the test exists. */
static bool report_available(void)
{
return READ_ONCE(observed.nlines) == ARRAY_SIZE(observed.lines);
}
/* Information we expect in a report. */
struct expect_report {
enum kfence_error_type type; /* The type or error. */
void *fn; /* Function pointer to expected function where access occurred. */
char *addr; /* Address at which the bad access occurred. */
bool is_write; /* Is access a write. */
};
static const char *get_access_type(const struct expect_report *r)
{
return r->is_write ? "write" : "read";
}
/* Check observed report matches information in @r. */
static bool report_matches(const struct expect_report *r)
{
unsigned long addr = (unsigned long)r->addr;
bool ret = false;
unsigned long flags;
typeof(observed.lines) expect;
const char *end;
char *cur;
/* Doubled-checked locking. */
if (!report_available())
return false;
/* Generate expected report contents. */
/* Title */
cur = expect[0];
end = &expect[0][sizeof(expect[0]) - 1];
switch (r->type) {
case KFENCE_ERROR_OOB:
cur += scnprintf(cur, end - cur, "BUG: KFENCE: out-of-bounds %s",
get_access_type(r));
break;
case KFENCE_ERROR_UAF:
cur += scnprintf(cur, end - cur, "BUG: KFENCE: use-after-free %s",
get_access_type(r));
break;
case KFENCE_ERROR_CORRUPTION:
cur += scnprintf(cur, end - cur, "BUG: KFENCE: memory corruption");
break;
case KFENCE_ERROR_INVALID:
cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid %s",
get_access_type(r));
break;
case KFENCE_ERROR_INVALID_FREE:
cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid free");
break;
}
scnprintf(cur, end - cur, " in %pS", r->fn);
/* The exact offset won't match, remove it; also strip module name. */
cur = strchr(expect[0], '+');
if (cur)
*cur = '\0';
/* Access information */
cur = expect[1];
end = &expect[1][sizeof(expect[1]) - 1];
switch (r->type) {
case KFENCE_ERROR_OOB:
cur += scnprintf(cur, end - cur, "Out-of-bounds %s at", get_access_type(r));
addr = arch_kfence_test_address(addr);
break;
case KFENCE_ERROR_UAF:
cur += scnprintf(cur, end - cur, "Use-after-free %s at", get_access_type(r));
addr = arch_kfence_test_address(addr);
break;
case KFENCE_ERROR_CORRUPTION:
cur += scnprintf(cur, end - cur, "Corrupted memory at");
break;
case KFENCE_ERROR_INVALID:
cur += scnprintf(cur, end - cur, "Invalid %s at", get_access_type(r));
addr = arch_kfence_test_address(addr);
break;
case KFENCE_ERROR_INVALID_FREE:
cur += scnprintf(cur, end - cur, "Invalid free of");
break;
}
cur += scnprintf(cur, end - cur, " 0x%p", (void *)addr);
spin_lock_irqsave(&observed.lock, flags);
if (!report_available())
goto out; /* A new report is being captured. */
/* Finally match expected output to what we actually observed. */
ret = strstr(observed.lines[0], expect[0]) && strstr(observed.lines[1], expect[1]);
out:
spin_unlock_irqrestore(&observed.lock, flags);
return ret;
}
/* ===== Test cases ===== */
#define TEST_PRIV_WANT_MEMCACHE ((void *)1)
/* Cache used by tests; if NULL, allocate from kmalloc instead. */
static struct kmem_cache *test_cache;
static size_t setup_test_cache(struct kunit *test, size_t size, slab_flags_t flags,
void (*ctor)(void *))
{
if (test->priv != TEST_PRIV_WANT_MEMCACHE)
return size;
kunit_info(test, "%s: size=%zu, ctor=%ps\n", __func__, size, ctor);
/*
* Use SLAB_NOLEAKTRACE to prevent merging with existing caches. Any
* other flag in SLAB_NEVER_MERGE also works. Use SLAB_ACCOUNT to
* allocate via memcg, if enabled.
*/
flags |= SLAB_NOLEAKTRACE | SLAB_ACCOUNT;
test_cache = kmem_cache_create("test", size, 1, flags, ctor);
KUNIT_ASSERT_TRUE_MSG(test, test_cache, "could not create cache");
return size;
}
static void test_cache_destroy(void)
{
if (!test_cache)
return;
kmem_cache_destroy(test_cache);
test_cache = NULL;
}
static inline size_t kmalloc_cache_alignment(size_t size)
{
return kmalloc_caches[kmalloc_type(GFP_KERNEL)][__kmalloc_index(size, false)]->align;
}
/* Must always inline to match stack trace against caller. */
static __always_inline void test_free(void *ptr)
{
if (test_cache)
kmem_cache_free(test_cache, ptr);
else
kfree(ptr);
}
/*
* If this should be a KFENCE allocation, and on which side the allocation and
* the closest guard page should be.
*/
enum allocation_policy {
ALLOCATE_ANY, /* KFENCE, any side. */
ALLOCATE_LEFT, /* KFENCE, left side of page. */
ALLOCATE_RIGHT, /* KFENCE, right side of page. */
ALLOCATE_NONE, /* No KFENCE allocation. */
};
/*
* Try to get a guarded allocation from KFENCE. Uses either kmalloc() or the
* current test_cache if set up.
*/
static void *test_alloc(struct kunit *test, size_t size, gfp_t gfp, enum allocation_policy policy)
{
void *alloc;
unsigned long timeout, resched_after;
const char *policy_name;
switch (policy) {
case ALLOCATE_ANY:
policy_name = "any";
break;
case ALLOCATE_LEFT:
policy_name = "left";
break;
case ALLOCATE_RIGHT:
policy_name = "right";
break;
case ALLOCATE_NONE:
policy_name = "none";
break;
}
kunit_info(test, "%s: size=%zu, gfp=%x, policy=%s, cache=%i\n", __func__, size, gfp,
policy_name, !!test_cache);
/*
* 100x the sample interval should be more than enough to ensure we get
* a KFENCE allocation eventually.
*/
timeout = jiffies + msecs_to_jiffies(100 * CONFIG_KFENCE_SAMPLE_INTERVAL);
/*
* Especially for non-preemption kernels, ensure the allocation-gate
* timer can catch up: after @resched_after, every failed allocation
* attempt yields, to ensure the allocation-gate timer is scheduled.
*/
resched_after = jiffies + msecs_to_jiffies(CONFIG_KFENCE_SAMPLE_INTERVAL);
do {
if (test_cache)
alloc = kmem_cache_alloc(test_cache, gfp);
else
alloc = kmalloc(size, gfp);
if (is_kfence_address(alloc)) {
struct page *page = virt_to_head_page(alloc);
struct kmem_cache *s = test_cache ?:
kmalloc_caches[kmalloc_type(GFP_KERNEL)][__kmalloc_index(size, false)];
/*
* Verify that various helpers return the right values
* even for KFENCE objects; these are required so that
* memcg accounting works correctly.
*/
KUNIT_EXPECT_EQ(test, obj_to_index(s, page, alloc), 0U);
KUNIT_EXPECT_EQ(test, objs_per_slab_page(s, page), 1);
if (policy == ALLOCATE_ANY)
return alloc;
if (policy == ALLOCATE_LEFT && IS_ALIGNED((unsigned long)alloc, PAGE_SIZE))
return alloc;
if (policy == ALLOCATE_RIGHT &&
!IS_ALIGNED((unsigned long)alloc, PAGE_SIZE))
return alloc;
} else if (policy == ALLOCATE_NONE)
return alloc;
test_free(alloc);
if (time_after(jiffies, resched_after))
cond_resched();
} while (time_before(jiffies, timeout));
KUNIT_ASSERT_TRUE_MSG(test, false, "failed to allocate from KFENCE");
return NULL; /* Unreachable. */
}
static void test_out_of_bounds_read(struct kunit *test)
{
size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_OOB,
.fn = test_out_of_bounds_read,
.is_write = false,
};
char *buf;
setup_test_cache(test, size, 0, NULL);
/*
* If we don't have our own cache, adjust based on alignment, so that we
* actually access guard pages on either side.
*/
if (!test_cache)
size = kmalloc_cache_alignment(size);
/* Test both sides. */
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT);
expect.addr = buf - 1;
READ_ONCE(*expect.addr);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
test_free(buf);
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT);
expect.addr = buf + size;
READ_ONCE(*expect.addr);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
test_free(buf);
}
static void test_out_of_bounds_write(struct kunit *test)
{
size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_OOB,
.fn = test_out_of_bounds_write,
.is_write = true,
};
char *buf;
setup_test_cache(test, size, 0, NULL);
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT);
expect.addr = buf - 1;
WRITE_ONCE(*expect.addr, 42);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
test_free(buf);
}
static void test_use_after_free_read(struct kunit *test)
{
const size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_UAF,
.fn = test_use_after_free_read,
.is_write = false,
};
setup_test_cache(test, size, 0, NULL);
expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
test_free(expect.addr);
READ_ONCE(*expect.addr);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
static void test_double_free(struct kunit *test)
{
const size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_INVALID_FREE,
.fn = test_double_free,
};
setup_test_cache(test, size, 0, NULL);
expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
test_free(expect.addr);
test_free(expect.addr); /* Double-free. */
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
static void test_invalid_addr_free(struct kunit *test)
{
const size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_INVALID_FREE,
.fn = test_invalid_addr_free,
};
char *buf;
setup_test_cache(test, size, 0, NULL);
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
expect.addr = buf + 1; /* Free on invalid address. */
test_free(expect.addr); /* Invalid address free. */
test_free(buf); /* No error. */
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
static void test_corruption(struct kunit *test)
{
size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_CORRUPTION,
.fn = test_corruption,
};
char *buf;
setup_test_cache(test, size, 0, NULL);
/* Test both sides. */
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT);
expect.addr = buf + size;
WRITE_ONCE(*expect.addr, 42);
test_free(buf);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT);
expect.addr = buf - 1;
WRITE_ONCE(*expect.addr, 42);
test_free(buf);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
/*
* KFENCE is unable to detect an OOB if the allocation's alignment requirements
* leave a gap between the object and the guard page. Specifically, an
* allocation of e.g. 73 bytes is aligned on 8 and 128 bytes for SLUB or SLAB
* respectively. Therefore it is impossible for the allocated object to
* contiguously line up with the right guard page.
*
* However, we test that an access to memory beyond the gap results in KFENCE
* detecting an OOB access.
*/
static void test_kmalloc_aligned_oob_read(struct kunit *test)
{
const size_t size = 73;
const size_t align = kmalloc_cache_alignment(size);
struct expect_report expect = {
.type = KFENCE_ERROR_OOB,
.fn = test_kmalloc_aligned_oob_read,
.is_write = false,
};
char *buf;
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT);
/*
* The object is offset to the right, so there won't be an OOB to the
* left of it.
*/
READ_ONCE(*(buf - 1));
KUNIT_EXPECT_FALSE(test, report_available());
/*
* @buf must be aligned on @align, therefore buf + size belongs to the
* same page -> no OOB.
*/
READ_ONCE(*(buf + size));
KUNIT_EXPECT_FALSE(test, report_available());
/* Overflowing by @align bytes will result in an OOB. */
expect.addr = buf + size + align;
READ_ONCE(*expect.addr);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
test_free(buf);
}
static void test_kmalloc_aligned_oob_write(struct kunit *test)
{
const size_t size = 73;
struct expect_report expect = {
.type = KFENCE_ERROR_CORRUPTION,
.fn = test_kmalloc_aligned_oob_write,
};
char *buf;
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT);
/*
* The object is offset to the right, so we won't get a page
* fault immediately after it.
*/
expect.addr = buf + size;
WRITE_ONCE(*expect.addr, READ_ONCE(*expect.addr) + 1);
KUNIT_EXPECT_FALSE(test, report_available());
test_free(buf);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
/* Test cache shrinking and destroying with KFENCE. */
static void test_shrink_memcache(struct kunit *test)
{
const size_t size = 32;
void *buf;
setup_test_cache(test, size, 0, NULL);
KUNIT_EXPECT_TRUE(test, test_cache);
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
kmem_cache_shrink(test_cache);
test_free(buf);
KUNIT_EXPECT_FALSE(test, report_available());
}
static void ctor_set_x(void *obj)
{
/* Every object has at least 8 bytes. */
memset(obj, 'x', 8);
}
/* Ensure that SL*B does not modify KFENCE objects on bulk free. */
static void test_free_bulk(struct kunit *test)
{
int iter;
for (iter = 0; iter < 5; iter++) {
const size_t size = setup_test_cache(test, 8 + prandom_u32_max(300), 0,
(iter & 1) ? ctor_set_x : NULL);
void *objects[] = {
test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT),
test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE),
test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT),
test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE),
test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE),
};
kmem_cache_free_bulk(test_cache, ARRAY_SIZE(objects), objects);
KUNIT_ASSERT_FALSE(test, report_available());
test_cache_destroy();
}
}
/* Test init-on-free works. */
static void test_init_on_free(struct kunit *test)
{
const size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_UAF,
.fn = test_init_on_free,
.is_write = false,
};
int i;
if (!IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON))
return;
/* Assume it hasn't been disabled on command line. */
setup_test_cache(test, size, 0, NULL);
expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
for (i = 0; i < size; i++)
expect.addr[i] = i + 1;
test_free(expect.addr);
for (i = 0; i < size; i++) {
/*
* This may fail if the page was recycled by KFENCE and then
* written to again -- this however, is near impossible with a
* default config.
*/
KUNIT_EXPECT_EQ(test, expect.addr[i], (char)0);
if (!i) /* Only check first access to not fail test if page is ever re-protected. */
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
}
/* Ensure that constructors work properly. */
static void test_memcache_ctor(struct kunit *test)
{
const size_t size = 32;
char *buf;
int i;
setup_test_cache(test, size, 0, ctor_set_x);
buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
for (i = 0; i < 8; i++)
KUNIT_EXPECT_EQ(test, buf[i], (char)'x');
test_free(buf);
KUNIT_EXPECT_FALSE(test, report_available());
}
/* Test that memory is zeroed if requested. */
static void test_gfpzero(struct kunit *test)
{
const size_t size = PAGE_SIZE; /* PAGE_SIZE so we can use ALLOCATE_ANY. */
char *buf1, *buf2;
int i;
if (CONFIG_KFENCE_SAMPLE_INTERVAL > 100) {
kunit_warn(test, "skipping ... would take too long\n");
return;
}
setup_test_cache(test, size, 0, NULL);
buf1 = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
for (i = 0; i < size; i++)
buf1[i] = i + 1;
test_free(buf1);
/* Try to get same address again -- this can take a while. */
for (i = 0;; i++) {
buf2 = test_alloc(test, size, GFP_KERNEL | __GFP_ZERO, ALLOCATE_ANY);
if (buf1 == buf2)
break;
test_free(buf2);
if (i == CONFIG_KFENCE_NUM_OBJECTS) {
kunit_warn(test, "giving up ... cannot get same object back\n");
return;
}
}
for (i = 0; i < size; i++)
KUNIT_EXPECT_EQ(test, buf2[i], (char)0);
test_free(buf2);
KUNIT_EXPECT_FALSE(test, report_available());
}
static void test_invalid_access(struct kunit *test)
{
const struct expect_report expect = {
.type = KFENCE_ERROR_INVALID,
.fn = test_invalid_access,
.addr = &__kfence_pool[10],
.is_write = false,
};
READ_ONCE(__kfence_pool[10]);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
/* Test SLAB_TYPESAFE_BY_RCU works. */
static void test_memcache_typesafe_by_rcu(struct kunit *test)
{
const size_t size = 32;
struct expect_report expect = {
.type = KFENCE_ERROR_UAF,
.fn = test_memcache_typesafe_by_rcu,
.is_write = false,
};
setup_test_cache(test, size, SLAB_TYPESAFE_BY_RCU, NULL);
KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */
expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
*expect.addr = 42;
rcu_read_lock();
test_free(expect.addr);
KUNIT_EXPECT_EQ(test, *expect.addr, (char)42);
/*
* Up to this point, memory should not have been freed yet, and
* therefore there should be no KFENCE report from the above access.
*/
rcu_read_unlock();
/* Above access to @expect.addr should not have generated a report! */
KUNIT_EXPECT_FALSE(test, report_available());
/* Only after rcu_barrier() is the memory guaranteed to be freed. */
rcu_barrier();
/* Expect use-after-free. */
KUNIT_EXPECT_EQ(test, *expect.addr, (char)42);
KUNIT_EXPECT_TRUE(test, report_matches(&expect));
}
/* Test krealloc(). */
static void test_krealloc(struct kunit *test)
{
const size_t size = 32;
const struct expect_report expect = {
.type = KFENCE_ERROR_UAF,
.fn = test_krealloc,
.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY),
.is_write = false,
};
char *buf = expect.addr;
int i;
KUNIT_EXPECT_FALSE(test, test_cache);
KUNIT_EXPECT_EQ(test, ksize(buf), size); /* Precise size match after KFENCE alloc. */
for (i = 0; i < size; i++)
buf[i] = i + 1;
/* Check that we successfully change the size. */
buf = krealloc(buf, size * 3, GFP_KERNEL); /* Grow. */
/* Note: Might no longer be a KFENCE alloc. */
KUNIT_EXPECT_GE(test, ksize(buf), size * 3);
for (i = 0; i < size; i++)
KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1));
for (; i < size * 3; i++) /* Fill to extra bytes. */
buf[i] = i + 1;
buf = krealloc(buf, size * 2, GFP_KERNEL); /* Shrink. */
KUNIT_EXPECT_GE(test, ksize(buf), size * 2);
for (i = 0; i < size * 2; i++)
KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1));
buf = krealloc(buf, 0, GFP_KERNEL); /* Free. */
KUNIT_EXPECT_EQ(test, (unsigned long)buf, (unsigned long)ZERO_SIZE_PTR);
KUNIT_ASSERT_FALSE(test, report_available()); /* No reports yet! */
READ_ONCE(*expect.addr); /* Ensure krealloc() actually freed earlier KFENCE object. */
KUNIT_ASSERT_TRUE(test, report_matches(&expect));
}
/* Test that some objects from a bulk allocation belong to KFENCE pool. */
static void test_memcache_alloc_bulk(struct kunit *test)
{
const size_t size = 32;
bool pass = false;
unsigned long timeout;
setup_test_cache(test, size, 0, NULL);
KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */
/*
* 100x the sample interval should be more than enough to ensure we get
* a KFENCE allocation eventually.
*/
timeout = jiffies + msecs_to_jiffies(100 * CONFIG_KFENCE_SAMPLE_INTERVAL);
do {
void *objects[100];
int i, num = kmem_cache_alloc_bulk(test_cache, GFP_ATOMIC, ARRAY_SIZE(objects),
objects);
if (!num)
continue;
for (i = 0; i < ARRAY_SIZE(objects); i++) {
if (is_kfence_address(objects[i])) {
pass = true;
break;
}
}
kmem_cache_free_bulk(test_cache, num, objects);
/*
* kmem_cache_alloc_bulk() disables interrupts, and calling it
* in a tight loop may not give KFENCE a chance to switch the
* static branch. Call cond_resched() to let KFENCE chime in.
*/
cond_resched();
} while (!pass && time_before(jiffies, timeout));
KUNIT_EXPECT_TRUE(test, pass);
KUNIT_EXPECT_FALSE(test, report_available());
}
/*
* KUnit does not provide a way to provide arguments to tests, and we encode
* additional info in the name. Set up 2 tests per test case, one using the
* default allocator, and another using a custom memcache (suffix '-memcache').
*/
#define KFENCE_KUNIT_CASE(test_name) \
{ .run_case = test_name, .name = #test_name }, \
{ .run_case = test_name, .name = #test_name "-memcache" }
static struct kunit_case kfence_test_cases[] = {
KFENCE_KUNIT_CASE(test_out_of_bounds_read),
KFENCE_KUNIT_CASE(test_out_of_bounds_write),
KFENCE_KUNIT_CASE(test_use_after_free_read),
KFENCE_KUNIT_CASE(test_double_free),
KFENCE_KUNIT_CASE(test_invalid_addr_free),
KFENCE_KUNIT_CASE(test_corruption),
KFENCE_KUNIT_CASE(test_free_bulk),
KFENCE_KUNIT_CASE(test_init_on_free),
KUNIT_CASE(test_kmalloc_aligned_oob_read),
KUNIT_CASE(test_kmalloc_aligned_oob_write),
KUNIT_CASE(test_shrink_memcache),
KUNIT_CASE(test_memcache_ctor),
KUNIT_CASE(test_invalid_access),
KUNIT_CASE(test_gfpzero),
KUNIT_CASE(test_memcache_typesafe_by_rcu),
KUNIT_CASE(test_krealloc),
KUNIT_CASE(test_memcache_alloc_bulk),
{},
};
/* ===== End test cases ===== */
static int test_init(struct kunit *test)
{
unsigned long flags;
int i;
if (!__kfence_pool)
return -EINVAL;
spin_lock_irqsave(&observed.lock, flags);
for (i = 0; i < ARRAY_SIZE(observed.lines); i++)
observed.lines[i][0] = '\0';
observed.nlines = 0;
spin_unlock_irqrestore(&observed.lock, flags);
/* Any test with 'memcache' in its name will want a memcache. */
if (strstr(test->name, "memcache"))
test->priv = TEST_PRIV_WANT_MEMCACHE;
else
test->priv = NULL;
return 0;
}
static void test_exit(struct kunit *test)
{
test_cache_destroy();
}
static struct kunit_suite kfence_test_suite = {
.name = "kfence",
.test_cases = kfence_test_cases,
.init = test_init,
.exit = test_exit,
};
static struct kunit_suite *kfence_test_suites[] = { &kfence_test_suite, NULL };
static void register_tracepoints(struct tracepoint *tp, void *ignore)
{
check_trace_callback_type_console(probe_console);
if (!strcmp(tp->name, "console"))
WARN_ON(tracepoint_probe_register(tp, probe_console, NULL));
}
static void unregister_tracepoints(struct tracepoint *tp, void *ignore)
{
if (!strcmp(tp->name, "console"))
tracepoint_probe_unregister(tp, probe_console, NULL);
}
/*
* We only want to do tracepoints setup and teardown once, therefore we have to
* customize the init and exit functions and cannot rely on kunit_test_suite().
*/
static int __init kfence_test_init(void)
{
/*
* Because we want to be able to build the test as a module, we need to
* iterate through all known tracepoints, since the static registration
* won't work here.
*/
for_each_kernel_tracepoint(register_tracepoints, NULL);
return __kunit_test_suites_init(kfence_test_suites);
}
static void kfence_test_exit(void)
{
__kunit_test_suites_exit(kfence_test_suites);
for_each_kernel_tracepoint(unregister_tracepoints, NULL);
tracepoint_synchronize_unregister();
}
late_initcall_sync(kfence_test_init);
module_exit(kfence_test_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Alexander Potapenko <glider@google.com>, Marco Elver <elver@google.com>");