| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <kvm/iodev.h> |
| |
| #include <linux/kvm_host.h> |
| #include <linux/kvm.h> |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/percpu.h> |
| #include <linux/mm.h> |
| #include <linux/miscdevice.h> |
| #include <linux/vmalloc.h> |
| #include <linux/reboot.h> |
| #include <linux/debugfs.h> |
| #include <linux/highmem.h> |
| #include <linux/file.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/cpu.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/stat.h> |
| #include <linux/cpumask.h> |
| #include <linux/smp.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/profile.h> |
| #include <linux/kvm_para.h> |
| #include <linux/pagemap.h> |
| #include <linux/mman.h> |
| #include <linux/swap.h> |
| #include <linux/bitops.h> |
| #include <linux/spinlock.h> |
| #include <linux/compat.h> |
| #include <linux/srcu.h> |
| #include <linux/hugetlb.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| #include <linux/bsearch.h> |
| |
| #include <asm/processor.h> |
| #include <asm/io.h> |
| #include <asm/ioctl.h> |
| #include <linux/uaccess.h> |
| #include <asm/pgtable.h> |
| |
| #include "coalesced_mmio.h" |
| #include "async_pf.h" |
| #include "vfio.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/kvm.h> |
| |
| /* Worst case buffer size needed for holding an integer. */ |
| #define ITOA_MAX_LEN 12 |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| /* Architectures should define their poll value according to the halt latency */ |
| unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; |
| module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); |
| EXPORT_SYMBOL_GPL(halt_poll_ns); |
| |
| /* Default doubles per-vcpu halt_poll_ns. */ |
| unsigned int halt_poll_ns_grow = 2; |
| module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); |
| EXPORT_SYMBOL_GPL(halt_poll_ns_grow); |
| |
| /* Default resets per-vcpu halt_poll_ns . */ |
| unsigned int halt_poll_ns_shrink; |
| module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); |
| EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); |
| |
| /* |
| * Ordering of locks: |
| * |
| * kvm->lock --> kvm->slots_lock --> kvm->irq_lock |
| */ |
| |
| DEFINE_SPINLOCK(kvm_lock); |
| static DEFINE_RAW_SPINLOCK(kvm_count_lock); |
| LIST_HEAD(vm_list); |
| |
| static cpumask_var_t cpus_hardware_enabled; |
| static int kvm_usage_count; |
| static atomic_t hardware_enable_failed; |
| |
| struct kmem_cache *kvm_vcpu_cache; |
| EXPORT_SYMBOL_GPL(kvm_vcpu_cache); |
| |
| static __read_mostly struct preempt_ops kvm_preempt_ops; |
| |
| struct dentry *kvm_debugfs_dir; |
| EXPORT_SYMBOL_GPL(kvm_debugfs_dir); |
| |
| static int kvm_debugfs_num_entries; |
| static const struct file_operations *stat_fops_per_vm[]; |
| |
| static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, |
| unsigned long arg); |
| #ifdef CONFIG_KVM_COMPAT |
| static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, |
| unsigned long arg); |
| #endif |
| static int hardware_enable_all(void); |
| static void hardware_disable_all(void); |
| |
| static void kvm_io_bus_destroy(struct kvm_io_bus *bus); |
| |
| static void kvm_release_pfn_dirty(kvm_pfn_t pfn); |
| static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); |
| |
| __visible bool kvm_rebooting; |
| EXPORT_SYMBOL_GPL(kvm_rebooting); |
| |
| static bool largepages_enabled = true; |
| |
| bool kvm_is_reserved_pfn(kvm_pfn_t pfn) |
| { |
| if (pfn_valid(pfn)) |
| return PageReserved(pfn_to_page(pfn)); |
| |
| return true; |
| } |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put() |
| */ |
| int vcpu_load(struct kvm_vcpu *vcpu) |
| { |
| int cpu; |
| |
| if (mutex_lock_killable(&vcpu->mutex)) |
| return -EINTR; |
| cpu = get_cpu(); |
| preempt_notifier_register(&vcpu->preempt_notifier); |
| kvm_arch_vcpu_load(vcpu, cpu); |
| put_cpu(); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(vcpu_load); |
| |
| void vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| kvm_arch_vcpu_put(vcpu); |
| preempt_notifier_unregister(&vcpu->preempt_notifier); |
| preempt_enable(); |
| mutex_unlock(&vcpu->mutex); |
| } |
| EXPORT_SYMBOL_GPL(vcpu_put); |
| |
| static void ack_flush(void *_completed) |
| { |
| } |
| |
| bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) |
| { |
| int i, cpu, me; |
| cpumask_var_t cpus; |
| bool called = true; |
| struct kvm_vcpu *vcpu; |
| |
| zalloc_cpumask_var(&cpus, GFP_ATOMIC); |
| |
| me = get_cpu(); |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| kvm_make_request(req, vcpu); |
| cpu = vcpu->cpu; |
| |
| /* Set ->requests bit before we read ->mode. */ |
| smp_mb__after_atomic(); |
| |
| if (cpus != NULL && cpu != -1 && cpu != me && |
| kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) |
| cpumask_set_cpu(cpu, cpus); |
| } |
| if (unlikely(cpus == NULL)) |
| smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); |
| else if (!cpumask_empty(cpus)) |
| smp_call_function_many(cpus, ack_flush, NULL, 1); |
| else |
| called = false; |
| put_cpu(); |
| free_cpumask_var(cpus); |
| return called; |
| } |
| |
| #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL |
| void kvm_flush_remote_tlbs(struct kvm *kvm) |
| { |
| /* |
| * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in |
| * kvm_make_all_cpus_request. |
| */ |
| long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); |
| |
| /* |
| * We want to publish modifications to the page tables before reading |
| * mode. Pairs with a memory barrier in arch-specific code. |
| * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest |
| * and smp_mb in walk_shadow_page_lockless_begin/end. |
| * - powerpc: smp_mb in kvmppc_prepare_to_enter. |
| * |
| * There is already an smp_mb__after_atomic() before |
| * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that |
| * barrier here. |
| */ |
| if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) |
| ++kvm->stat.remote_tlb_flush; |
| cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); |
| #endif |
| |
| void kvm_reload_remote_mmus(struct kvm *kvm) |
| { |
| kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); |
| } |
| |
| int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) |
| { |
| struct page *page; |
| int r; |
| |
| mutex_init(&vcpu->mutex); |
| vcpu->cpu = -1; |
| vcpu->kvm = kvm; |
| vcpu->vcpu_id = id; |
| vcpu->pid = NULL; |
| init_swait_queue_head(&vcpu->wq); |
| kvm_async_pf_vcpu_init(vcpu); |
| |
| vcpu->pre_pcpu = -1; |
| INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) { |
| r = -ENOMEM; |
| goto fail; |
| } |
| vcpu->run = page_address(page); |
| |
| kvm_vcpu_set_in_spin_loop(vcpu, false); |
| kvm_vcpu_set_dy_eligible(vcpu, false); |
| vcpu->preempted = false; |
| |
| r = kvm_arch_vcpu_init(vcpu); |
| if (r < 0) |
| goto fail_free_run; |
| return 0; |
| |
| fail_free_run: |
| free_page((unsigned long)vcpu->run); |
| fail: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_init); |
| |
| void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| put_pid(vcpu->pid); |
| kvm_arch_vcpu_uninit(vcpu); |
| free_page((unsigned long)vcpu->run); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); |
| |
| #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
| static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) |
| { |
| return container_of(mn, struct kvm, mmu_notifier); |
| } |
| |
| static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long address) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| int need_tlb_flush, idx; |
| |
| /* |
| * When ->invalidate_page runs, the linux pte has been zapped |
| * already but the page is still allocated until |
| * ->invalidate_page returns. So if we increase the sequence |
| * here the kvm page fault will notice if the spte can't be |
| * established because the page is going to be freed. If |
| * instead the kvm page fault establishes the spte before |
| * ->invalidate_page runs, kvm_unmap_hva will release it |
| * before returning. |
| * |
| * The sequence increase only need to be seen at spin_unlock |
| * time, and not at spin_lock time. |
| * |
| * Increasing the sequence after the spin_unlock would be |
| * unsafe because the kvm page fault could then establish the |
| * pte after kvm_unmap_hva returned, without noticing the page |
| * is going to be freed. |
| */ |
| idx = srcu_read_lock(&kvm->srcu); |
| spin_lock(&kvm->mmu_lock); |
| |
| kvm->mmu_notifier_seq++; |
| need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; |
| /* we've to flush the tlb before the pages can be freed */ |
| if (need_tlb_flush) |
| kvm_flush_remote_tlbs(kvm); |
| |
| spin_unlock(&kvm->mmu_lock); |
| |
| kvm_arch_mmu_notifier_invalidate_page(kvm, address); |
| |
| srcu_read_unlock(&kvm->srcu, idx); |
| } |
| |
| static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long address, |
| pte_t pte) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| int idx; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| spin_lock(&kvm->mmu_lock); |
| kvm->mmu_notifier_seq++; |
| kvm_set_spte_hva(kvm, address, pte); |
| spin_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, idx); |
| } |
| |
| static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| int need_tlb_flush = 0, idx; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| spin_lock(&kvm->mmu_lock); |
| /* |
| * The count increase must become visible at unlock time as no |
| * spte can be established without taking the mmu_lock and |
| * count is also read inside the mmu_lock critical section. |
| */ |
| kvm->mmu_notifier_count++; |
| need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); |
| need_tlb_flush |= kvm->tlbs_dirty; |
| /* we've to flush the tlb before the pages can be freed */ |
| if (need_tlb_flush) |
| kvm_flush_remote_tlbs(kvm); |
| |
| spin_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, idx); |
| } |
| |
| static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| |
| spin_lock(&kvm->mmu_lock); |
| /* |
| * This sequence increase will notify the kvm page fault that |
| * the page that is going to be mapped in the spte could have |
| * been freed. |
| */ |
| kvm->mmu_notifier_seq++; |
| smp_wmb(); |
| /* |
| * The above sequence increase must be visible before the |
| * below count decrease, which is ensured by the smp_wmb above |
| * in conjunction with the smp_rmb in mmu_notifier_retry(). |
| */ |
| kvm->mmu_notifier_count--; |
| spin_unlock(&kvm->mmu_lock); |
| |
| BUG_ON(kvm->mmu_notifier_count < 0); |
| } |
| |
| static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| int young, idx; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| spin_lock(&kvm->mmu_lock); |
| |
| young = kvm_age_hva(kvm, start, end); |
| if (young) |
| kvm_flush_remote_tlbs(kvm); |
| |
| spin_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, idx); |
| |
| return young; |
| } |
| |
| static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| int young, idx; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| spin_lock(&kvm->mmu_lock); |
| /* |
| * Even though we do not flush TLB, this will still adversely |
| * affect performance on pre-Haswell Intel EPT, where there is |
| * no EPT Access Bit to clear so that we have to tear down EPT |
| * tables instead. If we find this unacceptable, we can always |
| * add a parameter to kvm_age_hva so that it effectively doesn't |
| * do anything on clear_young. |
| * |
| * Also note that currently we never issue secondary TLB flushes |
| * from clear_young, leaving this job up to the regular system |
| * cadence. If we find this inaccurate, we might come up with a |
| * more sophisticated heuristic later. |
| */ |
| young = kvm_age_hva(kvm, start, end); |
| spin_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, idx); |
| |
| return young; |
| } |
| |
| static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long address) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| int young, idx; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| spin_lock(&kvm->mmu_lock); |
| young = kvm_test_age_hva(kvm, address); |
| spin_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, idx); |
| |
| return young; |
| } |
| |
| static void kvm_mmu_notifier_release(struct mmu_notifier *mn, |
| struct mm_struct *mm) |
| { |
| struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| int idx; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| kvm_arch_flush_shadow_all(kvm); |
| srcu_read_unlock(&kvm->srcu, idx); |
| } |
| |
| static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { |
| .invalidate_page = kvm_mmu_notifier_invalidate_page, |
| .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, |
| .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, |
| .clear_flush_young = kvm_mmu_notifier_clear_flush_young, |
| .clear_young = kvm_mmu_notifier_clear_young, |
| .test_young = kvm_mmu_notifier_test_young, |
| .change_pte = kvm_mmu_notifier_change_pte, |
| .release = kvm_mmu_notifier_release, |
| }; |
| |
| static int kvm_init_mmu_notifier(struct kvm *kvm) |
| { |
| kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; |
| return mmu_notifier_register(&kvm->mmu_notifier, current->mm); |
| } |
| |
| #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ |
| |
| static int kvm_init_mmu_notifier(struct kvm *kvm) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ |
| |
| static struct kvm_memslots *kvm_alloc_memslots(void) |
| { |
| int i; |
| struct kvm_memslots *slots; |
| |
| slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); |
| if (!slots) |
| return NULL; |
| |
| for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) |
| slots->id_to_index[i] = slots->memslots[i].id = i; |
| |
| return slots; |
| } |
| |
| static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) |
| { |
| if (!memslot->dirty_bitmap) |
| return; |
| |
| kvfree(memslot->dirty_bitmap); |
| memslot->dirty_bitmap = NULL; |
| } |
| |
| /* |
| * Free any memory in @free but not in @dont. |
| */ |
| static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| if (!dont || free->dirty_bitmap != dont->dirty_bitmap) |
| kvm_destroy_dirty_bitmap(free); |
| |
| kvm_arch_free_memslot(kvm, free, dont); |
| |
| free->npages = 0; |
| } |
| |
| static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) |
| { |
| struct kvm_memory_slot *memslot; |
| |
| if (!slots) |
| return; |
| |
| kvm_for_each_memslot(memslot, slots) |
| kvm_free_memslot(kvm, memslot, NULL); |
| |
| kvfree(slots); |
| } |
| |
| static void kvm_destroy_vm_debugfs(struct kvm *kvm) |
| { |
| int i; |
| |
| if (!kvm->debugfs_dentry) |
| return; |
| |
| debugfs_remove_recursive(kvm->debugfs_dentry); |
| |
| if (kvm->debugfs_stat_data) { |
| for (i = 0; i < kvm_debugfs_num_entries; i++) |
| kfree(kvm->debugfs_stat_data[i]); |
| kfree(kvm->debugfs_stat_data); |
| } |
| } |
| |
| static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) |
| { |
| char dir_name[ITOA_MAX_LEN * 2]; |
| struct kvm_stat_data *stat_data; |
| struct kvm_stats_debugfs_item *p; |
| |
| if (!debugfs_initialized()) |
| return 0; |
| |
| snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); |
| kvm->debugfs_dentry = debugfs_create_dir(dir_name, |
| kvm_debugfs_dir); |
| if (!kvm->debugfs_dentry) |
| return -ENOMEM; |
| |
| kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, |
| sizeof(*kvm->debugfs_stat_data), |
| GFP_KERNEL); |
| if (!kvm->debugfs_stat_data) |
| return -ENOMEM; |
| |
| for (p = debugfs_entries; p->name; p++) { |
| stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); |
| if (!stat_data) |
| return -ENOMEM; |
| |
| stat_data->kvm = kvm; |
| stat_data->offset = p->offset; |
| kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; |
| if (!debugfs_create_file(p->name, 0644, |
| kvm->debugfs_dentry, |
| stat_data, |
| stat_fops_per_vm[p->kind])) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static struct kvm *kvm_create_vm(unsigned long type) |
| { |
| int r, i; |
| struct kvm *kvm = kvm_arch_alloc_vm(); |
| |
| if (!kvm) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock_init(&kvm->mmu_lock); |
| mmgrab(current->mm); |
| kvm->mm = current->mm; |
| kvm_eventfd_init(kvm); |
| mutex_init(&kvm->lock); |
| mutex_init(&kvm->irq_lock); |
| mutex_init(&kvm->slots_lock); |
| refcount_set(&kvm->users_count, 1); |
| INIT_LIST_HEAD(&kvm->devices); |
| |
| r = kvm_arch_init_vm(kvm, type); |
| if (r) |
| goto out_err_no_disable; |
| |
| r = hardware_enable_all(); |
| if (r) |
| goto out_err_no_disable; |
| |
| #ifdef CONFIG_HAVE_KVM_IRQFD |
| INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); |
| #endif |
| |
| BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); |
| |
| r = -ENOMEM; |
| for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
| struct kvm_memslots *slots = kvm_alloc_memslots(); |
| if (!slots) |
| goto out_err_no_srcu; |
| /* |
| * Generations must be different for each address space. |
| * Init kvm generation close to the maximum to easily test the |
| * code of handling generation number wrap-around. |
| */ |
| slots->generation = i * 2 - 150; |
| rcu_assign_pointer(kvm->memslots[i], slots); |
| } |
| |
| if (init_srcu_struct(&kvm->srcu)) |
| goto out_err_no_srcu; |
| if (init_srcu_struct(&kvm->irq_srcu)) |
| goto out_err_no_irq_srcu; |
| for (i = 0; i < KVM_NR_BUSES; i++) { |
| kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), |
| GFP_KERNEL); |
| if (!kvm->buses[i]) |
| goto out_err; |
| } |
| |
| r = kvm_init_mmu_notifier(kvm); |
| if (r) |
| goto out_err; |
| |
| spin_lock(&kvm_lock); |
| list_add(&kvm->vm_list, &vm_list); |
| spin_unlock(&kvm_lock); |
| |
| preempt_notifier_inc(); |
| |
| return kvm; |
| |
| out_err: |
| cleanup_srcu_struct(&kvm->irq_srcu); |
| out_err_no_irq_srcu: |
| cleanup_srcu_struct(&kvm->srcu); |
| out_err_no_srcu: |
| hardware_disable_all(); |
| out_err_no_disable: |
| for (i = 0; i < KVM_NR_BUSES; i++) |
| kfree(kvm->buses[i]); |
| for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) |
| kvm_free_memslots(kvm, kvm->memslots[i]); |
| kvm_arch_free_vm(kvm); |
| mmdrop(current->mm); |
| return ERR_PTR(r); |
| } |
| |
| /* |
| * Avoid using vmalloc for a small buffer. |
| * Should not be used when the size is statically known. |
| */ |
| void *kvm_kvzalloc(unsigned long size) |
| { |
| if (size > PAGE_SIZE) |
| return vzalloc(size); |
| else |
| return kzalloc(size, GFP_KERNEL); |
| } |
| |
| static void kvm_destroy_devices(struct kvm *kvm) |
| { |
| struct kvm_device *dev, *tmp; |
| |
| /* |
| * We do not need to take the kvm->lock here, because nobody else |
| * has a reference to the struct kvm at this point and therefore |
| * cannot access the devices list anyhow. |
| */ |
| list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { |
| list_del(&dev->vm_node); |
| dev->ops->destroy(dev); |
| } |
| } |
| |
| static void kvm_destroy_vm(struct kvm *kvm) |
| { |
| int i; |
| struct mm_struct *mm = kvm->mm; |
| |
| kvm_destroy_vm_debugfs(kvm); |
| kvm_arch_sync_events(kvm); |
| spin_lock(&kvm_lock); |
| list_del(&kvm->vm_list); |
| spin_unlock(&kvm_lock); |
| kvm_free_irq_routing(kvm); |
| for (i = 0; i < KVM_NR_BUSES; i++) { |
| if (kvm->buses[i]) |
| kvm_io_bus_destroy(kvm->buses[i]); |
| kvm->buses[i] = NULL; |
| } |
| kvm_coalesced_mmio_free(kvm); |
| #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
| mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); |
| #else |
| kvm_arch_flush_shadow_all(kvm); |
| #endif |
| kvm_arch_destroy_vm(kvm); |
| kvm_destroy_devices(kvm); |
| for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) |
| kvm_free_memslots(kvm, kvm->memslots[i]); |
| cleanup_srcu_struct(&kvm->irq_srcu); |
| cleanup_srcu_struct(&kvm->srcu); |
| kvm_arch_free_vm(kvm); |
| preempt_notifier_dec(); |
| hardware_disable_all(); |
| mmdrop(mm); |
| } |
| |
| void kvm_get_kvm(struct kvm *kvm) |
| { |
| refcount_inc(&kvm->users_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_kvm); |
| |
| void kvm_put_kvm(struct kvm *kvm) |
| { |
| if (refcount_dec_and_test(&kvm->users_count)) |
| kvm_destroy_vm(kvm); |
| } |
| EXPORT_SYMBOL_GPL(kvm_put_kvm); |
| |
| |
| static int kvm_vm_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm *kvm = filp->private_data; |
| |
| kvm_irqfd_release(kvm); |
| |
| kvm_put_kvm(kvm); |
| return 0; |
| } |
| |
| /* |
| * Allocation size is twice as large as the actual dirty bitmap size. |
| * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. |
| */ |
| static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) |
| { |
| unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); |
| |
| memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); |
| if (!memslot->dirty_bitmap) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* |
| * Insert memslot and re-sort memslots based on their GFN, |
| * so binary search could be used to lookup GFN. |
| * Sorting algorithm takes advantage of having initially |
| * sorted array and known changed memslot position. |
| */ |
| static void update_memslots(struct kvm_memslots *slots, |
| struct kvm_memory_slot *new) |
| { |
| int id = new->id; |
| int i = slots->id_to_index[id]; |
| struct kvm_memory_slot *mslots = slots->memslots; |
| |
| WARN_ON(mslots[i].id != id); |
| if (!new->npages) { |
| WARN_ON(!mslots[i].npages); |
| if (mslots[i].npages) |
| slots->used_slots--; |
| } else { |
| if (!mslots[i].npages) |
| slots->used_slots++; |
| } |
| |
| while (i < KVM_MEM_SLOTS_NUM - 1 && |
| new->base_gfn <= mslots[i + 1].base_gfn) { |
| if (!mslots[i + 1].npages) |
| break; |
| mslots[i] = mslots[i + 1]; |
| slots->id_to_index[mslots[i].id] = i; |
| i++; |
| } |
| |
| /* |
| * The ">=" is needed when creating a slot with base_gfn == 0, |
| * so that it moves before all those with base_gfn == npages == 0. |
| * |
| * On the other hand, if new->npages is zero, the above loop has |
| * already left i pointing to the beginning of the empty part of |
| * mslots, and the ">=" would move the hole backwards in this |
| * case---which is wrong. So skip the loop when deleting a slot. |
| */ |
| if (new->npages) { |
| while (i > 0 && |
| new->base_gfn >= mslots[i - 1].base_gfn) { |
| mslots[i] = mslots[i - 1]; |
| slots->id_to_index[mslots[i].id] = i; |
| i--; |
| } |
| } else |
| WARN_ON_ONCE(i != slots->used_slots); |
| |
| mslots[i] = *new; |
| slots->id_to_index[mslots[i].id] = i; |
| } |
| |
| static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) |
| { |
| u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; |
| |
| #ifdef __KVM_HAVE_READONLY_MEM |
| valid_flags |= KVM_MEM_READONLY; |
| #endif |
| |
| if (mem->flags & ~valid_flags) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static struct kvm_memslots *install_new_memslots(struct kvm *kvm, |
| int as_id, struct kvm_memslots *slots) |
| { |
| struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); |
| |
| /* |
| * Set the low bit in the generation, which disables SPTE caching |
| * until the end of synchronize_srcu_expedited. |
| */ |
| WARN_ON(old_memslots->generation & 1); |
| slots->generation = old_memslots->generation + 1; |
| |
| rcu_assign_pointer(kvm->memslots[as_id], slots); |
| synchronize_srcu_expedited(&kvm->srcu); |
| |
| /* |
| * Increment the new memslot generation a second time. This prevents |
| * vm exits that race with memslot updates from caching a memslot |
| * generation that will (potentially) be valid forever. |
| * |
| * Generations must be unique even across address spaces. We do not need |
| * a global counter for that, instead the generation space is evenly split |
| * across address spaces. For example, with two address spaces, address |
| * space 0 will use generations 0, 4, 8, ... while * address space 1 will |
| * use generations 2, 6, 10, 14, ... |
| */ |
| slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; |
| |
| kvm_arch_memslots_updated(kvm, slots); |
| |
| return old_memslots; |
| } |
| |
| /* |
| * Allocate some memory and give it an address in the guest physical address |
| * space. |
| * |
| * Discontiguous memory is allowed, mostly for framebuffers. |
| * |
| * Must be called holding kvm->slots_lock for write. |
| */ |
| int __kvm_set_memory_region(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem) |
| { |
| int r; |
| gfn_t base_gfn; |
| unsigned long npages; |
| struct kvm_memory_slot *slot; |
| struct kvm_memory_slot old, new; |
| struct kvm_memslots *slots = NULL, *old_memslots; |
| int as_id, id; |
| enum kvm_mr_change change; |
| |
| r = check_memory_region_flags(mem); |
| if (r) |
| goto out; |
| |
| r = -EINVAL; |
| as_id = mem->slot >> 16; |
| id = (u16)mem->slot; |
| |
| /* General sanity checks */ |
| if (mem->memory_size & (PAGE_SIZE - 1)) |
| goto out; |
| if (mem->guest_phys_addr & (PAGE_SIZE - 1)) |
| goto out; |
| /* We can read the guest memory with __xxx_user() later on. */ |
| if ((id < KVM_USER_MEM_SLOTS) && |
| ((mem->userspace_addr & (PAGE_SIZE - 1)) || |
| !access_ok(VERIFY_WRITE, |
| (void __user *)(unsigned long)mem->userspace_addr, |
| mem->memory_size))) |
| goto out; |
| if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) |
| goto out; |
| if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) |
| goto out; |
| |
| slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); |
| base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; |
| npages = mem->memory_size >> PAGE_SHIFT; |
| |
| if (npages > KVM_MEM_MAX_NR_PAGES) |
| goto out; |
| |
| new = old = *slot; |
| |
| new.id = id; |
| new.base_gfn = base_gfn; |
| new.npages = npages; |
| new.flags = mem->flags; |
| |
| if (npages) { |
| if (!old.npages) |
| change = KVM_MR_CREATE; |
| else { /* Modify an existing slot. */ |
| if ((mem->userspace_addr != old.userspace_addr) || |
| (npages != old.npages) || |
| ((new.flags ^ old.flags) & KVM_MEM_READONLY)) |
| goto out; |
| |
| if (base_gfn != old.base_gfn) |
| change = KVM_MR_MOVE; |
| else if (new.flags != old.flags) |
| change = KVM_MR_FLAGS_ONLY; |
| else { /* Nothing to change. */ |
| r = 0; |
| goto out; |
| } |
| } |
| } else { |
| if (!old.npages) |
| goto out; |
| |
| change = KVM_MR_DELETE; |
| new.base_gfn = 0; |
| new.flags = 0; |
| } |
| |
| if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { |
| /* Check for overlaps */ |
| r = -EEXIST; |
| kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { |
| if ((slot->id >= KVM_USER_MEM_SLOTS) || |
| (slot->id == id)) |
| continue; |
| if (!((base_gfn + npages <= slot->base_gfn) || |
| (base_gfn >= slot->base_gfn + slot->npages))) |
| goto out; |
| } |
| } |
| |
| /* Free page dirty bitmap if unneeded */ |
| if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) |
| new.dirty_bitmap = NULL; |
| |
| r = -ENOMEM; |
| if (change == KVM_MR_CREATE) { |
| new.userspace_addr = mem->userspace_addr; |
| |
| if (kvm_arch_create_memslot(kvm, &new, npages)) |
| goto out_free; |
| } |
| |
| /* Allocate page dirty bitmap if needed */ |
| if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { |
| if (kvm_create_dirty_bitmap(&new) < 0) |
| goto out_free; |
| } |
| |
| slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); |
| if (!slots) |
| goto out_free; |
| memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); |
| |
| if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { |
| slot = id_to_memslot(slots, id); |
| slot->flags |= KVM_MEMSLOT_INVALID; |
| |
| old_memslots = install_new_memslots(kvm, as_id, slots); |
| |
| /* slot was deleted or moved, clear iommu mapping */ |
| kvm_iommu_unmap_pages(kvm, &old); |
| /* From this point no new shadow pages pointing to a deleted, |
| * or moved, memslot will be created. |
| * |
| * validation of sp->gfn happens in: |
| * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) |
| * - kvm_is_visible_gfn (mmu_check_roots) |
| */ |
| kvm_arch_flush_shadow_memslot(kvm, slot); |
| |
| /* |
| * We can re-use the old_memslots from above, the only difference |
| * from the currently installed memslots is the invalid flag. This |
| * will get overwritten by update_memslots anyway. |
| */ |
| slots = old_memslots; |
| } |
| |
| r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); |
| if (r) |
| goto out_slots; |
| |
| /* actual memory is freed via old in kvm_free_memslot below */ |
| if (change == KVM_MR_DELETE) { |
| new.dirty_bitmap = NULL; |
| memset(&new.arch, 0, sizeof(new.arch)); |
| } |
| |
| update_memslots(slots, &new); |
| old_memslots = install_new_memslots(kvm, as_id, slots); |
| |
| kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); |
| |
| kvm_free_memslot(kvm, &old, &new); |
| kvfree(old_memslots); |
| |
| /* |
| * IOMMU mapping: New slots need to be mapped. Old slots need to be |
| * un-mapped and re-mapped if their base changes. Since base change |
| * unmapping is handled above with slot deletion, mapping alone is |
| * needed here. Anything else the iommu might care about for existing |
| * slots (size changes, userspace addr changes and read-only flag |
| * changes) is disallowed above, so any other attribute changes getting |
| * here can be skipped. |
| */ |
| if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) { |
| r = kvm_iommu_map_pages(kvm, &new); |
| return r; |
| } |
| |
| return 0; |
| |
| out_slots: |
| kvfree(slots); |
| out_free: |
| kvm_free_memslot(kvm, &new, &old); |
| out: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(__kvm_set_memory_region); |
| |
| int kvm_set_memory_region(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem) |
| { |
| int r; |
| |
| mutex_lock(&kvm->slots_lock); |
| r = __kvm_set_memory_region(kvm, mem); |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_memory_region); |
| |
| static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem) |
| { |
| if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) |
| return -EINVAL; |
| |
| return kvm_set_memory_region(kvm, mem); |
| } |
| |
| int kvm_get_dirty_log(struct kvm *kvm, |
| struct kvm_dirty_log *log, int *is_dirty) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| int i, as_id, id; |
| unsigned long n; |
| unsigned long any = 0; |
| |
| as_id = log->slot >> 16; |
| id = (u16)log->slot; |
| if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) |
| return -EINVAL; |
| |
| slots = __kvm_memslots(kvm, as_id); |
| memslot = id_to_memslot(slots, id); |
| if (!memslot->dirty_bitmap) |
| return -ENOENT; |
| |
| n = kvm_dirty_bitmap_bytes(memslot); |
| |
| for (i = 0; !any && i < n/sizeof(long); ++i) |
| any = memslot->dirty_bitmap[i]; |
| |
| if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) |
| return -EFAULT; |
| |
| if (any) |
| *is_dirty = 1; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_dirty_log); |
| |
| #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT |
| /** |
| * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages |
| * are dirty write protect them for next write. |
| * @kvm: pointer to kvm instance |
| * @log: slot id and address to which we copy the log |
| * @is_dirty: flag set if any page is dirty |
| * |
| * We need to keep it in mind that VCPU threads can write to the bitmap |
| * concurrently. So, to avoid losing track of dirty pages we keep the |
| * following order: |
| * |
| * 1. Take a snapshot of the bit and clear it if needed. |
| * 2. Write protect the corresponding page. |
| * 3. Copy the snapshot to the userspace. |
| * 4. Upon return caller flushes TLB's if needed. |
| * |
| * Between 2 and 4, the guest may write to the page using the remaining TLB |
| * entry. This is not a problem because the page is reported dirty using |
| * the snapshot taken before and step 4 ensures that writes done after |
| * exiting to userspace will be logged for the next call. |
| * |
| */ |
| int kvm_get_dirty_log_protect(struct kvm *kvm, |
| struct kvm_dirty_log *log, bool *is_dirty) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| int i, as_id, id; |
| unsigned long n; |
| unsigned long *dirty_bitmap; |
| unsigned long *dirty_bitmap_buffer; |
| |
| as_id = log->slot >> 16; |
| id = (u16)log->slot; |
| if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) |
| return -EINVAL; |
| |
| slots = __kvm_memslots(kvm, as_id); |
| memslot = id_to_memslot(slots, id); |
| |
| dirty_bitmap = memslot->dirty_bitmap; |
| if (!dirty_bitmap) |
| return -ENOENT; |
| |
| n = kvm_dirty_bitmap_bytes(memslot); |
| |
| dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); |
| memset(dirty_bitmap_buffer, 0, n); |
| |
| spin_lock(&kvm->mmu_lock); |
| *is_dirty = false; |
| for (i = 0; i < n / sizeof(long); i++) { |
| unsigned long mask; |
| gfn_t offset; |
| |
| if (!dirty_bitmap[i]) |
| continue; |
| |
| *is_dirty = true; |
| |
| mask = xchg(&dirty_bitmap[i], 0); |
| dirty_bitmap_buffer[i] = mask; |
| |
| if (mask) { |
| offset = i * BITS_PER_LONG; |
| kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, |
| offset, mask); |
| } |
| } |
| |
| spin_unlock(&kvm->mmu_lock); |
| if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) |
| return -EFAULT; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); |
| #endif |
| |
| bool kvm_largepages_enabled(void) |
| { |
| return largepages_enabled; |
| } |
| |
| void kvm_disable_largepages(void) |
| { |
| largepages_enabled = false; |
| } |
| EXPORT_SYMBOL_GPL(kvm_disable_largepages); |
| |
| struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) |
| { |
| return __gfn_to_memslot(kvm_memslots(kvm), gfn); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_memslot); |
| |
| struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); |
| } |
| |
| bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); |
| |
| if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || |
| memslot->flags & KVM_MEMSLOT_INVALID) |
| return false; |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); |
| |
| unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) |
| { |
| struct vm_area_struct *vma; |
| unsigned long addr, size; |
| |
| size = PAGE_SIZE; |
| |
| addr = gfn_to_hva(kvm, gfn); |
| if (kvm_is_error_hva(addr)) |
| return PAGE_SIZE; |
| |
| down_read(¤t->mm->mmap_sem); |
| vma = find_vma(current->mm, addr); |
| if (!vma) |
| goto out; |
| |
| size = vma_kernel_pagesize(vma); |
| |
| out: |
| up_read(¤t->mm->mmap_sem); |
| |
| return size; |
| } |
| |
| static bool memslot_is_readonly(struct kvm_memory_slot *slot) |
| { |
| return slot->flags & KVM_MEM_READONLY; |
| } |
| |
| static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, |
| gfn_t *nr_pages, bool write) |
| { |
| if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
| return KVM_HVA_ERR_BAD; |
| |
| if (memslot_is_readonly(slot) && write) |
| return KVM_HVA_ERR_RO_BAD; |
| |
| if (nr_pages) |
| *nr_pages = slot->npages - (gfn - slot->base_gfn); |
| |
| return __gfn_to_hva_memslot(slot, gfn); |
| } |
| |
| static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, |
| gfn_t *nr_pages) |
| { |
| return __gfn_to_hva_many(slot, gfn, nr_pages, true); |
| } |
| |
| unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, |
| gfn_t gfn) |
| { |
| return gfn_to_hva_many(slot, gfn, NULL); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); |
| |
| unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) |
| { |
| return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_hva); |
| |
| unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); |
| |
| /* |
| * If writable is set to false, the hva returned by this function is only |
| * allowed to be read. |
| */ |
| unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, |
| gfn_t gfn, bool *writable) |
| { |
| unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); |
| |
| if (!kvm_is_error_hva(hva) && writable) |
| *writable = !memslot_is_readonly(slot); |
| |
| return hva; |
| } |
| |
| unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) |
| { |
| struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); |
| |
| return gfn_to_hva_memslot_prot(slot, gfn, writable); |
| } |
| |
| unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) |
| { |
| struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| |
| return gfn_to_hva_memslot_prot(slot, gfn, writable); |
| } |
| |
| static int get_user_page_nowait(unsigned long start, int write, |
| struct page **page) |
| { |
| int flags = FOLL_NOWAIT | FOLL_HWPOISON; |
| |
| if (write) |
| flags |= FOLL_WRITE; |
| |
| return get_user_pages(start, 1, flags, page, NULL); |
| } |
| |
| static inline int check_user_page_hwpoison(unsigned long addr) |
| { |
| int rc, flags = FOLL_HWPOISON | FOLL_WRITE; |
| |
| rc = get_user_pages(addr, 1, flags, NULL, NULL); |
| return rc == -EHWPOISON; |
| } |
| |
| /* |
| * The atomic path to get the writable pfn which will be stored in @pfn, |
| * true indicates success, otherwise false is returned. |
| */ |
| static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, |
| bool write_fault, bool *writable, kvm_pfn_t *pfn) |
| { |
| struct page *page[1]; |
| int npages; |
| |
| if (!(async || atomic)) |
| return false; |
| |
| /* |
| * Fast pin a writable pfn only if it is a write fault request |
| * or the caller allows to map a writable pfn for a read fault |
| * request. |
| */ |
| if (!(write_fault || writable)) |
| return false; |
| |
| npages = __get_user_pages_fast(addr, 1, 1, page); |
| if (npages == 1) { |
| *pfn = page_to_pfn(page[0]); |
| |
| if (writable) |
| *writable = true; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * The slow path to get the pfn of the specified host virtual address, |
| * 1 indicates success, -errno is returned if error is detected. |
| */ |
| static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, |
| bool *writable, kvm_pfn_t *pfn) |
| { |
| struct page *page[1]; |
| int npages = 0; |
| |
| might_sleep(); |
| |
| if (writable) |
| *writable = write_fault; |
| |
| if (async) { |
| down_read(¤t->mm->mmap_sem); |
| npages = get_user_page_nowait(addr, write_fault, page); |
| up_read(¤t->mm->mmap_sem); |
| } else { |
| unsigned int flags = FOLL_HWPOISON; |
| |
| if (write_fault) |
| flags |= FOLL_WRITE; |
| |
| npages = get_user_pages_unlocked(addr, 1, page, flags); |
| } |
| if (npages != 1) |
| return npages; |
| |
| /* map read fault as writable if possible */ |
| if (unlikely(!write_fault) && writable) { |
| struct page *wpage[1]; |
| |
| npages = __get_user_pages_fast(addr, 1, 1, wpage); |
| if (npages == 1) { |
| *writable = true; |
| put_page(page[0]); |
| page[0] = wpage[0]; |
| } |
| |
| npages = 1; |
| } |
| *pfn = page_to_pfn(page[0]); |
| return npages; |
| } |
| |
| static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) |
| { |
| if (unlikely(!(vma->vm_flags & VM_READ))) |
| return false; |
| |
| if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) |
| return false; |
| |
| return true; |
| } |
| |
| static int hva_to_pfn_remapped(struct vm_area_struct *vma, |
| unsigned long addr, bool *async, |
| bool write_fault, kvm_pfn_t *p_pfn) |
| { |
| unsigned long pfn; |
| int r; |
| |
| r = follow_pfn(vma, addr, &pfn); |
| if (r) { |
| /* |
| * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does |
| * not call the fault handler, so do it here. |
| */ |
| bool unlocked = false; |
| r = fixup_user_fault(current, current->mm, addr, |
| (write_fault ? FAULT_FLAG_WRITE : 0), |
| &unlocked); |
| if (unlocked) |
| return -EAGAIN; |
| if (r) |
| return r; |
| |
| r = follow_pfn(vma, addr, &pfn); |
| if (r) |
| return r; |
| |
| } |
| |
| |
| /* |
| * Get a reference here because callers of *hva_to_pfn* and |
| * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the |
| * returned pfn. This is only needed if the VMA has VM_MIXEDMAP |
| * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will |
| * simply do nothing for reserved pfns. |
| * |
| * Whoever called remap_pfn_range is also going to call e.g. |
| * unmap_mapping_range before the underlying pages are freed, |
| * causing a call to our MMU notifier. |
| */ |
| kvm_get_pfn(pfn); |
| |
| *p_pfn = pfn; |
| return 0; |
| } |
| |
| /* |
| * Pin guest page in memory and return its pfn. |
| * @addr: host virtual address which maps memory to the guest |
| * @atomic: whether this function can sleep |
| * @async: whether this function need to wait IO complete if the |
| * host page is not in the memory |
| * @write_fault: whether we should get a writable host page |
| * @writable: whether it allows to map a writable host page for !@write_fault |
| * |
| * The function will map a writable host page for these two cases: |
| * 1): @write_fault = true |
| * 2): @write_fault = false && @writable, @writable will tell the caller |
| * whether the mapping is writable. |
| */ |
| static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, |
| bool write_fault, bool *writable) |
| { |
| struct vm_area_struct *vma; |
| kvm_pfn_t pfn = 0; |
| int npages, r; |
| |
| /* we can do it either atomically or asynchronously, not both */ |
| BUG_ON(atomic && async); |
| |
| if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) |
| return pfn; |
| |
| if (atomic) |
| return KVM_PFN_ERR_FAULT; |
| |
| npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); |
| if (npages == 1) |
| return pfn; |
| |
| down_read(¤t->mm->mmap_sem); |
| if (npages == -EHWPOISON || |
| (!async && check_user_page_hwpoison(addr))) { |
| pfn = KVM_PFN_ERR_HWPOISON; |
| goto exit; |
| } |
| |
| retry: |
| vma = find_vma_intersection(current->mm, addr, addr + 1); |
| |
| if (vma == NULL) |
| pfn = KVM_PFN_ERR_FAULT; |
| else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { |
| r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); |
| if (r == -EAGAIN) |
| goto retry; |
| if (r < 0) |
| pfn = KVM_PFN_ERR_FAULT; |
| } else { |
| if (async && vma_is_valid(vma, write_fault)) |
| *async = true; |
| pfn = KVM_PFN_ERR_FAULT; |
| } |
| exit: |
| up_read(¤t->mm->mmap_sem); |
| return pfn; |
| } |
| |
| kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, |
| bool atomic, bool *async, bool write_fault, |
| bool *writable) |
| { |
| unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); |
| |
| if (addr == KVM_HVA_ERR_RO_BAD) { |
| if (writable) |
| *writable = false; |
| return KVM_PFN_ERR_RO_FAULT; |
| } |
| |
| if (kvm_is_error_hva(addr)) { |
| if (writable) |
| *writable = false; |
| return KVM_PFN_NOSLOT; |
| } |
| |
| /* Do not map writable pfn in the readonly memslot. */ |
| if (writable && memslot_is_readonly(slot)) { |
| *writable = false; |
| writable = NULL; |
| } |
| |
| return hva_to_pfn(addr, atomic, async, write_fault, |
| writable); |
| } |
| EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); |
| |
| kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, |
| bool *writable) |
| { |
| return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, |
| write_fault, writable); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); |
| |
| kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); |
| |
| kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); |
| |
| kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) |
| { |
| return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); |
| |
| kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); |
| |
| kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) |
| { |
| return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_pfn); |
| |
| kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); |
| |
| int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, |
| struct page **pages, int nr_pages) |
| { |
| unsigned long addr; |
| gfn_t entry; |
| |
| addr = gfn_to_hva_many(slot, gfn, &entry); |
| if (kvm_is_error_hva(addr)) |
| return -1; |
| |
| if (entry < nr_pages) |
| return 0; |
| |
| return __get_user_pages_fast(addr, nr_pages, 1, pages); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); |
| |
| static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) |
| { |
| if (is_error_noslot_pfn(pfn)) |
| return KVM_ERR_PTR_BAD_PAGE; |
| |
| if (kvm_is_reserved_pfn(pfn)) { |
| WARN_ON(1); |
| return KVM_ERR_PTR_BAD_PAGE; |
| } |
| |
| return pfn_to_page(pfn); |
| } |
| |
| struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) |
| { |
| kvm_pfn_t pfn; |
| |
| pfn = gfn_to_pfn(kvm, gfn); |
| |
| return kvm_pfn_to_page(pfn); |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_page); |
| |
| struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| kvm_pfn_t pfn; |
| |
| pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); |
| |
| return kvm_pfn_to_page(pfn); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); |
| |
| void kvm_release_page_clean(struct page *page) |
| { |
| WARN_ON(is_error_page(page)); |
| |
| kvm_release_pfn_clean(page_to_pfn(page)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_release_page_clean); |
| |
| void kvm_release_pfn_clean(kvm_pfn_t pfn) |
| { |
| if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) |
| put_page(pfn_to_page(pfn)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); |
| |
| void kvm_release_page_dirty(struct page *page) |
| { |
| WARN_ON(is_error_page(page)); |
| |
| kvm_release_pfn_dirty(page_to_pfn(page)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_release_page_dirty); |
| |
| static void kvm_release_pfn_dirty(kvm_pfn_t pfn) |
| { |
| kvm_set_pfn_dirty(pfn); |
| kvm_release_pfn_clean(pfn); |
| } |
| |
| void kvm_set_pfn_dirty(kvm_pfn_t pfn) |
| { |
| if (!kvm_is_reserved_pfn(pfn)) { |
| struct page *page = pfn_to_page(pfn); |
| |
| if (!PageReserved(page)) |
| SetPageDirty(page); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); |
| |
| void kvm_set_pfn_accessed(kvm_pfn_t pfn) |
| { |
| if (!kvm_is_reserved_pfn(pfn)) |
| mark_page_accessed(pfn_to_page(pfn)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); |
| |
| void kvm_get_pfn(kvm_pfn_t pfn) |
| { |
| if (!kvm_is_reserved_pfn(pfn)) |
| get_page(pfn_to_page(pfn)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_pfn); |
| |
| static int next_segment(unsigned long len, int offset) |
| { |
| if (len > PAGE_SIZE - offset) |
| return PAGE_SIZE - offset; |
| else |
| return len; |
| } |
| |
| static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, |
| void *data, int offset, int len) |
| { |
| int r; |
| unsigned long addr; |
| |
| addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); |
| if (kvm_is_error_hva(addr)) |
| return -EFAULT; |
| r = __copy_from_user(data, (void __user *)addr + offset, len); |
| if (r) |
| return -EFAULT; |
| return 0; |
| } |
| |
| int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, |
| int len) |
| { |
| struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); |
| |
| return __kvm_read_guest_page(slot, gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest_page); |
| |
| int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, |
| int offset, int len) |
| { |
| struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| |
| return __kvm_read_guest_page(slot, gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); |
| |
| int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| data += seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest); |
| |
| int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| data += seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); |
| |
| static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, |
| void *data, int offset, unsigned long len) |
| { |
| int r; |
| unsigned long addr; |
| |
| addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); |
| if (kvm_is_error_hva(addr)) |
| return -EFAULT; |
| pagefault_disable(); |
| r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); |
| pagefault_enable(); |
| if (r) |
| return -EFAULT; |
| return 0; |
| } |
| |
| int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, |
| unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); |
| int offset = offset_in_page(gpa); |
| |
| return __kvm_read_guest_atomic(slot, gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); |
| |
| int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *data, unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| int offset = offset_in_page(gpa); |
| |
| return __kvm_read_guest_atomic(slot, gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); |
| |
| static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, |
| const void *data, int offset, int len) |
| { |
| int r; |
| unsigned long addr; |
| |
| addr = gfn_to_hva_memslot(memslot, gfn); |
| if (kvm_is_error_hva(addr)) |
| return -EFAULT; |
| r = __copy_to_user((void __user *)addr + offset, data, len); |
| if (r) |
| return -EFAULT; |
| mark_page_dirty_in_slot(memslot, gfn); |
| return 0; |
| } |
| |
| int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, |
| const void *data, int offset, int len) |
| { |
| struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); |
| |
| return __kvm_write_guest_page(slot, gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_write_guest_page); |
| |
| int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
| const void *data, int offset, int len) |
| { |
| struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| |
| return __kvm_write_guest_page(slot, gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); |
| |
| int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, |
| unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| data += seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_write_guest); |
| |
| int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, |
| unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| data += seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); |
| |
| static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, |
| struct gfn_to_hva_cache *ghc, |
| gpa_t gpa, unsigned long len) |
| { |
| int offset = offset_in_page(gpa); |
| gfn_t start_gfn = gpa >> PAGE_SHIFT; |
| gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; |
| gfn_t nr_pages_needed = end_gfn - start_gfn + 1; |
| gfn_t nr_pages_avail; |
| |
| ghc->gpa = gpa; |
| ghc->generation = slots->generation; |
| ghc->len = len; |
| ghc->memslot = __gfn_to_memslot(slots, start_gfn); |
| ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); |
| if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { |
| ghc->hva += offset; |
| } else { |
| /* |
| * If the requested region crosses two memslots, we still |
| * verify that the entire region is valid here. |
| */ |
| while (start_gfn <= end_gfn) { |
| ghc->memslot = __gfn_to_memslot(slots, start_gfn); |
| ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, |
| &nr_pages_avail); |
| if (kvm_is_error_hva(ghc->hva)) |
| return -EFAULT; |
| start_gfn += nr_pages_avail; |
| } |
| /* Use the slow path for cross page reads and writes. */ |
| ghc->memslot = NULL; |
| } |
| return 0; |
| } |
| |
| int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, |
| gpa_t gpa, unsigned long len) |
| { |
| struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); |
| return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init); |
| |
| int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, |
| void *data, int offset, unsigned long len) |
| { |
| struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); |
| int r; |
| gpa_t gpa = ghc->gpa + offset; |
| |
| BUG_ON(len + offset > ghc->len); |
| |
| if (slots->generation != ghc->generation) |
| __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); |
| |
| if (unlikely(!ghc->memslot)) |
| return kvm_vcpu_write_guest(vcpu, gpa, data, len); |
| |
| if (kvm_is_error_hva(ghc->hva)) |
| return -EFAULT; |
| |
| r = __copy_to_user((void __user *)ghc->hva + offset, data, len); |
| if (r) |
| return -EFAULT; |
| mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached); |
| |
| int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, |
| void *data, unsigned long len) |
| { |
| return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached); |
| |
| int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, |
| void *data, unsigned long len) |
| { |
| struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); |
| int r; |
| |
| BUG_ON(len > ghc->len); |
| |
| if (slots->generation != ghc->generation) |
| __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); |
| |
| if (unlikely(!ghc->memslot)) |
| return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len); |
| |
| if (kvm_is_error_hva(ghc->hva)) |
| return -EFAULT; |
| |
| r = __copy_from_user(data, (void __user *)ghc->hva, len); |
| if (r) |
| return -EFAULT; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached); |
| |
| int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) |
| { |
| const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); |
| |
| return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_clear_guest_page); |
| |
| int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_clear_guest_page(kvm, gfn, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_clear_guest); |
| |
| static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, |
| gfn_t gfn) |
| { |
| if (memslot && memslot->dirty_bitmap) { |
| unsigned long rel_gfn = gfn - memslot->base_gfn; |
| |
| set_bit_le(rel_gfn, memslot->dirty_bitmap); |
| } |
| } |
| |
| void mark_page_dirty(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_memory_slot *memslot; |
| |
| memslot = gfn_to_memslot(kvm, gfn); |
| mark_page_dirty_in_slot(memslot, gfn); |
| } |
| EXPORT_SYMBOL_GPL(mark_page_dirty); |
| |
| void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| struct kvm_memory_slot *memslot; |
| |
| memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| mark_page_dirty_in_slot(memslot, gfn); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); |
| |
| static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) |
| { |
| unsigned int old, val, grow; |
| |
| old = val = vcpu->halt_poll_ns; |
| grow = READ_ONCE(halt_poll_ns_grow); |
| /* 10us base */ |
| if (val == 0 && grow) |
| val = 10000; |
| else |
| val *= grow; |
| |
| if (val > halt_poll_ns) |
| val = halt_poll_ns; |
| |
| vcpu->halt_poll_ns = val; |
| trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); |
| } |
| |
| static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) |
| { |
| unsigned int old, val, shrink; |
| |
| old = val = vcpu->halt_poll_ns; |
| shrink = READ_ONCE(halt_poll_ns_shrink); |
| if (shrink == 0) |
| val = 0; |
| else |
| val /= shrink; |
| |
| vcpu->halt_poll_ns = val; |
| trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); |
| } |
| |
| static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_arch_vcpu_runnable(vcpu)) { |
| kvm_make_request(KVM_REQ_UNHALT, vcpu); |
| return -EINTR; |
| } |
| if (kvm_cpu_has_pending_timer(vcpu)) |
| return -EINTR; |
| if (signal_pending(current)) |
| return -EINTR; |
| |
| return 0; |
| } |
| |
| /* |
| * The vCPU has executed a HLT instruction with in-kernel mode enabled. |
| */ |
| void kvm_vcpu_block(struct kvm_vcpu *vcpu) |
| { |
| ktime_t start, cur; |
| DECLARE_SWAITQUEUE(wait); |
| bool waited = false; |
| u64 block_ns; |
| |
| start = cur = ktime_get(); |
| if (vcpu->halt_poll_ns) { |
| ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); |
| |
| ++vcpu->stat.halt_attempted_poll; |
| do { |
| /* |
| * This sets KVM_REQ_UNHALT if an interrupt |
| * arrives. |
| */ |
| if (kvm_vcpu_check_block(vcpu) < 0) { |
| ++vcpu->stat.halt_successful_poll; |
| if (!vcpu_valid_wakeup(vcpu)) |
| ++vcpu->stat.halt_poll_invalid; |
| goto out; |
| } |
| cur = ktime_get(); |
| } while (single_task_running() && ktime_before(cur, stop)); |
| } |
| |
| kvm_arch_vcpu_blocking(vcpu); |
| |
| for (;;) { |
| prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); |
| |
| if (kvm_vcpu_check_block(vcpu) < 0) |
| break; |
| |
| waited = true; |
| schedule(); |
| } |
| |
| finish_swait(&vcpu->wq, &wait); |
| cur = ktime_get(); |
| |
| kvm_arch_vcpu_unblocking(vcpu); |
| out: |
| block_ns = ktime_to_ns(cur) - ktime_to_ns(start); |
| |
| if (!vcpu_valid_wakeup(vcpu)) |
| shrink_halt_poll_ns(vcpu); |
| else if (halt_poll_ns) { |
| if (block_ns <= vcpu->halt_poll_ns) |
| ; |
| /* we had a long block, shrink polling */ |
| else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) |
| shrink_halt_poll_ns(vcpu); |
| /* we had a short halt and our poll time is too small */ |
| else if (vcpu->halt_poll_ns < halt_poll_ns && |
| block_ns < halt_poll_ns) |
| grow_halt_poll_ns(vcpu); |
| } else |
| vcpu->halt_poll_ns = 0; |
| |
| trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); |
| kvm_arch_vcpu_block_finish(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_block); |
| |
| #ifndef CONFIG_S390 |
| void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) |
| { |
| struct swait_queue_head *wqp; |
| |
| wqp = kvm_arch_vcpu_wq(vcpu); |
| if (swait_active(wqp)) { |
| swake_up(wqp); |
| ++vcpu->stat.halt_wakeup; |
| } |
| |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); |
| |
| /* |
| * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. |
| */ |
| void kvm_vcpu_kick(struct kvm_vcpu *vcpu) |
| { |
| int me; |
| int cpu = vcpu->cpu; |
| |
| kvm_vcpu_wake_up(vcpu); |
| me = get_cpu(); |
| if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) |
| if (kvm_arch_vcpu_should_kick(vcpu)) |
| smp_send_reschedule(cpu); |
| put_cpu(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_kick); |
| #endif /* !CONFIG_S390 */ |
| |
| int kvm_vcpu_yield_to(struct kvm_vcpu *target) |
| { |
| struct pid *pid; |
| struct task_struct *task = NULL; |
| int ret = 0; |
| |
| rcu_read_lock(); |
| pid = rcu_dereference(target->pid); |
| if (pid) |
| task = get_pid_task(pid, PIDTYPE_PID); |
| rcu_read_unlock(); |
| if (!task) |
| return ret; |
| ret = yield_to(task, 1); |
| put_task_struct(task); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); |
| |
| /* |
| * Helper that checks whether a VCPU is eligible for directed yield. |
| * Most eligible candidate to yield is decided by following heuristics: |
| * |
| * (a) VCPU which has not done pl-exit or cpu relax intercepted recently |
| * (preempted lock holder), indicated by @in_spin_loop. |
| * Set at the beiginning and cleared at the end of interception/PLE handler. |
| * |
| * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get |
| * chance last time (mostly it has become eligible now since we have probably |
| * yielded to lockholder in last iteration. This is done by toggling |
| * @dy_eligible each time a VCPU checked for eligibility.) |
| * |
| * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding |
| * to preempted lock-holder could result in wrong VCPU selection and CPU |
| * burning. Giving priority for a potential lock-holder increases lock |
| * progress. |
| * |
| * Since algorithm is based on heuristics, accessing another VCPU data without |
| * locking does not harm. It may result in trying to yield to same VCPU, fail |
| * and continue with next VCPU and so on. |
| */ |
| static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT |
| bool eligible; |
| |
| eligible = !vcpu->spin_loop.in_spin_loop || |
| vcpu->spin_loop.dy_eligible; |
| |
| if (vcpu->spin_loop.in_spin_loop) |
| kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); |
| |
| return eligible; |
| #else |
| return true; |
| #endif |
| } |
| |
| void kvm_vcpu_on_spin(struct kvm_vcpu *me) |
| { |
| struct kvm *kvm = me->kvm; |
| struct kvm_vcpu *vcpu; |
| int last_boosted_vcpu = me->kvm->last_boosted_vcpu; |
| int yielded = 0; |
| int try = 3; |
| int pass; |
| int i; |
| |
| kvm_vcpu_set_in_spin_loop(me, true); |
| /* |
| * We boost the priority of a VCPU that is runnable but not |
| * currently running, because it got preempted by something |
| * else and called schedule in __vcpu_run. Hopefully that |
| * VCPU is holding the lock that we need and will release it. |
| * We approximate round-robin by starting at the last boosted VCPU. |
| */ |
| for (pass = 0; pass < 2 && !yielded && try; pass++) { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!pass && i <= last_boosted_vcpu) { |
| i = last_boosted_vcpu; |
| continue; |
| } else if (pass && i > last_boosted_vcpu) |
| break; |
| if (!ACCESS_ONCE(vcpu->preempted)) |
| continue; |
| if (vcpu == me) |
| continue; |
| if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) |
| continue; |
| if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) |
| continue; |
| |
| yielded = kvm_vcpu_yield_to(vcpu); |
| if (yielded > 0) { |
| kvm->last_boosted_vcpu = i; |
| break; |
| } else if (yielded < 0) { |
| try--; |
| if (!try) |
| break; |
| } |
| } |
| } |
| kvm_vcpu_set_in_spin_loop(me, false); |
| |
| /* Ensure vcpu is not eligible during next spinloop */ |
| kvm_vcpu_set_dy_eligible(me, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); |
| |
| static int kvm_vcpu_fault(struct vm_fault *vmf) |
| { |
| struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; |
| struct page *page; |
| |
| if (vmf->pgoff == 0) |
| page = virt_to_page(vcpu->run); |
| #ifdef CONFIG_X86 |
| else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) |
| page = virt_to_page(vcpu->arch.pio_data); |
| #endif |
| #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) |
| page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); |
| #endif |
| else |
| return kvm_arch_vcpu_fault(vcpu, vmf); |
| get_page(page); |
| vmf->page = page; |
| return 0; |
| } |
| |
| static const struct vm_operations_struct kvm_vcpu_vm_ops = { |
| .fault = kvm_vcpu_fault, |
| }; |
| |
| static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_ops = &kvm_vcpu_vm_ops; |
| return 0; |
| } |
| |
| static int kvm_vcpu_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| |
| debugfs_remove_recursive(vcpu->debugfs_dentry); |
| kvm_put_kvm(vcpu->kvm); |
| return 0; |
| } |
| |
| static struct file_operations kvm_vcpu_fops = { |
| .release = kvm_vcpu_release, |
| .unlocked_ioctl = kvm_vcpu_ioctl, |
| #ifdef CONFIG_KVM_COMPAT |
| .compat_ioctl = kvm_vcpu_compat_ioctl, |
| #endif |
| .mmap = kvm_vcpu_mmap, |
| .llseek = noop_llseek, |
| }; |
| |
| /* |
| * Allocates an inode for the vcpu. |
| */ |
| static int create_vcpu_fd(struct kvm_vcpu *vcpu) |
| { |
| return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); |
| } |
| |
| static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) |
| { |
| char dir_name[ITOA_MAX_LEN * 2]; |
| int ret; |
| |
| if (!kvm_arch_has_vcpu_debugfs()) |
| return 0; |
| |
| if (!debugfs_initialized()) |
| return 0; |
| |
| snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); |
| vcpu->debugfs_dentry = debugfs_create_dir(dir_name, |
| vcpu->kvm->debugfs_dentry); |
| if (!vcpu->debugfs_dentry) |
| return -ENOMEM; |
| |
| ret = kvm_arch_create_vcpu_debugfs(vcpu); |
| if (ret < 0) { |
| debugfs_remove_recursive(vcpu->debugfs_dentry); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Creates some virtual cpus. Good luck creating more than one. |
| */ |
| static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) |
| { |
| int r; |
| struct kvm_vcpu *vcpu; |
| |
| if (id >= KVM_MAX_VCPU_ID) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->lock); |
| if (kvm->created_vcpus == KVM_MAX_VCPUS) { |
| mutex_unlock(&kvm->lock); |
| return -EINVAL; |
| } |
| |
| kvm->created_vcpus++; |
| mutex_unlock(&kvm->lock); |
| |
| vcpu = kvm_arch_vcpu_create(kvm, id); |
| if (IS_ERR(vcpu)) { |
| r = PTR_ERR(vcpu); |
| goto vcpu_decrement; |
| } |
| |
| preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); |
| |
| r = kvm_arch_vcpu_setup(vcpu); |
| if (r) |
| goto vcpu_destroy; |
| |
| r = kvm_create_vcpu_debugfs(vcpu); |
| if (r) |
| goto vcpu_destroy; |
| |
| mutex_lock(&kvm->lock); |
| if (kvm_get_vcpu_by_id(kvm, id)) { |
| r = -EEXIST; |
| goto unlock_vcpu_destroy; |
| } |
| |
| BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); |
| |
| /* Now it's all set up, let userspace reach it */ |
| kvm_get_kvm(kvm); |
| r = create_vcpu_fd(vcpu); |
| if (r < 0) { |
| kvm_put_kvm(kvm); |
| goto unlock_vcpu_destroy; |
| } |
| |
| kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; |
| |
| /* |
| * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus |
| * before kvm->online_vcpu's incremented value. |
| */ |
| smp_wmb(); |
| atomic_inc(&kvm->online_vcpus); |
| |
| mutex_unlock(&kvm->lock); |
| kvm_arch_vcpu_postcreate(vcpu); |
| return r; |
| |
| unlock_vcpu_destroy: |
| mutex_unlock(&kvm->lock); |
| debugfs_remove_recursive(vcpu->debugfs_dentry); |
| vcpu_destroy: |
| kvm_arch_vcpu_destroy(vcpu); |
| vcpu_decrement: |
| mutex_lock(&kvm->lock); |
| kvm->created_vcpus--; |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) |
| { |
| if (sigset) { |
| sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| vcpu->sigset_active = 1; |
| vcpu->sigset = *sigset; |
| } else |
| vcpu->sigset_active = 0; |
| return 0; |
| } |
| |
| static long kvm_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| struct kvm_fpu *fpu = NULL; |
| struct kvm_sregs *kvm_sregs = NULL; |
| |
| if (vcpu->kvm->mm != current->mm) |
| return -EIO; |
| |
| if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) |
| return -EINVAL; |
| |
| #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) |
| /* |
| * Special cases: vcpu ioctls that are asynchronous to vcpu execution, |
| * so vcpu_load() would break it. |
| */ |
| if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) |
| return kvm_arch_vcpu_ioctl(filp, ioctl, arg); |
| #endif |
| |
| |
| r = vcpu_load(vcpu); |
| if (r) |
| return r; |
| switch (ioctl) { |
| case KVM_RUN: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { |
| /* The thread running this VCPU changed. */ |
| struct pid *oldpid = vcpu->pid; |
| struct pid *newpid = get_task_pid(current, PIDTYPE_PID); |
| |
| rcu_assign_pointer(vcpu->pid, newpid); |
| if (oldpid) |
| synchronize_rcu(); |
| put_pid(oldpid); |
| } |
| r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); |
| trace_kvm_userspace_exit(vcpu->run->exit_reason, r); |
| break; |
| case KVM_GET_REGS: { |
| struct kvm_regs *kvm_regs; |
| |
| r = -ENOMEM; |
| kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); |
| if (!kvm_regs) |
| goto out; |
| r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); |
| if (r) |
| goto out_free1; |
| r = -EFAULT; |
| if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) |
| goto out_free1; |
| r = 0; |
| out_free1: |
| kfree(kvm_regs); |
| break; |
| } |
| case KVM_SET_REGS: { |
| struct kvm_regs *kvm_regs; |
| |
| r = -ENOMEM; |
| kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); |
| if (IS_ERR(kvm_regs)) { |
| r = PTR_ERR(kvm_regs); |
| goto out; |
| } |
| r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); |
| kfree(kvm_regs); |
| break; |
| } |
| case KVM_GET_SREGS: { |
| kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!kvm_sregs) |
| goto out; |
| r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_SREGS: { |
| kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); |
| if (IS_ERR(kvm_sregs)) { |
| r = PTR_ERR(kvm_sregs); |
| kvm_sregs = NULL; |
| goto out; |
| } |
| r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); |
| break; |
| } |
| case KVM_GET_MP_STATE: { |
| struct kvm_mp_state mp_state; |
| |
| r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &mp_state, sizeof(mp_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_MP_STATE: { |
| struct kvm_mp_state mp_state; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mp_state, argp, sizeof(mp_state))) |
| goto out; |
| r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); |
| break; |
| } |
| case KVM_TRANSLATE: { |
| struct kvm_translation tr; |
| |
| r = -EFAULT; |
| if (copy_from_user(&tr, argp, sizeof(tr))) |
| goto out; |
| r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &tr, sizeof(tr))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_GUEST_DEBUG: { |
| struct kvm_guest_debug dbg; |
| |
| r = -EFAULT; |
| if (copy_from_user(&dbg, argp, sizeof(dbg))) |
| goto out; |
| r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); |
| break; |
| } |
| case KVM_SET_SIGNAL_MASK: { |
| struct kvm_signal_mask __user *sigmask_arg = argp; |
| struct kvm_signal_mask kvm_sigmask; |
| sigset_t sigset, *p; |
| |
| p = NULL; |
| if (argp) { |
| r = -EFAULT; |
| if (copy_from_user(&kvm_sigmask, argp, |
| sizeof(kvm_sigmask))) |
| goto out; |
| r = -EINVAL; |
| if (kvm_sigmask.len != sizeof(sigset)) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&sigset, sigmask_arg->sigset, |
| sizeof(sigset))) |
| goto out; |
| p = &sigset; |
| } |
| r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); |
| break; |
| } |
| case KVM_GET_FPU: { |
| fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!fpu) |
| goto out; |
| r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_FPU: { |
| fpu = memdup_user(argp, sizeof(*fpu)); |
| if (IS_ERR(fpu)) { |
| r = PTR_ERR(fpu); |
| fpu = NULL; |
| goto out; |
| } |
| r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); |
| break; |
| } |
| default: |
| r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); |
| } |
| out: |
| vcpu_put(vcpu); |
| kfree(fpu); |
| kfree(kvm_sregs); |
| return r; |
| } |
| |
| #ifdef CONFIG_KVM_COMPAT |
| static long kvm_vcpu_compat_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = compat_ptr(arg); |
| int r; |
| |
| if (vcpu->kvm->mm != current->mm) |
| return -EIO; |
| |
| switch (ioctl) { |
| case KVM_SET_SIGNAL_MASK: { |
| struct kvm_signal_mask __user *sigmask_arg = argp; |
| struct kvm_signal_mask kvm_sigmask; |
| compat_sigset_t csigset; |
| sigset_t sigset; |
| |
| if (argp) { |
| r = -EFAULT; |
| if (copy_from_user(&kvm_sigmask, argp, |
| sizeof(kvm_sigmask))) |
| goto out; |
| r = -EINVAL; |
| if (kvm_sigmask.len != sizeof(csigset)) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&csigset, sigmask_arg->sigset, |
| sizeof(csigset))) |
| goto out; |
| sigset_from_compat(&sigset, &csigset); |
| r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); |
| } else |
| r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); |
| break; |
| } |
| default: |
| r = kvm_vcpu_ioctl(filp, ioctl, arg); |
| } |
| |
| out: |
| return r; |
| } |
| #endif |
| |
| static int kvm_device_ioctl_attr(struct kvm_device *dev, |
| int (*accessor)(struct kvm_device *dev, |
| struct kvm_device_attr *attr), |
| unsigned long arg) |
| { |
| struct kvm_device_attr attr; |
| |
| if (!accessor) |
| return -EPERM; |
| |
| if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) |
| return -EFAULT; |
| |
| return accessor(dev, &attr); |
| } |
| |
| static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, |
| unsigned long arg) |
| { |
| struct kvm_device *dev = filp->private_data; |
| |
| switch (ioctl) { |
| case KVM_SET_DEVICE_ATTR: |
| return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); |
| case KVM_GET_DEVICE_ATTR: |
| return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); |
| case KVM_HAS_DEVICE_ATTR: |
| return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); |
| default: |
| if (dev->ops->ioctl) |
| return dev->ops->ioctl(dev, ioctl, arg); |
| |
| return -ENOTTY; |
| } |
| } |
| |
| static int kvm_device_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm_device *dev = filp->private_data; |
| struct kvm *kvm = dev->kvm; |
| |
| kvm_put_kvm(kvm); |
| return 0; |
| } |
| |
| static const struct file_operations kvm_device_fops = { |
| .unlocked_ioctl = kvm_device_ioctl, |
| #ifdef CONFIG_KVM_COMPAT |
| .compat_ioctl = kvm_device_ioctl, |
| #endif |
| .release = kvm_device_release, |
| }; |
| |
| struct kvm_device *kvm_device_from_filp(struct file *filp) |
| { |
| if (filp->f_op != &kvm_device_fops) |
| return NULL; |
| |
| return filp->private_data; |
| } |
| |
| static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { |
| #ifdef CONFIG_KVM_MPIC |
| [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, |
| [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, |
| #endif |
| |
| #ifdef CONFIG_KVM_XICS |
| [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, |
| #endif |
| }; |
| |
| int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) |
| { |
| if (type >= ARRAY_SIZE(kvm_device_ops_table)) |
| return -ENOSPC; |
| |
| if (kvm_device_ops_table[type] != NULL) |
| return -EEXIST; |
| |
| kvm_device_ops_table[type] = ops; |
| return 0; |
| } |
| |
| void kvm_unregister_device_ops(u32 type) |
| { |
| if (kvm_device_ops_table[type] != NULL) |
| kvm_device_ops_table[type] = NULL; |
| } |
| |
| static int kvm_ioctl_create_device(struct kvm *kvm, |
| struct kvm_create_device *cd) |
| { |
| struct kvm_device_ops *ops = NULL; |
| struct kvm_device *dev; |
| bool test = cd->flags & KVM_CREATE_DEVICE_TEST; |
| int ret; |
| |
| if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) |
| return -ENODEV; |
| |
| ops = kvm_device_ops_table[cd->type]; |
| if (ops == NULL) |
| return -ENODEV; |
| |
| if (test) |
| return 0; |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return -ENOMEM; |
| |
| dev->ops = ops; |
| dev->kvm = kvm; |
| |
| mutex_lock(&kvm->lock); |
| ret = ops->create(dev, cd->type); |
| if (ret < 0) { |
| mutex_unlock(&kvm->lock); |
| kfree(dev); |
| return ret; |
| } |
| list_add(&dev->vm_node, &kvm->devices); |
| mutex_unlock(&kvm->lock); |
| |
| if (ops->init) |
| ops->init(dev); |
| |
| ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); |
| if (ret < 0) { |
| mutex_lock(&kvm->lock); |
| list_del(&dev->vm_node); |
| mutex_unlock(&kvm->lock); |
| ops->destroy(dev); |
| return ret; |
| } |
| |
| kvm_get_kvm(kvm); |
| cd->fd = ret; |
| return 0; |
| } |
| |
| static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) |
| { |
| switch (arg) { |
| case KVM_CAP_USER_MEMORY: |
| case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
| case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: |
| case KVM_CAP_INTERNAL_ERROR_DATA: |
| #ifdef CONFIG_HAVE_KVM_MSI |
| case KVM_CAP_SIGNAL_MSI: |
| #endif |
| #ifdef CONFIG_HAVE_KVM_IRQFD |
| case KVM_CAP_IRQFD: |
| case KVM_CAP_IRQFD_RESAMPLE: |
| #endif |
| case KVM_CAP_IOEVENTFD_ANY_LENGTH: |
| case KVM_CAP_CHECK_EXTENSION_VM: |
| return 1; |
| #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING |
| case KVM_CAP_IRQ_ROUTING: |
| return KVM_MAX_IRQ_ROUTES; |
| #endif |
| #if KVM_ADDRESS_SPACE_NUM > 1 |
| case KVM_CAP_MULTI_ADDRESS_SPACE: |
| return KVM_ADDRESS_SPACE_NUM; |
| #endif |
| case KVM_CAP_MAX_VCPU_ID: |
| return KVM_MAX_VCPU_ID; |
| default: |
| break; |
| } |
| return kvm_vm_ioctl_check_extension(kvm, arg); |
| } |
| |
| static long kvm_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| |
| if (kvm->mm != current->mm) |
| return -EIO; |
| switch (ioctl) { |
| case KVM_CREATE_VCPU: |
| r = kvm_vm_ioctl_create_vcpu(kvm, arg); |
| break; |
| case KVM_SET_USER_MEMORY_REGION: { |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_userspace_mem, argp, |
| sizeof(kvm_userspace_mem))) |
| goto out; |
| |
| r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); |
| break; |
| } |
| case KVM_GET_DIRTY_LOG: { |
| struct kvm_dirty_log log; |
| |
| r = -EFAULT; |
| if (copy_from_user(&log, argp, sizeof(log))) |
| goto out; |
| r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
| break; |
| } |
| #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| case KVM_REGISTER_COALESCED_MMIO: { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| r = -EFAULT; |
| if (copy_from_user(&zone, argp, sizeof(zone))) |
| goto out; |
| r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); |
| break; |
| } |
| case KVM_UNREGISTER_COALESCED_MMIO: { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| r = -EFAULT; |
| if (copy_from_user(&zone, argp, sizeof(zone))) |
| goto out; |
| r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); |
| break; |
| } |
| #endif |
| case KVM_IRQFD: { |
| struct kvm_irqfd data; |
| |
| r = -EFAULT; |
| if (copy_from_user(&data, argp, sizeof(data))) |
| goto out; |
| r = kvm_irqfd(kvm, &data); |
| break; |
| } |
| case KVM_IOEVENTFD: { |
| struct kvm_ioeventfd data; |
| |
| r = -EFAULT; |
| if (copy_from_user(&data, argp, sizeof(data))) |
| goto out; |
| r = kvm_ioeventfd(kvm, &data); |
| break; |
| } |
| #ifdef CONFIG_HAVE_KVM_MSI |
| case KVM_SIGNAL_MSI: { |
| struct kvm_msi msi; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msi, argp, sizeof(msi))) |
| goto out; |
| r = kvm_send_userspace_msi(kvm, &msi); |
| break; |
| } |
| #endif |
| #ifdef __KVM_HAVE_IRQ_LINE |
| case KVM_IRQ_LINE_STATUS: |
| case KVM_IRQ_LINE: { |
| struct kvm_irq_level irq_event; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq_event, argp, sizeof(irq_event))) |
| goto out; |
| |
| r = kvm_vm_ioctl_irq_line(kvm, &irq_event, |
| ioctl == KVM_IRQ_LINE_STATUS); |
| if (r) |
| goto out; |
| |
| r = -EFAULT; |
| if (ioctl == KVM_IRQ_LINE_STATUS) { |
| if (copy_to_user(argp, &irq_event, sizeof(irq_event))) |
| goto out; |
| } |
| |
| r = 0; |
| break; |
| } |
| #endif |
| #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING |
| case KVM_SET_GSI_ROUTING: { |
| struct kvm_irq_routing routing; |
| struct kvm_irq_routing __user *urouting; |
| struct kvm_irq_routing_entry *entries = NULL; |
| |
| r = -EFAULT; |
| if (copy_from_user(&routing, argp, sizeof(routing))) |
| goto out; |
| r = -EINVAL; |
| if (routing.nr > KVM_MAX_IRQ_ROUTES) |
| goto out; |
| if (routing.flags) |
| goto out; |
| if (routing.nr) { |
| r = -ENOMEM; |
| entries = vmalloc(routing.nr * sizeof(*entries)); |
| if (!entries) |
| goto out; |
| r = -EFAULT; |
| urouting = argp; |
| if (copy_from_user(entries, urouting->entries, |
| routing.nr * sizeof(*entries))) |
| goto out_free_irq_routing; |
| } |
| r = kvm_set_irq_routing(kvm, entries, routing.nr, |
| routing.flags); |
| out_free_irq_routing: |
| vfree(entries); |
| break; |
| } |
| #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ |
| case KVM_CREATE_DEVICE: { |
| struct kvm_create_device cd; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cd, argp, sizeof(cd))) |
| goto out; |
| |
| r = kvm_ioctl_create_device(kvm, &cd); |
| if (r) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &cd, sizeof(cd))) |
| goto out; |
| |
| r = 0; |
| break; |
| } |
| case KVM_CHECK_EXTENSION: |
| r = kvm_vm_ioctl_check_extension_generic(kvm, arg); |
| break; |
| default: |
| r = kvm_arch_vm_ioctl(filp, ioctl, arg); |
| } |
| out: |
| return r; |
| } |
| |
| #ifdef CONFIG_KVM_COMPAT |
| struct compat_kvm_dirty_log { |
| __u32 slot; |
| __u32 padding1; |
| union { |
| compat_uptr_t dirty_bitmap; /* one bit per page */ |
| __u64 padding2; |
| }; |
| }; |
| |
| static long kvm_vm_compat_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| int r; |
| |
| if (kvm->mm != current->mm) |
| return -EIO; |
| switch (ioctl) { |
| case KVM_GET_DIRTY_LOG: { |
| struct compat_kvm_dirty_log compat_log; |
| struct kvm_dirty_log log; |
| |
| if (copy_from_user(&compat_log, (void __user *)arg, |
| sizeof(compat_log))) |
| return -EFAULT; |
| log.slot = compat_log.slot; |
| log.padding1 = compat_log.padding1; |
| log.padding2 = compat_log.padding2; |
| log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); |
| |
| r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
| break; |
| } |
| default: |
| r = kvm_vm_ioctl(filp, ioctl, arg); |
| } |
| return r; |
| } |
| #endif |
| |
| static struct file_operations kvm_vm_fops = { |
| .release = kvm_vm_release, |
| .unlocked_ioctl = kvm_vm_ioctl, |
| #ifdef CONFIG_KVM_COMPAT |
| .compat_ioctl = kvm_vm_compat_ioctl, |
| #endif |
| .llseek = noop_llseek, |
| }; |
| |
| static int kvm_dev_ioctl_create_vm(unsigned long type) |
| { |
| int r; |
| struct kvm *kvm; |
| struct file *file; |
| |
| kvm = kvm_create_vm(type); |
| if (IS_ERR(kvm)) |
| return PTR_ERR(kvm); |
| #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| r = kvm_coalesced_mmio_init(kvm); |
| if (r < 0) { |
| kvm_put_kvm(kvm); |
| return r; |
| } |
| #endif |
| r = get_unused_fd_flags(O_CLOEXEC); |
| if (r < 0) { |
| kvm_put_kvm(kvm); |
| return r; |
| } |
| file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); |
| if (IS_ERR(file)) { |
| put_unused_fd(r); |
| kvm_put_kvm(kvm); |
| return PTR_ERR(file); |
| } |
| |
| if (kvm_create_vm_debugfs(kvm, r) < 0) { |
| put_unused_fd(r); |
| fput(file); |
| return -ENOMEM; |
| } |
| |
| fd_install(r, file); |
| return r; |
| } |
| |
| static long kvm_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| long r = -EINVAL; |
| |
| switch (ioctl) { |
| case KVM_GET_API_VERSION: |
| if (arg) |
| goto out; |
| r = KVM_API_VERSION; |
| break; |
| case KVM_CREATE_VM: |
| r = kvm_dev_ioctl_create_vm(arg); |
| break; |
| case KVM_CHECK_EXTENSION: |
| r = kvm_vm_ioctl_check_extension_generic(NULL, arg); |
| break; |
| case KVM_GET_VCPU_MMAP_SIZE: |
| if (arg) |
| goto out; |
| r = PAGE_SIZE; /* struct kvm_run */ |
| #ifdef CONFIG_X86 |
| r += PAGE_SIZE; /* pio data page */ |
| #endif |
| #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| r += PAGE_SIZE; /* coalesced mmio ring page */ |
| #endif |
| break; |
| case KVM_TRACE_ENABLE: |
| case KVM_TRACE_PAUSE: |
| case KVM_TRACE_DISABLE: |
| r = -EOPNOTSUPP; |
| break; |
| default: |
| return kvm_arch_dev_ioctl(filp, ioctl, arg); |
| } |
| out: |
| return r; |
| } |
| |
| static struct file_operations kvm_chardev_ops = { |
| .unlocked_ioctl = kvm_dev_ioctl, |
| .compat_ioctl = kvm_dev_ioctl, |
| .llseek = noop_llseek, |
| }; |
| |
| static struct miscdevice kvm_dev = { |
| KVM_MINOR, |
| "kvm", |
| &kvm_chardev_ops, |
| }; |
| |
| static void hardware_enable_nolock(void *junk) |
| { |
| int cpu = raw_smp_processor_id(); |
| int r; |
| |
| if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) |
| return; |
| |
| cpumask_set_cpu(cpu, cpus_hardware_enabled); |
| |
| r = kvm_arch_hardware_enable(); |
| |
| if (r) { |
| cpumask_clear_cpu(cpu, cpus_hardware_enabled); |
| atomic_inc(&hardware_enable_failed); |
| pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); |
| } |
| } |
| |
| static int kvm_starting_cpu(unsigned int cpu) |
| { |
| raw_spin_lock(&kvm_count_lock); |
| if (kvm_usage_count) |
| hardware_enable_nolock(NULL); |
| raw_spin_unlock(&kvm_count_lock); |
| return 0; |
| } |
| |
| static void hardware_disable_nolock(void *junk) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) |
| return; |
| cpumask_clear_cpu(cpu, cpus_hardware_enabled); |
| kvm_arch_hardware_disable(); |
| } |
| |
| static int kvm_dying_cpu(unsigned int cpu) |
| { |
| raw_spin_lock(&kvm_count_lock); |
| if (kvm_usage_count) |
| hardware_disable_nolock(NULL); |
| raw_spin_unlock(&kvm_count_lock); |
| return 0; |
| } |
| |
| static void hardware_disable_all_nolock(void) |
| { |
| BUG_ON(!kvm_usage_count); |
| |
| kvm_usage_count--; |
| if (!kvm_usage_count) |
| on_each_cpu(hardware_disable_nolock, NULL, 1); |
| } |
| |
| static void hardware_disable_all(void) |
| { |
| raw_spin_lock(&kvm_count_lock); |
| hardware_disable_all_nolock(); |
| raw_spin_unlock(&kvm_count_lock); |
| } |
| |
| static int hardware_enable_all(void) |
| { |
| int r = 0; |
| |
| raw_spin_lock(&kvm_count_lock); |
| |
| kvm_usage_count++; |
| if (kvm_usage_count == 1) { |
| atomic_set(&hardware_enable_failed, 0); |
| on_each_cpu(hardware_enable_nolock, NULL, 1); |
| |
| if (atomic_read(&hardware_enable_failed)) { |
| hardware_disable_all_nolock(); |
| r = -EBUSY; |
| } |
| } |
| |
| raw_spin_unlock(&kvm_count_lock); |
| |
| return r; |
| } |
| |
| static int kvm_reboot(struct notifier_block *notifier, unsigned long val, |
| void *v) |
| { |
| /* |
| * Some (well, at least mine) BIOSes hang on reboot if |
| * in vmx root mode. |
| * |
| * And Intel TXT required VMX off for all cpu when system shutdown. |
| */ |
| pr_info("kvm: exiting hardware virtualization\n"); |
| kvm_rebooting = true; |
| on_each_cpu(hardware_disable_nolock, NULL, 1); |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block kvm_reboot_notifier = { |
| .notifier_call = kvm_reboot, |
| .priority = 0, |
| }; |
| |
| static void kvm_io_bus_destroy(struct kvm_io_bus *bus) |
| { |
| int i; |
| |
| for (i = 0; i < bus->dev_count; i++) { |
| struct kvm_io_device *pos = bus->range[i].dev; |
| |
| kvm_iodevice_destructor(pos); |
| } |
| kfree(bus); |
| } |
| |
| static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, |
| const struct kvm_io_range *r2) |
| { |
| gpa_t addr1 = r1->addr; |
| gpa_t addr2 = r2->addr; |
| |
| if (addr1 < addr2) |
| return -1; |
| |
| /* If r2->len == 0, match the exact address. If r2->len != 0, |
| * accept any overlapping write. Any order is acceptable for |
| * overlapping ranges, because kvm_io_bus_get_first_dev ensures |
| * we process all of them. |
| */ |
| if (r2->len) { |
| addr1 += r1->len; |
| addr2 += r2->len; |
| } |
| |
| if (addr1 > addr2) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) |
| { |
| return kvm_io_bus_cmp(p1, p2); |
| } |
| |
| static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, |
| gpa_t addr, int len) |
| { |
| bus->range[bus->dev_count++] = (struct kvm_io_range) { |
| .addr = addr, |
| .len = len, |
| .dev = dev, |
| }; |
| |
| sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), |
| kvm_io_bus_sort_cmp, NULL); |
| |
| return 0; |
| } |
| |
| static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, |
| gpa_t addr, int len) |
| { |
| struct kvm_io_range *range, key; |
| int off; |
| |
| key = (struct kvm_io_range) { |
| .addr = addr, |
| .len = len, |
| }; |
| |
| range = bsearch(&key, bus->range, bus->dev_count, |
| sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); |
| if (range == NULL) |
| return -ENOENT; |
| |
| off = range - bus->range; |
| |
| while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) |
| off--; |
| |
| return off; |
| } |
| |
| static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, |
| struct kvm_io_range *range, const void *val) |
| { |
| int idx; |
| |
| idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); |
| if (idx < 0) |
| return -EOPNOTSUPP; |
| |
| while (idx < bus->dev_count && |
| kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { |
| if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, |
| range->len, val)) |
| return idx; |
| idx++; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| /* kvm_io_bus_write - called under kvm->slots_lock */ |
| int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, |
| int len, const void *val) |
| { |
| struct kvm_io_bus *bus; |
| struct kvm_io_range range; |
| int r; |
| |
| range = (struct kvm_io_range) { |
| .addr = addr, |
| .len = len, |
| }; |
| |
| bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); |
| if (!bus) |
| return -ENOMEM; |
| r = __kvm_io_bus_write(vcpu, bus, &range, val); |
| return r < 0 ? r : 0; |
| } |
| |
| /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ |
| int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, |
| gpa_t addr, int len, const void *val, long cookie) |
| { |
| struct kvm_io_bus *bus; |
| struct kvm_io_range range; |
| |
| range = (struct kvm_io_range) { |
| .addr = addr, |
| .len = len, |
| }; |
| |
| bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); |
| if (!bus) |
| return -ENOMEM; |
| |
| /* First try the device referenced by cookie. */ |
| if ((cookie >= 0) && (cookie < bus->dev_count) && |
| (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) |
| if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, |
| val)) |
| return cookie; |
| |
| /* |
| * cookie contained garbage; fall back to search and return the |
| * correct cookie value. |
| */ |
| return __kvm_io_bus_write(vcpu, bus, &range, val); |
| } |
| |
| static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, |
| struct kvm_io_range *range, void *val) |
| { |
| int idx; |
| |
| idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); |
| if (idx < 0) |
| return -EOPNOTSUPP; |
| |
| while (idx < bus->dev_count && |
| kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { |
| if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, |
| range->len, val)) |
| return idx; |
| idx++; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL_GPL(kvm_io_bus_write); |
| |
| /* kvm_io_bus_read - called under kvm->slots_lock */ |
| int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, |
| int len, void *val) |
| { |
| struct kvm_io_bus *bus; |
| struct kvm_io_range range; |
| int r; |
| |
| range = (struct kvm_io_range) { |
| .addr = addr, |
| .len = len, |
| }; |
| |
| bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); |
| if (!bus) |
| return -ENOMEM; |
| r = __kvm_io_bus_read(vcpu, bus, &range, val); |
| return r < 0 ? r : 0; |
| } |
| |
| |
| /* Caller must hold slots_lock. */ |
| int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
| int len, struct kvm_io_device *dev) |
| { |
| struct kvm_io_bus *new_bus, *bus; |
| |
| bus = kvm->buses[bus_idx]; |
| if (!bus) |
| return -ENOMEM; |
| |
| /* exclude ioeventfd which is limited by maximum fd */ |
| if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) |
| return -ENOSPC; |
| |
| new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * |
| sizeof(struct kvm_io_range)), GFP_KERNEL); |
| if (!new_bus) |
| return -ENOMEM; |
| memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * |
| sizeof(struct kvm_io_range))); |
| kvm_io_bus_insert_dev(new_bus, dev, addr, len); |
| rcu_assign_pointer(kvm->buses[bus_idx], new_bus); |
| synchronize_srcu_expedited(&kvm->srcu); |
| kfree(bus); |
| |
| return 0; |
| } |
| |
| /* Caller must hold slots_lock. */ |
| void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
| struct kvm_io_device *dev) |
| { |
| int i; |
| struct kvm_io_bus *new_bus, *bus; |
| |
| bus = kvm->buses[bus_idx]; |
| if (!bus) |
| return; |
| |
| for (i = 0; i < bus->dev_count; i++) |
| if (bus->range[i].dev == dev) { |
| break; |
| } |
| |
| if (i == bus->dev_count) |
| return; |
| |
| new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * |
| sizeof(struct kvm_io_range)), GFP_KERNEL); |
| if (!new_bus) { |
| pr_err("kvm: failed to shrink bus, removing it completely\n"); |
| goto broken; |
| } |
| |
| memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); |
| new_bus->dev_count--; |
| memcpy(new_bus->range + i, bus->range + i + 1, |
| (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); |
| |
| broken: |
| rcu_assign_pointer(kvm->buses[bus_idx], new_bus); |
| synchronize_srcu_expedited(&kvm->srcu); |
| kfree(bus); |
| return; |
| } |
| |
| struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
| gpa_t addr) |
| { |
| struct kvm_io_bus *bus; |
| int dev_idx, srcu_idx; |
| struct kvm_io_device *iodev = NULL; |
| |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| |
| bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); |
| if (!bus) |
| goto out_unlock; |
| |
| dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); |
| if (dev_idx < 0) |
| goto out_unlock; |
| |
| iodev = bus->range[dev_idx].dev; |
| |
| out_unlock: |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| return iodev; |
| } |
| EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); |
| |
| static int kvm_debugfs_open(struct inode *inode, struct file *file, |
| int (*get)(void *, u64 *), int (*set)(void *, u64), |
| const char *fmt) |
| { |
| struct kvm_stat_data *stat_data = (struct kvm_stat_data *) |
| inode->i_private; |
| |
| /* The debugfs files are a reference to the kvm struct which |
| * is still valid when kvm_destroy_vm is called. |
| * To avoid the race between open and the removal of the debugfs |
| * directory we test against the users count. |
| */ |
| if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) |
| return -ENOENT; |
| |
| if (simple_attr_open(inode, file, get, set, fmt)) { |
| kvm_put_kvm(stat_data->kvm); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_debugfs_release(struct inode *inode, struct file *file) |
| { |
| struct kvm_stat_data *stat_data = (struct kvm_stat_data *) |
| inode->i_private; |
| |
| simple_attr_release(inode, file); |
| kvm_put_kvm(stat_data->kvm); |
| |
| return 0; |
| } |
| |
| static int vm_stat_get_per_vm(void *data, u64 *val) |
| { |
| struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; |
| |
| *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); |
| |
| return 0; |
| } |
| |
| static int vm_stat_clear_per_vm(void *data, u64 val) |
| { |
| struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; |
| |
| if (val) |
| return -EINVAL; |
| |
| *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; |
| |
| return 0; |
| } |
| |
| static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) |
| { |
| __simple_attr_check_format("%llu\n", 0ull); |
| return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, |
| vm_stat_clear_per_vm, "%llu\n"); |
| } |
| |
| static const struct file_operations vm_stat_get_per_vm_fops = { |
| .owner = THIS_MODULE, |
| .open = vm_stat_get_per_vm_open, |
| .release = kvm_debugfs_release, |
| .read = simple_attr_read, |
| .write = simple_attr_write, |
| .llseek = generic_file_llseek, |
| }; |
| |
| static int vcpu_stat_get_per_vm(void *data, u64 *val) |
| { |
| int i; |
| struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; |
| struct kvm_vcpu *vcpu; |
| |
| *val = 0; |
| |
| kvm_for_each_vcpu(i, vcpu, stat_data->kvm) |
| *val += *(u64 *)((void *)vcpu + stat_data->offset); |
| |
| return 0; |
| } |
| |
| static int vcpu_stat_clear_per_vm(void *data, u64 val) |
| { |
| int i; |
| struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; |
| struct kvm_vcpu *vcpu; |
| |
| if (val) |
| return -EINVAL; |
| |
| kvm_for_each_vcpu(i, vcpu, stat_data->kvm) |
| *(u64 *)((void *)vcpu + stat_data->offset) = 0; |
| |
| return 0; |
| } |
| |
| static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) |
| { |
| __simple_attr_check_format("%llu\n", 0ull); |
| return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, |
| vcpu_stat_clear_per_vm, "%llu\n"); |
| } |
| |
| static const struct file_operations vcpu_stat_get_per_vm_fops = { |
| .owner = THIS_MODULE, |
| .open = vcpu_stat_get_per_vm_open, |
| .release = kvm_debugfs_release, |
| .read = simple_attr_read, |
| .write = simple_attr_write, |
| .llseek = generic_file_llseek, |
| }; |
| |
| static const struct file_operations *stat_fops_per_vm[] = { |
| [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, |
| [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, |
| }; |
| |
| static int vm_stat_get(void *_offset, u64 *val) |
| { |
| unsigned offset = (long)_offset; |
| struct kvm *kvm; |
| struct kvm_stat_data stat_tmp = {.offset = offset}; |
| u64 tmp_val; |
| |
| *val = 0; |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| stat_tmp.kvm = kvm; |
| vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); |
| *val += tmp_val; |
| } |
| spin_unlock(&kvm_lock); |
| return 0; |
| } |
| |
| static int vm_stat_clear(void *_offset, u64 val) |
| { |
| unsigned offset = (long)_offset; |
| struct kvm *kvm; |
| struct kvm_stat_data stat_tmp = {.offset = offset}; |
| |
| if (val) |
| return -EINVAL; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| stat_tmp.kvm = kvm; |
| vm_stat_clear_per_vm((void *)&stat_tmp, 0); |
| } |
| spin_unlock(&kvm_lock); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); |
| |
| static int vcpu_stat_get(void *_offset, u64 *val) |
| { |
| unsigned offset = (long)_offset; |
| struct kvm *kvm; |
| struct kvm_stat_data stat_tmp = {.offset = offset}; |
| u64 tmp_val; |
| |
| *val = 0; |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| stat_tmp.kvm = kvm; |
| vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); |
| *val += tmp_val; |
| } |
| spin_unlock(&kvm_lock); |
| return 0; |
| } |
| |
| static int vcpu_stat_clear(void *_offset, u64 val) |
| { |
| unsigned offset = (long)_offset; |
| struct kvm *kvm; |
| struct kvm_stat_data stat_tmp = {.offset = offset}; |
| |
| if (val) |
| return -EINVAL; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| stat_tmp.kvm = kvm; |
| vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); |
| } |
| spin_unlock(&kvm_lock); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, |
| "%llu\n"); |
| |
| static const struct file_operations *stat_fops[] = { |
| [KVM_STAT_VCPU] = &vcpu_stat_fops, |
| [KVM_STAT_VM] = &vm_stat_fops, |
| }; |
| |
| static int kvm_init_debug(void) |
| { |
| int r = -EEXIST; |
| struct kvm_stats_debugfs_item *p; |
| |
| kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); |
| if (kvm_debugfs_dir == NULL) |
| goto out; |
| |
| kvm_debugfs_num_entries = 0; |
| for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { |
| if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, |
| (void *)(long)p->offset, |
| stat_fops[p->kind])) |
| goto out_dir; |
| } |
| |
| return 0; |
| |
| out_dir: |
| debugfs_remove_recursive(kvm_debugfs_dir); |
| out: |
| return r; |
| } |
| |
| static int kvm_suspend(void) |
| { |
| if (kvm_usage_count) |
| hardware_disable_nolock(NULL); |
| return 0; |
| } |
| |
| static void kvm_resume(void) |
| { |
| if (kvm_usage_count) { |
| WARN_ON(raw_spin_is_locked(&kvm_count_lock)); |
| hardware_enable_nolock(NULL); |
| } |
| } |
| |
| static struct syscore_ops kvm_syscore_ops = { |
| .suspend = kvm_suspend, |
| .resume = kvm_resume, |
| }; |
| |
| static inline |
| struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) |
| { |
| return container_of(pn, struct kvm_vcpu, preempt_notifier); |
| } |
| |
| static void kvm_sched_in(struct preempt_notifier *pn, int cpu) |
| { |
| struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
| |
| if (vcpu->preempted) |
| vcpu->preempted = false; |
| |
| kvm_arch_sched_in(vcpu, cpu); |
| |
| kvm_arch_vcpu_load(vcpu, cpu); |
| } |
| |
| static void kvm_sched_out(struct preempt_notifier *pn, |
| struct task_struct *next) |
| { |
| struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
| |
| if (current->state == TASK_RUNNING) |
| vcpu->preempted = true; |
| kvm_arch_vcpu_put(vcpu); |
| } |
| |
| int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, |
| struct module *module) |
| { |
| int r; |
| int cpu; |
| |
| r = kvm_arch_init(opaque); |
| if (r) |
| goto out_fail; |
| |
| /* |
| * kvm_arch_init makes sure there's at most one caller |
| * for architectures that support multiple implementations, |
| * like intel and amd on x86. |
| * kvm_arch_init must be called before kvm_irqfd_init to avoid creating |
| * conflicts in case kvm is already setup for another implementation. |
| */ |
| r = kvm_irqfd_init(); |
| if (r) |
| goto out_irqfd; |
| |
| if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { |
| r = -ENOMEM; |
| goto out_free_0; |
| } |
| |
| r = kvm_arch_hardware_setup(); |
| if (r < 0) |
| goto out_free_0a; |
| |
| for_each_online_cpu(cpu) { |
| smp_call_function_single(cpu, |
| kvm_arch_check_processor_compat, |
| &r, 1); |
| if (r < 0) |
| goto out_free_1; |
| } |
| |
| r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", |
| kvm_starting_cpu, kvm_dying_cpu); |
| if (r) |
| goto out_free_2; |
| register_reboot_notifier(&kvm_reboot_notifier); |
| |
| /* A kmem cache lets us meet the alignment requirements of fx_save. */ |
| if (!vcpu_align) |
| vcpu_align = __alignof__(struct kvm_vcpu); |
| kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, |
| 0, NULL); |
| if (!kvm_vcpu_cache) { |
| r = -ENOMEM; |
| goto out_free_3; |
| } |
| |
| r = kvm_async_pf_init(); |
| if (r) |
| goto out_free; |
| |
| kvm_chardev_ops.owner = module; |
| kvm_vm_fops.owner = module; |
| kvm_vcpu_fops.owner = module; |
| |
| r = misc_register(&kvm_dev); |
| if (r) { |
| pr_err("kvm: misc device register failed\n"); |
| goto out_unreg; |
| } |
| |
| register_syscore_ops(&kvm_syscore_ops); |
| |
| kvm_preempt_ops.sched_in = kvm_sched_in; |
| kvm_preempt_ops.sched_out = kvm_sched_out; |
| |
| r = kvm_init_debug(); |
| if (r) { |
| pr_err("kvm: create debugfs files failed\n"); |
| goto out_undebugfs; |
| } |
| |
| r = kvm_vfio_ops_init(); |
| WARN_ON(r); |
| |
| return 0; |
| |
| out_undebugfs: |
| unregister_syscore_ops(&kvm_syscore_ops); |
| misc_deregister(&kvm_dev); |
| out_unreg: |
| kvm_async_pf_deinit(); |
| out_free: |
| kmem_cache_destroy(kvm_vcpu_cache); |
| out_free_3: |
| unregister_reboot_notifier(&kvm_reboot_notifier); |
| cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); |
| out_free_2: |
| out_free_1: |
| kvm_arch_hardware_unsetup(); |
| out_free_0a: |
| free_cpumask_var(cpus_hardware_enabled); |
| out_free_0: |
| kvm_irqfd_exit(); |
| out_irqfd: |
| kvm_arch_exit(); |
| out_fail: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_init); |
| |
| void kvm_exit(void) |
| { |
| debugfs_remove_recursive(kvm_debugfs_dir); |
| misc_deregister(&kvm_dev); |
| kmem_cache_destroy(kvm_vcpu_cache); |
| kvm_async_pf_deinit(); |
| unregister_syscore_ops(&kvm_syscore_ops); |
| unregister_reboot_notifier(&kvm_reboot_notifier); |
| cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); |
| on_each_cpu(hardware_disable_nolock, NULL, 1); |
| kvm_arch_hardware_unsetup(); |
| kvm_arch_exit(); |
| kvm_irqfd_exit(); |
| free_cpumask_var(cpus_hardware_enabled); |
| kvm_vfio_ops_exit(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_exit); |