| /* |
| * arch/microblaze/mm/fault.c |
| * |
| * Copyright (C) 2007 Xilinx, Inc. All rights reserved. |
| * |
| * Derived from "arch/ppc/mm/fault.c" |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Derived from "arch/i386/mm/fault.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Modified by Cort Dougan and Paul Mackerras. |
| * |
| * This file is subject to the terms and conditions of the GNU General |
| * Public License. See the file COPYING in the main directory of this |
| * archive for more details. |
| * |
| */ |
| |
| #include <linux/extable.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/perf_event.h> |
| |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <linux/mmu_context.h> |
| #include <linux/uaccess.h> |
| #include <asm/exceptions.h> |
| |
| static unsigned long pte_misses; /* updated by do_page_fault() */ |
| static unsigned long pte_errors; /* updated by do_page_fault() */ |
| |
| /* |
| * Check whether the instruction at regs->pc is a store using |
| * an update addressing form which will update r1. |
| */ |
| static int store_updates_sp(struct pt_regs *regs) |
| { |
| unsigned int inst; |
| |
| if (get_user(inst, (unsigned int __user *)regs->pc)) |
| return 0; |
| /* check for 1 in the rD field */ |
| if (((inst >> 21) & 0x1f) != 1) |
| return 0; |
| /* check for store opcodes */ |
| if ((inst & 0xd0000000) == 0xd0000000) |
| return 1; |
| return 0; |
| } |
| |
| |
| /* |
| * bad_page_fault is called when we have a bad access from the kernel. |
| * It is called from do_page_fault above and from some of the procedures |
| * in traps.c. |
| */ |
| void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) |
| { |
| const struct exception_table_entry *fixup; |
| /* MS: no context */ |
| /* Are we prepared to handle this fault? */ |
| fixup = search_exception_tables(regs->pc); |
| if (fixup) { |
| regs->pc = fixup->fixup; |
| return; |
| } |
| |
| /* kernel has accessed a bad area */ |
| die("kernel access of bad area", regs, sig); |
| } |
| |
| /* |
| * The error_code parameter is ESR for a data fault, |
| * 0 for an instruction fault. |
| */ |
| void do_page_fault(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code) |
| { |
| struct vm_area_struct *vma; |
| struct mm_struct *mm = current->mm; |
| int code = SEGV_MAPERR; |
| int is_write = error_code & ESR_S; |
| vm_fault_t fault; |
| unsigned int flags = FAULT_FLAG_DEFAULT; |
| |
| regs->ear = address; |
| regs->esr = error_code; |
| |
| /* On a kernel SLB miss we can only check for a valid exception entry */ |
| if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) { |
| pr_warn("kernel task_size exceed"); |
| _exception(SIGSEGV, regs, code, address); |
| } |
| |
| /* for instr TLB miss and instr storage exception ESR_S is undefined */ |
| if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11) |
| is_write = 0; |
| |
| if (unlikely(faulthandler_disabled() || !mm)) { |
| if (kernel_mode(regs)) |
| goto bad_area_nosemaphore; |
| |
| /* faulthandler_disabled() in user mode is really bad, |
| as is current->mm == NULL. */ |
| pr_emerg("Page fault in user mode with faulthandler_disabled(), mm = %p\n", |
| mm); |
| pr_emerg("r15 = %lx MSR = %lx\n", |
| regs->r15, regs->msr); |
| die("Weird page fault", regs, SIGSEGV); |
| } |
| |
| if (user_mode(regs)) |
| flags |= FAULT_FLAG_USER; |
| |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); |
| |
| /* When running in the kernel we expect faults to occur only to |
| * addresses in user space. All other faults represent errors in the |
| * kernel and should generate an OOPS. Unfortunately, in the case of an |
| * erroneous fault occurring in a code path which already holds mmap_lock |
| * we will deadlock attempting to validate the fault against the |
| * address space. Luckily the kernel only validly references user |
| * space from well defined areas of code, which are listed in the |
| * exceptions table. |
| * |
| * As the vast majority of faults will be valid we will only perform |
| * the source reference check when there is a possibility of a deadlock. |
| * Attempt to lock the address space, if we cannot we then validate the |
| * source. If this is invalid we can skip the address space check, |
| * thus avoiding the deadlock. |
| */ |
| if (unlikely(!mmap_read_trylock(mm))) { |
| if (kernel_mode(regs) && !search_exception_tables(regs->pc)) |
| goto bad_area_nosemaphore; |
| |
| retry: |
| mmap_read_lock(mm); |
| } |
| |
| vma = find_vma(mm, address); |
| if (unlikely(!vma)) |
| goto bad_area; |
| |
| if (vma->vm_start <= address) |
| goto good_area; |
| |
| if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) |
| goto bad_area; |
| |
| if (unlikely(!is_write)) |
| goto bad_area; |
| |
| /* |
| * N.B. The ABI allows programs to access up to |
| * a few hundred bytes below the stack pointer (TBD). |
| * The kernel signal delivery code writes up to about 1.5kB |
| * below the stack pointer (r1) before decrementing it. |
| * The exec code can write slightly over 640kB to the stack |
| * before setting the user r1. Thus we allow the stack to |
| * expand to 1MB without further checks. |
| */ |
| if (unlikely(address + 0x100000 < vma->vm_end)) { |
| |
| /* get user regs even if this fault is in kernel mode */ |
| struct pt_regs *uregs = current->thread.regs; |
| if (uregs == NULL) |
| goto bad_area; |
| |
| /* |
| * A user-mode access to an address a long way below |
| * the stack pointer is only valid if the instruction |
| * is one which would update the stack pointer to the |
| * address accessed if the instruction completed, |
| * i.e. either stwu rs,n(r1) or stwux rs,r1,rb |
| * (or the byte, halfword, float or double forms). |
| * |
| * If we don't check this then any write to the area |
| * between the last mapped region and the stack will |
| * expand the stack rather than segfaulting. |
| */ |
| if (address + 2048 < uregs->r1 |
| && (kernel_mode(regs) || !store_updates_sp(regs))) |
| goto bad_area; |
| } |
| if (expand_stack(vma, address)) |
| goto bad_area; |
| |
| good_area: |
| code = SEGV_ACCERR; |
| |
| /* a write */ |
| if (unlikely(is_write)) { |
| if (unlikely(!(vma->vm_flags & VM_WRITE))) |
| goto bad_area; |
| flags |= FAULT_FLAG_WRITE; |
| /* a read */ |
| } else { |
| /* protection fault */ |
| if (unlikely(error_code & 0x08000000)) |
| goto bad_area; |
| if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC)))) |
| goto bad_area; |
| } |
| |
| /* |
| * If for any reason at all we couldn't handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| fault = handle_mm_fault(vma, address, flags, regs); |
| |
| if (fault_signal_pending(fault, regs)) { |
| if (!user_mode(regs)) |
| bad_page_fault(regs, address, SIGBUS); |
| return; |
| } |
| |
| /* The fault is fully completed (including releasing mmap lock) */ |
| if (fault & VM_FAULT_COMPLETED) |
| return; |
| |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| if (fault & VM_FAULT_OOM) |
| goto out_of_memory; |
| else if (fault & VM_FAULT_SIGSEGV) |
| goto bad_area; |
| else if (fault & VM_FAULT_SIGBUS) |
| goto do_sigbus; |
| BUG(); |
| } |
| |
| if (fault & VM_FAULT_RETRY) { |
| flags |= FAULT_FLAG_TRIED; |
| |
| /* |
| * No need to mmap_read_unlock(mm) as we would |
| * have already released it in __lock_page_or_retry |
| * in mm/filemap.c. |
| */ |
| |
| goto retry; |
| } |
| |
| mmap_read_unlock(mm); |
| |
| /* |
| * keep track of tlb+htab misses that are good addrs but |
| * just need pte's created via handle_mm_fault() |
| * -- Cort |
| */ |
| pte_misses++; |
| return; |
| |
| bad_area: |
| mmap_read_unlock(mm); |
| |
| bad_area_nosemaphore: |
| pte_errors++; |
| |
| /* User mode accesses cause a SIGSEGV */ |
| if (user_mode(regs)) { |
| _exception(SIGSEGV, regs, code, address); |
| return; |
| } |
| |
| bad_page_fault(regs, address, SIGSEGV); |
| return; |
| |
| /* |
| * We ran out of memory, or some other thing happened to us that made |
| * us unable to handle the page fault gracefully. |
| */ |
| out_of_memory: |
| mmap_read_unlock(mm); |
| if (!user_mode(regs)) |
| bad_page_fault(regs, address, SIGKILL); |
| else |
| pagefault_out_of_memory(); |
| return; |
| |
| do_sigbus: |
| mmap_read_unlock(mm); |
| if (user_mode(regs)) { |
| force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); |
| return; |
| } |
| bad_page_fault(regs, address, SIGBUS); |
| } |