| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/kvm_host.h> |
| #include <linux/types.h> |
| #include <linux/jump_label.h> |
| #include <uapi/linux/psci.h> |
| |
| #include <kvm/arm_psci.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/kprobes.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/fpsimd.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/processor.h> |
| #include <asm/thread_info.h> |
| |
| /* Check whether the FP regs were dirtied while in the host-side run loop: */ |
| static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * When the system doesn't support FP/SIMD, we cannot rely on |
| * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an |
| * abort on the very first access to FP and thus we should never |
| * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always |
| * trap the accesses. |
| */ |
| if (!system_supports_fpsimd() || |
| vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE) |
| vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | |
| KVM_ARM64_FP_HOST); |
| |
| return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED); |
| } |
| |
| /* Save the 32-bit only FPSIMD system register state */ |
| static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu_el1_is_32bit(vcpu)) |
| return; |
| |
| vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2); |
| } |
| |
| static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * We are about to set CPTR_EL2.TFP to trap all floating point |
| * register accesses to EL2, however, the ARM ARM clearly states that |
| * traps are only taken to EL2 if the operation would not otherwise |
| * trap to EL1. Therefore, always make sure that for 32-bit guests, |
| * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. |
| * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to |
| * it will cause an exception. |
| */ |
| if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { |
| write_sysreg(1 << 30, fpexc32_el2); |
| isb(); |
| } |
| } |
| |
| static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu) |
| { |
| /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ |
| write_sysreg(1 << 15, hstr_el2); |
| |
| /* |
| * Make sure we trap PMU access from EL0 to EL2. Also sanitize |
| * PMSELR_EL0 to make sure it never contains the cycle |
| * counter, which could make a PMXEVCNTR_EL0 access UNDEF at |
| * EL1 instead of being trapped to EL2. |
| */ |
| write_sysreg(0, pmselr_el0); |
| write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); |
| write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); |
| } |
| |
| static void __hyp_text __deactivate_traps_common(void) |
| { |
| write_sysreg(0, hstr_el2); |
| write_sysreg(0, pmuserenr_el0); |
| } |
| |
| static void activate_traps_vhe(struct kvm_vcpu *vcpu) |
| { |
| u64 val; |
| |
| val = read_sysreg(cpacr_el1); |
| val |= CPACR_EL1_TTA; |
| val &= ~CPACR_EL1_ZEN; |
| |
| /* |
| * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to |
| * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2, |
| * except for some missing controls, such as TAM. |
| * In this case, CPTR_EL2.TAM has the same position with or without |
| * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM |
| * shift value for trapping the AMU accesses. |
| */ |
| |
| val |= CPTR_EL2_TAM; |
| |
| if (update_fp_enabled(vcpu)) { |
| if (vcpu_has_sve(vcpu)) |
| val |= CPACR_EL1_ZEN; |
| } else { |
| val &= ~CPACR_EL1_FPEN; |
| __activate_traps_fpsimd32(vcpu); |
| } |
| |
| write_sysreg(val, cpacr_el1); |
| |
| write_sysreg(kvm_get_hyp_vector(), vbar_el1); |
| } |
| NOKPROBE_SYMBOL(activate_traps_vhe); |
| |
| static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu) |
| { |
| u64 val; |
| |
| __activate_traps_common(vcpu); |
| |
| val = CPTR_EL2_DEFAULT; |
| val |= CPTR_EL2_TTA | CPTR_EL2_TZ | CPTR_EL2_TAM; |
| if (!update_fp_enabled(vcpu)) { |
| val |= CPTR_EL2_TFP; |
| __activate_traps_fpsimd32(vcpu); |
| } |
| |
| write_sysreg(val, cptr_el2); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; |
| |
| isb(); |
| /* |
| * At this stage, and thanks to the above isb(), S2 is |
| * configured and enabled. We can now restore the guest's S1 |
| * configuration: SCTLR, and only then TCR. |
| */ |
| write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR); |
| isb(); |
| write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR); |
| } |
| } |
| |
| static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu) |
| { |
| u64 hcr = vcpu->arch.hcr_el2; |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) |
| hcr |= HCR_TVM; |
| |
| write_sysreg(hcr, hcr_el2); |
| |
| if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) |
| write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); |
| |
| if (has_vhe()) |
| activate_traps_vhe(vcpu); |
| else |
| __activate_traps_nvhe(vcpu); |
| } |
| |
| static void deactivate_traps_vhe(void) |
| { |
| extern char vectors[]; /* kernel exception vectors */ |
| write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); |
| |
| /* |
| * ARM errata 1165522 and 1530923 require the actual execution of the |
| * above before we can switch to the EL2/EL0 translation regime used by |
| * the host. |
| */ |
| asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); |
| |
| write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1); |
| write_sysreg(vectors, vbar_el1); |
| } |
| NOKPROBE_SYMBOL(deactivate_traps_vhe); |
| |
| static void __hyp_text __deactivate_traps_nvhe(void) |
| { |
| u64 mdcr_el2 = read_sysreg(mdcr_el2); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| u64 val; |
| |
| /* |
| * Set the TCR and SCTLR registers in the exact opposite |
| * sequence as __activate_traps_nvhe (first prevent walks, |
| * then force the MMU on). A generous sprinkling of isb() |
| * ensure that things happen in this exact order. |
| */ |
| val = read_sysreg_el1(SYS_TCR); |
| write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); |
| isb(); |
| val = read_sysreg_el1(SYS_SCTLR); |
| write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); |
| isb(); |
| } |
| |
| __deactivate_traps_common(); |
| |
| mdcr_el2 &= MDCR_EL2_HPMN_MASK; |
| mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; |
| |
| write_sysreg(mdcr_el2, mdcr_el2); |
| write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2); |
| write_sysreg(CPTR_EL2_DEFAULT, cptr_el2); |
| } |
| |
| static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * If we pended a virtual abort, preserve it until it gets |
| * cleared. See D1.14.3 (Virtual Interrupts) for details, but |
| * the crucial bit is "On taking a vSError interrupt, |
| * HCR_EL2.VSE is cleared to 0." |
| */ |
| if (vcpu->arch.hcr_el2 & HCR_VSE) { |
| vcpu->arch.hcr_el2 &= ~HCR_VSE; |
| vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; |
| } |
| |
| if (has_vhe()) |
| deactivate_traps_vhe(); |
| else |
| __deactivate_traps_nvhe(); |
| } |
| |
| void activate_traps_vhe_load(struct kvm_vcpu *vcpu) |
| { |
| __activate_traps_common(vcpu); |
| } |
| |
| void deactivate_traps_vhe_put(void) |
| { |
| u64 mdcr_el2 = read_sysreg(mdcr_el2); |
| |
| mdcr_el2 &= MDCR_EL2_HPMN_MASK | |
| MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT | |
| MDCR_EL2_TPMS; |
| |
| write_sysreg(mdcr_el2, mdcr_el2); |
| |
| __deactivate_traps_common(); |
| } |
| |
| static void __hyp_text __activate_vm(struct kvm *kvm) |
| { |
| __load_guest_stage2(kvm); |
| } |
| |
| static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu) |
| { |
| write_sysreg(0, vttbr_el2); |
| } |
| |
| /* Save VGICv3 state on non-VHE systems */ |
| static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); |
| __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| /* Restore VGICv3 state on non_VEH systems */ |
| static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); |
| __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar) |
| { |
| u64 par, tmp; |
| |
| /* |
| * Resolve the IPA the hard way using the guest VA. |
| * |
| * Stage-1 translation already validated the memory access |
| * rights. As such, we can use the EL1 translation regime, and |
| * don't have to distinguish between EL0 and EL1 access. |
| * |
| * We do need to save/restore PAR_EL1 though, as we haven't |
| * saved the guest context yet, and we may return early... |
| */ |
| par = read_sysreg(par_el1); |
| asm volatile("at s1e1r, %0" : : "r" (far)); |
| isb(); |
| |
| tmp = read_sysreg(par_el1); |
| write_sysreg(par, par_el1); |
| |
| if (unlikely(tmp & SYS_PAR_EL1_F)) |
| return false; /* Translation failed, back to guest */ |
| |
| /* Convert PAR to HPFAR format */ |
| *hpfar = PAR_TO_HPFAR(tmp); |
| return true; |
| } |
| |
| static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu) |
| { |
| u8 ec; |
| u64 esr; |
| u64 hpfar, far; |
| |
| esr = vcpu->arch.fault.esr_el2; |
| ec = ESR_ELx_EC(esr); |
| |
| if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW) |
| return true; |
| |
| far = read_sysreg_el2(SYS_FAR); |
| |
| /* |
| * The HPFAR can be invalid if the stage 2 fault did not |
| * happen during a stage 1 page table walk (the ESR_EL2.S1PTW |
| * bit is clear) and one of the two following cases are true: |
| * 1. The fault was due to a permission fault |
| * 2. The processor carries errata 834220 |
| * |
| * Therefore, for all non S1PTW faults where we either have a |
| * permission fault or the errata workaround is enabled, we |
| * resolve the IPA using the AT instruction. |
| */ |
| if (!(esr & ESR_ELx_S1PTW) && |
| (cpus_have_final_cap(ARM64_WORKAROUND_834220) || |
| (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) { |
| if (!__translate_far_to_hpfar(far, &hpfar)) |
| return false; |
| } else { |
| hpfar = read_sysreg(hpfar_el2); |
| } |
| |
| vcpu->arch.fault.far_el2 = far; |
| vcpu->arch.fault.hpfar_el2 = hpfar; |
| return true; |
| } |
| |
| /* Check for an FPSIMD/SVE trap and handle as appropriate */ |
| static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu) |
| { |
| bool vhe, sve_guest, sve_host; |
| u8 hsr_ec; |
| |
| if (!system_supports_fpsimd()) |
| return false; |
| |
| if (system_supports_sve()) { |
| sve_guest = vcpu_has_sve(vcpu); |
| sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE; |
| vhe = true; |
| } else { |
| sve_guest = false; |
| sve_host = false; |
| vhe = has_vhe(); |
| } |
| |
| hsr_ec = kvm_vcpu_trap_get_class(vcpu); |
| if (hsr_ec != ESR_ELx_EC_FP_ASIMD && |
| hsr_ec != ESR_ELx_EC_SVE) |
| return false; |
| |
| /* Don't handle SVE traps for non-SVE vcpus here: */ |
| if (!sve_guest) |
| if (hsr_ec != ESR_ELx_EC_FP_ASIMD) |
| return false; |
| |
| /* Valid trap. Switch the context: */ |
| |
| if (vhe) { |
| u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN; |
| |
| if (sve_guest) |
| reg |= CPACR_EL1_ZEN; |
| |
| write_sysreg(reg, cpacr_el1); |
| } else { |
| write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP, |
| cptr_el2); |
| } |
| |
| isb(); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_HOST) { |
| /* |
| * In the SVE case, VHE is assumed: it is enforced by |
| * Kconfig and kvm_arch_init(). |
| */ |
| if (sve_host) { |
| struct thread_struct *thread = container_of( |
| vcpu->arch.host_fpsimd_state, |
| struct thread_struct, uw.fpsimd_state); |
| |
| sve_save_state(sve_pffr(thread), |
| &vcpu->arch.host_fpsimd_state->fpsr); |
| } else { |
| __fpsimd_save_state(vcpu->arch.host_fpsimd_state); |
| } |
| |
| vcpu->arch.flags &= ~KVM_ARM64_FP_HOST; |
| } |
| |
| if (sve_guest) { |
| sve_load_state(vcpu_sve_pffr(vcpu), |
| &vcpu->arch.ctxt.gp_regs.fp_regs.fpsr, |
| sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1); |
| write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12); |
| } else { |
| __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs); |
| } |
| |
| /* Skip restoring fpexc32 for AArch64 guests */ |
| if (!(read_sysreg(hcr_el2) & HCR_RW)) |
| write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2], |
| fpexc32_el2); |
| |
| vcpu->arch.flags |= KVM_ARM64_FP_ENABLED; |
| |
| return true; |
| } |
| |
| static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu) |
| { |
| u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_hsr(vcpu)); |
| int rt = kvm_vcpu_sys_get_rt(vcpu); |
| u64 val = vcpu_get_reg(vcpu, rt); |
| |
| /* |
| * The normal sysreg handling code expects to see the traps, |
| * let's not do anything here. |
| */ |
| if (vcpu->arch.hcr_el2 & HCR_TVM) |
| return false; |
| |
| switch (sysreg) { |
| case SYS_SCTLR_EL1: |
| write_sysreg_el1(val, SYS_SCTLR); |
| break; |
| case SYS_TTBR0_EL1: |
| write_sysreg_el1(val, SYS_TTBR0); |
| break; |
| case SYS_TTBR1_EL1: |
| write_sysreg_el1(val, SYS_TTBR1); |
| break; |
| case SYS_TCR_EL1: |
| write_sysreg_el1(val, SYS_TCR); |
| break; |
| case SYS_ESR_EL1: |
| write_sysreg_el1(val, SYS_ESR); |
| break; |
| case SYS_FAR_EL1: |
| write_sysreg_el1(val, SYS_FAR); |
| break; |
| case SYS_AFSR0_EL1: |
| write_sysreg_el1(val, SYS_AFSR0); |
| break; |
| case SYS_AFSR1_EL1: |
| write_sysreg_el1(val, SYS_AFSR1); |
| break; |
| case SYS_MAIR_EL1: |
| write_sysreg_el1(val, SYS_MAIR); |
| break; |
| case SYS_AMAIR_EL1: |
| write_sysreg_el1(val, SYS_AMAIR); |
| break; |
| case SYS_CONTEXTIDR_EL1: |
| write_sysreg_el1(val, SYS_CONTEXTIDR); |
| break; |
| default: |
| return false; |
| } |
| |
| __kvm_skip_instr(vcpu); |
| return true; |
| } |
| |
| static bool __hyp_text esr_is_ptrauth_trap(u32 esr) |
| { |
| u32 ec = ESR_ELx_EC(esr); |
| |
| if (ec == ESR_ELx_EC_PAC) |
| return true; |
| |
| if (ec != ESR_ELx_EC_SYS64) |
| return false; |
| |
| switch (esr_sys64_to_sysreg(esr)) { |
| case SYS_APIAKEYLO_EL1: |
| case SYS_APIAKEYHI_EL1: |
| case SYS_APIBKEYLO_EL1: |
| case SYS_APIBKEYHI_EL1: |
| case SYS_APDAKEYLO_EL1: |
| case SYS_APDAKEYHI_EL1: |
| case SYS_APDBKEYLO_EL1: |
| case SYS_APDBKEYHI_EL1: |
| case SYS_APGAKEYLO_EL1: |
| case SYS_APGAKEYHI_EL1: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #define __ptrauth_save_key(regs, key) \ |
| ({ \ |
| regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ |
| regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ |
| }) |
| |
| static bool __hyp_text __hyp_handle_ptrauth(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *ctxt; |
| u64 val; |
| |
| if (!vcpu_has_ptrauth(vcpu) || |
| !esr_is_ptrauth_trap(kvm_vcpu_get_hsr(vcpu))) |
| return false; |
| |
| ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt; |
| __ptrauth_save_key(ctxt->sys_regs, APIA); |
| __ptrauth_save_key(ctxt->sys_regs, APIB); |
| __ptrauth_save_key(ctxt->sys_regs, APDA); |
| __ptrauth_save_key(ctxt->sys_regs, APDB); |
| __ptrauth_save_key(ctxt->sys_regs, APGA); |
| |
| vcpu_ptrauth_enable(vcpu); |
| |
| val = read_sysreg(hcr_el2); |
| val |= (HCR_API | HCR_APK); |
| write_sysreg(val, hcr_el2); |
| |
| return true; |
| } |
| |
| /* |
| * Return true when we were able to fixup the guest exit and should return to |
| * the guest, false when we should restore the host state and return to the |
| * main run loop. |
| */ |
| static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) |
| vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); |
| |
| /* |
| * We're using the raw exception code in order to only process |
| * the trap if no SError is pending. We will come back to the |
| * same PC once the SError has been injected, and replay the |
| * trapping instruction. |
| */ |
| if (*exit_code != ARM_EXCEPTION_TRAP) |
| goto exit; |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && |
| kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 && |
| handle_tx2_tvm(vcpu)) |
| return true; |
| |
| /* |
| * We trap the first access to the FP/SIMD to save the host context |
| * and restore the guest context lazily. |
| * If FP/SIMD is not implemented, handle the trap and inject an |
| * undefined instruction exception to the guest. |
| * Similarly for trapped SVE accesses. |
| */ |
| if (__hyp_handle_fpsimd(vcpu)) |
| return true; |
| |
| if (__hyp_handle_ptrauth(vcpu)) |
| return true; |
| |
| if (!__populate_fault_info(vcpu)) |
| return true; |
| |
| if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { |
| bool valid; |
| |
| valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW && |
| kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && |
| kvm_vcpu_dabt_isvalid(vcpu) && |
| !kvm_vcpu_dabt_isextabt(vcpu) && |
| !kvm_vcpu_dabt_iss1tw(vcpu); |
| |
| if (valid) { |
| int ret = __vgic_v2_perform_cpuif_access(vcpu); |
| |
| if (ret == 1) |
| return true; |
| |
| /* Promote an illegal access to an SError.*/ |
| if (ret == -1) |
| *exit_code = ARM_EXCEPTION_EL1_SERROR; |
| |
| goto exit; |
| } |
| } |
| |
| if (static_branch_unlikely(&vgic_v3_cpuif_trap) && |
| (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 || |
| kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) { |
| int ret = __vgic_v3_perform_cpuif_access(vcpu); |
| |
| if (ret == 1) |
| return true; |
| } |
| |
| exit: |
| /* Return to the host kernel and handle the exit */ |
| return false; |
| } |
| |
| static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu) |
| { |
| if (!cpus_have_final_cap(ARM64_SSBD)) |
| return false; |
| |
| return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG); |
| } |
| |
| static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_ARM64_SSBD |
| /* |
| * The host runs with the workaround always present. If the |
| * guest wants it disabled, so be it... |
| */ |
| if (__needs_ssbd_off(vcpu) && |
| __hyp_this_cpu_read(arm64_ssbd_callback_required)) |
| arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL); |
| #endif |
| } |
| |
| static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_ARM64_SSBD |
| /* |
| * If the guest has disabled the workaround, bring it back on. |
| */ |
| if (__needs_ssbd_off(vcpu) && |
| __hyp_this_cpu_read(arm64_ssbd_callback_required)) |
| arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL); |
| #endif |
| } |
| |
| /** |
| * Disable host events, enable guest events |
| */ |
| static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_host_data *host; |
| struct kvm_pmu_events *pmu; |
| |
| host = container_of(host_ctxt, struct kvm_host_data, host_ctxt); |
| pmu = &host->pmu_events; |
| |
| if (pmu->events_host) |
| write_sysreg(pmu->events_host, pmcntenclr_el0); |
| |
| if (pmu->events_guest) |
| write_sysreg(pmu->events_guest, pmcntenset_el0); |
| |
| return (pmu->events_host || pmu->events_guest); |
| } |
| |
| /** |
| * Disable guest events, enable host events |
| */ |
| static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_host_data *host; |
| struct kvm_pmu_events *pmu; |
| |
| host = container_of(host_ctxt, struct kvm_host_data, host_ctxt); |
| pmu = &host->pmu_events; |
| |
| if (pmu->events_guest) |
| write_sysreg(pmu->events_guest, pmcntenclr_el0); |
| |
| if (pmu->events_host) |
| write_sysreg(pmu->events_host, pmcntenset_el0); |
| } |
| |
| /* Switch to the guest for VHE systems running in EL2 */ |
| static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_cpu_context *guest_ctxt; |
| u64 exit_code; |
| |
| host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt; |
| host_ctxt->__hyp_running_vcpu = vcpu; |
| guest_ctxt = &vcpu->arch.ctxt; |
| |
| sysreg_save_host_state_vhe(host_ctxt); |
| |
| /* |
| * ARM erratum 1165522 requires us to configure both stage 1 and |
| * stage 2 translation for the guest context before we clear |
| * HCR_EL2.TGE. |
| * |
| * We have already configured the guest's stage 1 translation in |
| * kvm_vcpu_load_sysregs above. We must now call __activate_vm |
| * before __activate_traps, because __activate_vm configures |
| * stage 2 translation, and __activate_traps clear HCR_EL2.TGE |
| * (among other things). |
| */ |
| __activate_vm(vcpu->kvm); |
| __activate_traps(vcpu); |
| |
| sysreg_restore_guest_state_vhe(guest_ctxt); |
| __debug_switch_to_guest(vcpu); |
| |
| __set_guest_arch_workaround_state(vcpu); |
| |
| do { |
| /* Jump in the fire! */ |
| exit_code = __guest_enter(vcpu, host_ctxt); |
| |
| /* And we're baaack! */ |
| } while (fixup_guest_exit(vcpu, &exit_code)); |
| |
| __set_host_arch_workaround_state(vcpu); |
| |
| sysreg_save_guest_state_vhe(guest_ctxt); |
| |
| __deactivate_traps(vcpu); |
| |
| sysreg_restore_host_state_vhe(host_ctxt); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) |
| __fpsimd_save_fpexc32(vcpu); |
| |
| __debug_switch_to_host(vcpu); |
| |
| return exit_code; |
| } |
| NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe); |
| |
| int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| local_daif_mask(); |
| |
| /* |
| * Having IRQs masked via PMR when entering the guest means the GIC |
| * will not signal the CPU of interrupts of lower priority, and the |
| * only way to get out will be via guest exceptions. |
| * Naturally, we want to avoid this. |
| * |
| * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a |
| * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. |
| */ |
| pmr_sync(); |
| |
| ret = __kvm_vcpu_run_vhe(vcpu); |
| |
| /* |
| * local_daif_restore() takes care to properly restore PSTATE.DAIF |
| * and the GIC PMR if the host is using IRQ priorities. |
| */ |
| local_daif_restore(DAIF_PROCCTX_NOIRQ); |
| |
| /* |
| * When we exit from the guest we change a number of CPU configuration |
| * parameters, such as traps. Make sure these changes take effect |
| * before running the host or additional guests. |
| */ |
| isb(); |
| |
| return ret; |
| } |
| |
| /* Switch to the guest for legacy non-VHE systems */ |
| int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_cpu_context *guest_ctxt; |
| bool pmu_switch_needed; |
| u64 exit_code; |
| |
| /* |
| * Having IRQs masked via PMR when entering the guest means the GIC |
| * will not signal the CPU of interrupts of lower priority, and the |
| * only way to get out will be via guest exceptions. |
| * Naturally, we want to avoid this. |
| */ |
| if (system_uses_irq_prio_masking()) { |
| gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); |
| pmr_sync(); |
| } |
| |
| vcpu = kern_hyp_va(vcpu); |
| |
| host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt; |
| host_ctxt->__hyp_running_vcpu = vcpu; |
| guest_ctxt = &vcpu->arch.ctxt; |
| |
| pmu_switch_needed = __pmu_switch_to_guest(host_ctxt); |
| |
| __sysreg_save_state_nvhe(host_ctxt); |
| |
| /* |
| * We must restore the 32-bit state before the sysregs, thanks |
| * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). |
| * |
| * Also, and in order to be able to deal with erratum #1319537 (A57) |
| * and #1319367 (A72), we must ensure that all VM-related sysreg are |
| * restored before we enable S2 translation. |
| */ |
| __sysreg32_restore_state(vcpu); |
| __sysreg_restore_state_nvhe(guest_ctxt); |
| |
| __activate_vm(kern_hyp_va(vcpu->kvm)); |
| __activate_traps(vcpu); |
| |
| __hyp_vgic_restore_state(vcpu); |
| __timer_enable_traps(vcpu); |
| |
| __debug_switch_to_guest(vcpu); |
| |
| __set_guest_arch_workaround_state(vcpu); |
| |
| do { |
| /* Jump in the fire! */ |
| exit_code = __guest_enter(vcpu, host_ctxt); |
| |
| /* And we're baaack! */ |
| } while (fixup_guest_exit(vcpu, &exit_code)); |
| |
| __set_host_arch_workaround_state(vcpu); |
| |
| __sysreg_save_state_nvhe(guest_ctxt); |
| __sysreg32_save_state(vcpu); |
| __timer_disable_traps(vcpu); |
| __hyp_vgic_save_state(vcpu); |
| |
| __deactivate_traps(vcpu); |
| __deactivate_vm(vcpu); |
| |
| __sysreg_restore_state_nvhe(host_ctxt); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) |
| __fpsimd_save_fpexc32(vcpu); |
| |
| /* |
| * This must come after restoring the host sysregs, since a non-VHE |
| * system may enable SPE here and make use of the TTBRs. |
| */ |
| __debug_switch_to_host(vcpu); |
| |
| if (pmu_switch_needed) |
| __pmu_switch_to_host(host_ctxt); |
| |
| /* Returning to host will clear PSR.I, remask PMR if needed */ |
| if (system_uses_irq_prio_masking()) |
| gic_write_pmr(GIC_PRIO_IRQOFF); |
| |
| return exit_code; |
| } |
| |
| static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n"; |
| |
| static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par, |
| struct kvm_cpu_context *__host_ctxt) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long str_va; |
| |
| vcpu = __host_ctxt->__hyp_running_vcpu; |
| |
| if (read_sysreg(vttbr_el2)) { |
| __timer_disable_traps(vcpu); |
| __deactivate_traps(vcpu); |
| __deactivate_vm(vcpu); |
| __sysreg_restore_state_nvhe(__host_ctxt); |
| } |
| |
| /* |
| * Force the panic string to be loaded from the literal pool, |
| * making sure it is a kernel address and not a PC-relative |
| * reference. |
| */ |
| asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va)); |
| |
| __hyp_do_panic(str_va, |
| spsr, elr, |
| read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR), |
| read_sysreg(hpfar_el2), par, vcpu); |
| } |
| |
| static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par, |
| struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_vcpu *vcpu; |
| vcpu = host_ctxt->__hyp_running_vcpu; |
| |
| __deactivate_traps(vcpu); |
| sysreg_restore_host_state_vhe(host_ctxt); |
| |
| panic(__hyp_panic_string, |
| spsr, elr, |
| read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR), |
| read_sysreg(hpfar_el2), par, vcpu); |
| } |
| NOKPROBE_SYMBOL(__hyp_call_panic_vhe); |
| |
| void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt) |
| { |
| u64 spsr = read_sysreg_el2(SYS_SPSR); |
| u64 elr = read_sysreg_el2(SYS_ELR); |
| u64 par = read_sysreg(par_el1); |
| |
| if (!has_vhe()) |
| __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt); |
| else |
| __hyp_call_panic_vhe(spsr, elr, par, host_ctxt); |
| |
| unreachable(); |
| } |