| /* |
| * Copyright (C) 2012 ARM Ltd. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/rculist.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_mmu.h> |
| #include <trace/events/kvm.h> |
| #include <asm/kvm.h> |
| #include <kvm/iodev.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| /* |
| * How the whole thing works (courtesy of Christoffer Dall): |
| * |
| * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if |
| * something is pending on the CPU interface. |
| * - Interrupts that are pending on the distributor are stored on the |
| * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land |
| * ioctls and guest mmio ops, and other in-kernel peripherals such as the |
| * arch. timers). |
| * - Every time the bitmap changes, the irq_pending_on_cpu oracle is |
| * recalculated |
| * - To calculate the oracle, we need info for each cpu from |
| * compute_pending_for_cpu, which considers: |
| * - PPI: dist->irq_pending & dist->irq_enable |
| * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target |
| * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn |
| * registers, stored on each vcpu. We only keep one bit of |
| * information per interrupt, making sure that only one vcpu can |
| * accept the interrupt. |
| * - If any of the above state changes, we must recalculate the oracle. |
| * - The same is true when injecting an interrupt, except that we only |
| * consider a single interrupt at a time. The irq_spi_cpu array |
| * contains the target CPU for each SPI. |
| * |
| * The handling of level interrupts adds some extra complexity. We |
| * need to track when the interrupt has been EOIed, so we can sample |
| * the 'line' again. This is achieved as such: |
| * |
| * - When a level interrupt is moved onto a vcpu, the corresponding |
| * bit in irq_queued is set. As long as this bit is set, the line |
| * will be ignored for further interrupts. The interrupt is injected |
| * into the vcpu with the GICH_LR_EOI bit set (generate a |
| * maintenance interrupt on EOI). |
| * - When the interrupt is EOIed, the maintenance interrupt fires, |
| * and clears the corresponding bit in irq_queued. This allows the |
| * interrupt line to be sampled again. |
| * - Note that level-triggered interrupts can also be set to pending from |
| * writes to GICD_ISPENDRn and lowering the external input line does not |
| * cause the interrupt to become inactive in such a situation. |
| * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become |
| * inactive as long as the external input line is held high. |
| * |
| * |
| * Initialization rules: there are multiple stages to the vgic |
| * initialization, both for the distributor and the CPU interfaces. |
| * |
| * Distributor: |
| * |
| * - kvm_vgic_early_init(): initialization of static data that doesn't |
| * depend on any sizing information or emulation type. No allocation |
| * is allowed there. |
| * |
| * - vgic_init(): allocation and initialization of the generic data |
| * structures that depend on sizing information (number of CPUs, |
| * number of interrupts). Also initializes the vcpu specific data |
| * structures. Can be executed lazily for GICv2. |
| * [to be renamed to kvm_vgic_init??] |
| * |
| * CPU Interface: |
| * |
| * - kvm_vgic_cpu_early_init(): initialization of static data that |
| * doesn't depend on any sizing information or emulation type. No |
| * allocation is allowed there. |
| */ |
| |
| #include "vgic.h" |
| |
| static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); |
| static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu); |
| static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); |
| static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); |
| static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu); |
| static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu, |
| int virt_irq); |
| static int compute_pending_for_cpu(struct kvm_vcpu *vcpu); |
| |
| static const struct vgic_ops *vgic_ops; |
| static const struct vgic_params *vgic; |
| |
| static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) |
| { |
| vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source); |
| } |
| |
| static bool queue_sgi(struct kvm_vcpu *vcpu, int irq) |
| { |
| return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq); |
| } |
| |
| int kvm_vgic_map_resources(struct kvm *kvm) |
| { |
| return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic); |
| } |
| |
| /* |
| * struct vgic_bitmap contains a bitmap made of unsigned longs, but |
| * extracts u32s out of them. |
| * |
| * This does not work on 64-bit BE systems, because the bitmap access |
| * will store two consecutive 32-bit words with the higher-addressed |
| * register's bits at the lower index and the lower-addressed register's |
| * bits at the higher index. |
| * |
| * Therefore, swizzle the register index when accessing the 32-bit word |
| * registers to access the right register's value. |
| */ |
| #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64 |
| #define REG_OFFSET_SWIZZLE 1 |
| #else |
| #define REG_OFFSET_SWIZZLE 0 |
| #endif |
| |
| static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs) |
| { |
| int nr_longs; |
| |
| nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS); |
| |
| b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL); |
| if (!b->private) |
| return -ENOMEM; |
| |
| b->shared = b->private + nr_cpus; |
| |
| return 0; |
| } |
| |
| static void vgic_free_bitmap(struct vgic_bitmap *b) |
| { |
| kfree(b->private); |
| b->private = NULL; |
| b->shared = NULL; |
| } |
| |
| /* |
| * Call this function to convert a u64 value to an unsigned long * bitmask |
| * in a way that works on both 32-bit and 64-bit LE and BE platforms. |
| * |
| * Warning: Calling this function may modify *val. |
| */ |
| static unsigned long *u64_to_bitmask(u64 *val) |
| { |
| #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32 |
| *val = (*val >> 32) | (*val << 32); |
| #endif |
| return (unsigned long *)val; |
| } |
| |
| u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) |
| { |
| offset >>= 2; |
| if (!offset) |
| return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE; |
| else |
| return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE); |
| } |
| |
| static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, |
| int cpuid, int irq) |
| { |
| if (irq < VGIC_NR_PRIVATE_IRQS) |
| return test_bit(irq, x->private + cpuid); |
| |
| return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); |
| } |
| |
| void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, |
| int irq, int val) |
| { |
| unsigned long *reg; |
| |
| if (irq < VGIC_NR_PRIVATE_IRQS) { |
| reg = x->private + cpuid; |
| } else { |
| reg = x->shared; |
| irq -= VGIC_NR_PRIVATE_IRQS; |
| } |
| |
| if (val) |
| set_bit(irq, reg); |
| else |
| clear_bit(irq, reg); |
| } |
| |
| static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) |
| { |
| return x->private + cpuid; |
| } |
| |
| unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) |
| { |
| return x->shared; |
| } |
| |
| static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs) |
| { |
| int size; |
| |
| size = nr_cpus * VGIC_NR_PRIVATE_IRQS; |
| size += nr_irqs - VGIC_NR_PRIVATE_IRQS; |
| |
| x->private = kzalloc(size, GFP_KERNEL); |
| if (!x->private) |
| return -ENOMEM; |
| |
| x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32); |
| return 0; |
| } |
| |
| static void vgic_free_bytemap(struct vgic_bytemap *b) |
| { |
| kfree(b->private); |
| b->private = NULL; |
| b->shared = NULL; |
| } |
| |
| u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) |
| { |
| u32 *reg; |
| |
| if (offset < VGIC_NR_PRIVATE_IRQS) { |
| reg = x->private; |
| offset += cpuid * VGIC_NR_PRIVATE_IRQS; |
| } else { |
| reg = x->shared; |
| offset -= VGIC_NR_PRIVATE_IRQS; |
| } |
| |
| return reg + (offset / sizeof(u32)); |
| } |
| |
| #define VGIC_CFG_LEVEL 0 |
| #define VGIC_CFG_EDGE 1 |
| |
| static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| int irq_val; |
| |
| irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq); |
| return irq_val == VGIC_CFG_EDGE; |
| } |
| |
| static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq); |
| } |
| |
| static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq); |
| } |
| |
| static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq); |
| } |
| |
| static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1); |
| } |
| |
| static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0); |
| } |
| |
| static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1); |
| } |
| |
| static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0); |
| } |
| |
| static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq); |
| } |
| |
| static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1); |
| } |
| |
| static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0); |
| } |
| |
| static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq); |
| } |
| |
| static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0); |
| if (!vgic_dist_irq_get_level(vcpu, irq)) { |
| vgic_dist_irq_clear_pending(vcpu, irq); |
| if (!compute_pending_for_cpu(vcpu)) |
| clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); |
| } |
| } |
| |
| static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); |
| } |
| |
| void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); |
| } |
| |
| void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0); |
| } |
| |
| static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (irq < VGIC_NR_PRIVATE_IRQS) |
| set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); |
| else |
| set_bit(irq - VGIC_NR_PRIVATE_IRQS, |
| vcpu->arch.vgic_cpu.pending_shared); |
| } |
| |
| void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (irq < VGIC_NR_PRIVATE_IRQS) |
| clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); |
| else |
| clear_bit(irq - VGIC_NR_PRIVATE_IRQS, |
| vcpu->arch.vgic_cpu.pending_shared); |
| } |
| |
| static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq) |
| { |
| return !vgic_irq_is_queued(vcpu, irq); |
| } |
| |
| /** |
| * vgic_reg_access - access vgic register |
| * @mmio: pointer to the data describing the mmio access |
| * @reg: pointer to the virtual backing of vgic distributor data |
| * @offset: least significant 2 bits used for word offset |
| * @mode: ACCESS_ mode (see defines above) |
| * |
| * Helper to make vgic register access easier using one of the access |
| * modes defined for vgic register access |
| * (read,raz,write-ignored,setbit,clearbit,write) |
| */ |
| void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, |
| phys_addr_t offset, int mode) |
| { |
| int word_offset = (offset & 3) * 8; |
| u32 mask = (1UL << (mmio->len * 8)) - 1; |
| u32 regval; |
| |
| /* |
| * Any alignment fault should have been delivered to the guest |
| * directly (ARM ARM B3.12.7 "Prioritization of aborts"). |
| */ |
| |
| if (reg) { |
| regval = *reg; |
| } else { |
| BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED)); |
| regval = 0; |
| } |
| |
| if (mmio->is_write) { |
| u32 data = mmio_data_read(mmio, mask) << word_offset; |
| switch (ACCESS_WRITE_MASK(mode)) { |
| case ACCESS_WRITE_IGNORED: |
| return; |
| |
| case ACCESS_WRITE_SETBIT: |
| regval |= data; |
| break; |
| |
| case ACCESS_WRITE_CLEARBIT: |
| regval &= ~data; |
| break; |
| |
| case ACCESS_WRITE_VALUE: |
| regval = (regval & ~(mask << word_offset)) | data; |
| break; |
| } |
| *reg = regval; |
| } else { |
| switch (ACCESS_READ_MASK(mode)) { |
| case ACCESS_READ_RAZ: |
| regval = 0; |
| /* fall through */ |
| |
| case ACCESS_READ_VALUE: |
| mmio_data_write(mmio, mask, regval >> word_offset); |
| } |
| } |
| } |
| |
| bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, |
| phys_addr_t offset, int vcpu_id, int access) |
| { |
| u32 *reg; |
| int mode = ACCESS_READ_VALUE | access; |
| struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id); |
| |
| reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, mode); |
| if (mmio->is_write) { |
| if (access & ACCESS_WRITE_CLEARBIT) { |
| if (offset < 4) /* Force SGI enabled */ |
| *reg |= 0xffff; |
| vgic_retire_disabled_irqs(target_vcpu); |
| } |
| vgic_update_state(kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool vgic_handle_set_pending_reg(struct kvm *kvm, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset, int vcpu_id) |
| { |
| u32 *reg, orig; |
| u32 level_mask; |
| int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset); |
| level_mask = (~(*reg)); |
| |
| /* Mark both level and edge triggered irqs as pending */ |
| reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| orig = *reg; |
| vgic_reg_access(mmio, reg, offset, mode); |
| |
| if (mmio->is_write) { |
| /* Set the soft-pending flag only for level-triggered irqs */ |
| reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, |
| vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, mode); |
| *reg &= level_mask; |
| |
| /* Ignore writes to SGIs */ |
| if (offset < 2) { |
| *reg &= ~0xffff; |
| *reg |= orig & 0xffff; |
| } |
| |
| vgic_update_state(kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool vgic_handle_clear_pending_reg(struct kvm *kvm, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset, int vcpu_id) |
| { |
| u32 *level_active; |
| u32 *reg, orig; |
| int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| orig = *reg; |
| vgic_reg_access(mmio, reg, offset, mode); |
| if (mmio->is_write) { |
| /* Re-set level triggered level-active interrupts */ |
| level_active = vgic_bitmap_get_reg(&dist->irq_level, |
| vcpu_id, offset); |
| reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| *reg |= *level_active; |
| |
| /* Ignore writes to SGIs */ |
| if (offset < 2) { |
| *reg &= ~0xffff; |
| *reg |= orig & 0xffff; |
| } |
| |
| /* Clear soft-pending flags */ |
| reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, |
| vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, mode); |
| |
| vgic_update_state(kvm); |
| return true; |
| } |
| return false; |
| } |
| |
| bool vgic_handle_set_active_reg(struct kvm *kvm, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset, int vcpu_id) |
| { |
| u32 *reg; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); |
| |
| if (mmio->is_write) { |
| vgic_update_state(kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool vgic_handle_clear_active_reg(struct kvm *kvm, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset, int vcpu_id) |
| { |
| u32 *reg; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); |
| |
| if (mmio->is_write) { |
| vgic_update_state(kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static u32 vgic_cfg_expand(u16 val) |
| { |
| u32 res = 0; |
| int i; |
| |
| /* |
| * Turn a 16bit value like abcd...mnop into a 32bit word |
| * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is. |
| */ |
| for (i = 0; i < 16; i++) |
| res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1); |
| |
| return res; |
| } |
| |
| static u16 vgic_cfg_compress(u32 val) |
| { |
| u16 res = 0; |
| int i; |
| |
| /* |
| * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like |
| * abcd...mnop which is what we really care about. |
| */ |
| for (i = 0; i < 16; i++) |
| res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i; |
| |
| return res; |
| } |
| |
| /* |
| * The distributor uses 2 bits per IRQ for the CFG register, but the |
| * LSB is always 0. As such, we only keep the upper bit, and use the |
| * two above functions to compress/expand the bits |
| */ |
| bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 val; |
| |
| if (offset & 4) |
| val = *reg >> 16; |
| else |
| val = *reg & 0xffff; |
| |
| val = vgic_cfg_expand(val); |
| vgic_reg_access(mmio, &val, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| if (mmio->is_write) { |
| /* Ignore writes to read-only SGI and PPI bits */ |
| if (offset < 8) |
| return false; |
| |
| val = vgic_cfg_compress(val); |
| if (offset & 4) { |
| *reg &= 0xffff; |
| *reg |= val << 16; |
| } else { |
| *reg &= 0xffff << 16; |
| *reg |= val; |
| } |
| } |
| |
| return false; |
| } |
| |
| /** |
| * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor |
| * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs |
| * |
| * Move any IRQs that have already been assigned to LRs back to the |
| * emulated distributor state so that the complete emulated state can be read |
| * from the main emulation structures without investigating the LRs. |
| */ |
| void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| u64 elrsr = vgic_get_elrsr(vcpu); |
| unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); |
| int i; |
| |
| for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) { |
| struct vgic_lr lr = vgic_get_lr(vcpu, i); |
| |
| /* |
| * There are three options for the state bits: |
| * |
| * 01: pending |
| * 10: active |
| * 11: pending and active |
| */ |
| BUG_ON(!(lr.state & LR_STATE_MASK)); |
| |
| /* Reestablish SGI source for pending and active IRQs */ |
| if (lr.irq < VGIC_NR_SGIS) |
| add_sgi_source(vcpu, lr.irq, lr.source); |
| |
| /* |
| * If the LR holds an active (10) or a pending and active (11) |
| * interrupt then move the active state to the |
| * distributor tracking bit. |
| */ |
| if (lr.state & LR_STATE_ACTIVE) |
| vgic_irq_set_active(vcpu, lr.irq); |
| |
| /* |
| * Reestablish the pending state on the distributor and the |
| * CPU interface and mark the LR as free for other use. |
| */ |
| vgic_retire_lr(i, vcpu); |
| |
| /* Finally update the VGIC state. */ |
| vgic_update_state(vcpu->kvm); |
| } |
| } |
| |
| const |
| struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges, |
| int len, gpa_t offset) |
| { |
| while (ranges->len) { |
| if (offset >= ranges->base && |
| (offset + len) <= (ranges->base + ranges->len)) |
| return ranges; |
| ranges++; |
| } |
| |
| return NULL; |
| } |
| |
| static bool vgic_validate_access(const struct vgic_dist *dist, |
| const struct vgic_io_range *range, |
| unsigned long offset) |
| { |
| int irq; |
| |
| if (!range->bits_per_irq) |
| return true; /* Not an irq-based access */ |
| |
| irq = offset * 8 / range->bits_per_irq; |
| if (irq >= dist->nr_irqs) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Call the respective handler function for the given range. |
| * We split up any 64 bit accesses into two consecutive 32 bit |
| * handler calls and merge the result afterwards. |
| * We do this in a little endian fashion regardless of the host's |
| * or guest's endianness, because the GIC is always LE and the rest of |
| * the code (vgic_reg_access) also puts it in a LE fashion already. |
| * At this point we have already identified the handle function, so |
| * range points to that one entry and offset is relative to this. |
| */ |
| static bool call_range_handler(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| unsigned long offset, |
| const struct vgic_io_range *range) |
| { |
| struct kvm_exit_mmio mmio32; |
| bool ret; |
| |
| if (likely(mmio->len <= 4)) |
| return range->handle_mmio(vcpu, mmio, offset); |
| |
| /* |
| * Any access bigger than 4 bytes (that we currently handle in KVM) |
| * is actually 8 bytes long, caused by a 64-bit access |
| */ |
| |
| mmio32.len = 4; |
| mmio32.is_write = mmio->is_write; |
| mmio32.private = mmio->private; |
| |
| mmio32.phys_addr = mmio->phys_addr + 4; |
| mmio32.data = &((u32 *)mmio->data)[1]; |
| ret = range->handle_mmio(vcpu, &mmio32, offset + 4); |
| |
| mmio32.phys_addr = mmio->phys_addr; |
| mmio32.data = &((u32 *)mmio->data)[0]; |
| ret |= range->handle_mmio(vcpu, &mmio32, offset); |
| |
| return ret; |
| } |
| |
| /** |
| * vgic_handle_mmio_access - handle an in-kernel MMIO access |
| * This is called by the read/write KVM IO device wrappers below. |
| * @vcpu: pointer to the vcpu performing the access |
| * @this: pointer to the KVM IO device in charge |
| * @addr: guest physical address of the access |
| * @len: size of the access |
| * @val: pointer to the data region |
| * @is_write: read or write access |
| * |
| * returns true if the MMIO access could be performed |
| */ |
| static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu, |
| struct kvm_io_device *this, gpa_t addr, |
| int len, void *val, bool is_write) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| struct vgic_io_device *iodev = container_of(this, |
| struct vgic_io_device, dev); |
| struct kvm_run *run = vcpu->run; |
| const struct vgic_io_range *range; |
| struct kvm_exit_mmio mmio; |
| bool updated_state; |
| gpa_t offset; |
| |
| offset = addr - iodev->addr; |
| range = vgic_find_range(iodev->reg_ranges, len, offset); |
| if (unlikely(!range || !range->handle_mmio)) { |
| pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len); |
| return -ENXIO; |
| } |
| |
| mmio.phys_addr = addr; |
| mmio.len = len; |
| mmio.is_write = is_write; |
| mmio.data = val; |
| mmio.private = iodev->redist_vcpu; |
| |
| spin_lock(&dist->lock); |
| offset -= range->base; |
| if (vgic_validate_access(dist, range, offset)) { |
| updated_state = call_range_handler(vcpu, &mmio, offset, range); |
| } else { |
| if (!is_write) |
| memset(val, 0, len); |
| updated_state = false; |
| } |
| spin_unlock(&dist->lock); |
| run->mmio.is_write = is_write; |
| run->mmio.len = len; |
| run->mmio.phys_addr = addr; |
| memcpy(run->mmio.data, val, len); |
| |
| kvm_handle_mmio_return(vcpu, run); |
| |
| if (updated_state) |
| vgic_kick_vcpus(vcpu->kvm); |
| |
| return 0; |
| } |
| |
| static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu, |
| struct kvm_io_device *this, |
| gpa_t addr, int len, void *val) |
| { |
| return vgic_handle_mmio_access(vcpu, this, addr, len, val, false); |
| } |
| |
| static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu, |
| struct kvm_io_device *this, |
| gpa_t addr, int len, const void *val) |
| { |
| return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val, |
| true); |
| } |
| |
| struct kvm_io_device_ops vgic_io_ops = { |
| .read = vgic_handle_mmio_read, |
| .write = vgic_handle_mmio_write, |
| }; |
| |
| /** |
| * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus |
| * @kvm: The VM structure pointer |
| * @base: The (guest) base address for the register frame |
| * @len: Length of the register frame window |
| * @ranges: Describing the handler functions for each register |
| * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call |
| * @iodev: Points to memory to be passed on to the handler |
| * |
| * @iodev stores the parameters of this function to be usable by the handler |
| * respectively the dispatcher function (since the KVM I/O bus framework lacks |
| * an opaque parameter). Initialization is done in this function, but the |
| * reference should be valid and unique for the whole VGIC lifetime. |
| * If the register frame is not mapped for a specific VCPU, pass -1 to |
| * @redist_vcpu_id. |
| */ |
| int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len, |
| const struct vgic_io_range *ranges, |
| int redist_vcpu_id, |
| struct vgic_io_device *iodev) |
| { |
| struct kvm_vcpu *vcpu = NULL; |
| int ret; |
| |
| if (redist_vcpu_id >= 0) |
| vcpu = kvm_get_vcpu(kvm, redist_vcpu_id); |
| |
| iodev->addr = base; |
| iodev->len = len; |
| iodev->reg_ranges = ranges; |
| iodev->redist_vcpu = vcpu; |
| |
| kvm_iodevice_init(&iodev->dev, &vgic_io_ops); |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len, |
| &iodev->dev); |
| mutex_unlock(&kvm->slots_lock); |
| |
| /* Mark the iodev as invalid if registration fails. */ |
| if (ret) |
| iodev->dev.ops = NULL; |
| |
| return ret; |
| } |
| |
| static int vgic_nr_shared_irqs(struct vgic_dist *dist) |
| { |
| return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; |
| } |
| |
| static int compute_active_for_cpu(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| unsigned long *active, *enabled, *act_percpu, *act_shared; |
| unsigned long active_private, active_shared; |
| int nr_shared = vgic_nr_shared_irqs(dist); |
| int vcpu_id; |
| |
| vcpu_id = vcpu->vcpu_id; |
| act_percpu = vcpu->arch.vgic_cpu.active_percpu; |
| act_shared = vcpu->arch.vgic_cpu.active_shared; |
| |
| active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id); |
| enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); |
| bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS); |
| |
| active = vgic_bitmap_get_shared_map(&dist->irq_active); |
| enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); |
| bitmap_and(act_shared, active, enabled, nr_shared); |
| bitmap_and(act_shared, act_shared, |
| vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), |
| nr_shared); |
| |
| active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS); |
| active_shared = find_first_bit(act_shared, nr_shared); |
| |
| return (active_private < VGIC_NR_PRIVATE_IRQS || |
| active_shared < nr_shared); |
| } |
| |
| static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| unsigned long *pending, *enabled, *pend_percpu, *pend_shared; |
| unsigned long pending_private, pending_shared; |
| int nr_shared = vgic_nr_shared_irqs(dist); |
| int vcpu_id; |
| |
| vcpu_id = vcpu->vcpu_id; |
| pend_percpu = vcpu->arch.vgic_cpu.pending_percpu; |
| pend_shared = vcpu->arch.vgic_cpu.pending_shared; |
| |
| if (!dist->enabled) { |
| bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS); |
| bitmap_zero(pend_shared, nr_shared); |
| return 0; |
| } |
| |
| pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id); |
| enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); |
| bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS); |
| |
| pending = vgic_bitmap_get_shared_map(&dist->irq_pending); |
| enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); |
| bitmap_and(pend_shared, pending, enabled, nr_shared); |
| bitmap_and(pend_shared, pend_shared, |
| vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), |
| nr_shared); |
| |
| pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS); |
| pending_shared = find_first_bit(pend_shared, nr_shared); |
| return (pending_private < VGIC_NR_PRIVATE_IRQS || |
| pending_shared < vgic_nr_shared_irqs(dist)); |
| } |
| |
| /* |
| * Update the interrupt state and determine which CPUs have pending |
| * or active interrupts. Must be called with distributor lock held. |
| */ |
| void vgic_update_state(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int c; |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| if (compute_pending_for_cpu(vcpu)) |
| set_bit(c, dist->irq_pending_on_cpu); |
| |
| if (compute_active_for_cpu(vcpu)) |
| set_bit(c, dist->irq_active_on_cpu); |
| else |
| clear_bit(c, dist->irq_active_on_cpu); |
| } |
| } |
| |
| static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr) |
| { |
| return vgic_ops->get_lr(vcpu, lr); |
| } |
| |
| static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, |
| struct vgic_lr vlr) |
| { |
| vgic_ops->set_lr(vcpu, lr, vlr); |
| } |
| |
| static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu) |
| { |
| return vgic_ops->get_elrsr(vcpu); |
| } |
| |
| static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu) |
| { |
| return vgic_ops->get_eisr(vcpu); |
| } |
| |
| static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu) |
| { |
| vgic_ops->clear_eisr(vcpu); |
| } |
| |
| static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu) |
| { |
| return vgic_ops->get_interrupt_status(vcpu); |
| } |
| |
| static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu) |
| { |
| vgic_ops->enable_underflow(vcpu); |
| } |
| |
| static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu) |
| { |
| vgic_ops->disable_underflow(vcpu); |
| } |
| |
| void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| { |
| vgic_ops->get_vmcr(vcpu, vmcr); |
| } |
| |
| void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| { |
| vgic_ops->set_vmcr(vcpu, vmcr); |
| } |
| |
| static inline void vgic_enable(struct kvm_vcpu *vcpu) |
| { |
| vgic_ops->enable(vcpu); |
| } |
| |
| static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu) |
| { |
| struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr); |
| |
| vgic_irq_clear_queued(vcpu, vlr.irq); |
| |
| /* |
| * We must transfer the pending state back to the distributor before |
| * retiring the LR, otherwise we may loose edge-triggered interrupts. |
| */ |
| if (vlr.state & LR_STATE_PENDING) { |
| vgic_dist_irq_set_pending(vcpu, vlr.irq); |
| vlr.hwirq = 0; |
| } |
| |
| vlr.state = 0; |
| vgic_set_lr(vcpu, lr_nr, vlr); |
| } |
| |
| static bool dist_active_irq(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu); |
| } |
| |
| bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map) |
| { |
| int i; |
| |
| for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) { |
| struct vgic_lr vlr = vgic_get_lr(vcpu, i); |
| |
| if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE) |
| return true; |
| } |
| |
| return dist_active_irq(vcpu); |
| } |
| |
| /* |
| * An interrupt may have been disabled after being made pending on the |
| * CPU interface (the classic case is a timer running while we're |
| * rebooting the guest - the interrupt would kick as soon as the CPU |
| * interface gets enabled, with deadly consequences). |
| * |
| * The solution is to examine already active LRs, and check the |
| * interrupt is still enabled. If not, just retire it. |
| */ |
| static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) |
| { |
| u64 elrsr = vgic_get_elrsr(vcpu); |
| unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); |
| int lr; |
| |
| for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) { |
| struct vgic_lr vlr = vgic_get_lr(vcpu, lr); |
| |
| if (!vgic_irq_is_enabled(vcpu, vlr.irq)) |
| vgic_retire_lr(lr, vcpu); |
| } |
| } |
| |
| static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq, |
| int lr_nr, struct vgic_lr vlr) |
| { |
| if (vgic_irq_is_active(vcpu, irq)) { |
| vlr.state |= LR_STATE_ACTIVE; |
| kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state); |
| vgic_irq_clear_active(vcpu, irq); |
| vgic_update_state(vcpu->kvm); |
| } else { |
| WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq)); |
| vlr.state |= LR_STATE_PENDING; |
| kvm_debug("Set pending: 0x%x\n", vlr.state); |
| } |
| |
| if (!vgic_irq_is_edge(vcpu, irq)) |
| vlr.state |= LR_EOI_INT; |
| |
| if (vlr.irq >= VGIC_NR_SGIS) { |
| struct irq_phys_map *map; |
| map = vgic_irq_map_search(vcpu, irq); |
| |
| if (map) { |
| vlr.hwirq = map->phys_irq; |
| vlr.state |= LR_HW; |
| vlr.state &= ~LR_EOI_INT; |
| |
| /* |
| * Make sure we're not going to sample this |
| * again, as a HW-backed interrupt cannot be |
| * in the PENDING_ACTIVE stage. |
| */ |
| vgic_irq_set_queued(vcpu, irq); |
| } |
| } |
| |
| vgic_set_lr(vcpu, lr_nr, vlr); |
| } |
| |
| /* |
| * Queue an interrupt to a CPU virtual interface. Return true on success, |
| * or false if it wasn't possible to queue it. |
| * sgi_source must be zero for any non-SGI interrupts. |
| */ |
| bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| u64 elrsr = vgic_get_elrsr(vcpu); |
| unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); |
| struct vgic_lr vlr; |
| int lr; |
| |
| /* Sanitize the input... */ |
| BUG_ON(sgi_source_id & ~7); |
| BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS); |
| BUG_ON(irq >= dist->nr_irqs); |
| |
| kvm_debug("Queue IRQ%d\n", irq); |
| |
| /* Do we have an active interrupt for the same CPUID? */ |
| for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) { |
| vlr = vgic_get_lr(vcpu, lr); |
| if (vlr.irq == irq && vlr.source == sgi_source_id) { |
| kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq); |
| vgic_queue_irq_to_lr(vcpu, irq, lr, vlr); |
| return true; |
| } |
| } |
| |
| /* Try to use another LR for this interrupt */ |
| lr = find_first_bit(elrsr_ptr, vgic->nr_lr); |
| if (lr >= vgic->nr_lr) |
| return false; |
| |
| kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id); |
| |
| vlr.irq = irq; |
| vlr.source = sgi_source_id; |
| vlr.state = 0; |
| vgic_queue_irq_to_lr(vcpu, irq, lr, vlr); |
| |
| return true; |
| } |
| |
| static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (!vgic_can_sample_irq(vcpu, irq)) |
| return true; /* level interrupt, already queued */ |
| |
| if (vgic_queue_irq(vcpu, 0, irq)) { |
| if (vgic_irq_is_edge(vcpu, irq)) { |
| vgic_dist_irq_clear_pending(vcpu, irq); |
| vgic_cpu_irq_clear(vcpu, irq); |
| } else { |
| vgic_irq_set_queued(vcpu, irq); |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Fill the list registers with pending interrupts before running the |
| * guest. |
| */ |
| static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| unsigned long *pa_percpu, *pa_shared; |
| int i, vcpu_id; |
| int overflow = 0; |
| int nr_shared = vgic_nr_shared_irqs(dist); |
| |
| vcpu_id = vcpu->vcpu_id; |
| |
| pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu; |
| pa_shared = vcpu->arch.vgic_cpu.pend_act_shared; |
| |
| bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu, |
| VGIC_NR_PRIVATE_IRQS); |
| bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared, |
| nr_shared); |
| /* |
| * We may not have any pending interrupt, or the interrupts |
| * may have been serviced from another vcpu. In all cases, |
| * move along. |
| */ |
| if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu)) |
| goto epilog; |
| |
| /* SGIs */ |
| for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) { |
| if (!queue_sgi(vcpu, i)) |
| overflow = 1; |
| } |
| |
| /* PPIs */ |
| for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) { |
| if (!vgic_queue_hwirq(vcpu, i)) |
| overflow = 1; |
| } |
| |
| /* SPIs */ |
| for_each_set_bit(i, pa_shared, nr_shared) { |
| if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS)) |
| overflow = 1; |
| } |
| |
| |
| |
| |
| epilog: |
| if (overflow) { |
| vgic_enable_underflow(vcpu); |
| } else { |
| vgic_disable_underflow(vcpu); |
| /* |
| * We're about to run this VCPU, and we've consumed |
| * everything the distributor had in store for |
| * us. Claim we don't have anything pending. We'll |
| * adjust that if needed while exiting. |
| */ |
| clear_bit(vcpu_id, dist->irq_pending_on_cpu); |
| } |
| } |
| |
| static int process_queued_irq(struct kvm_vcpu *vcpu, |
| int lr, struct vgic_lr vlr) |
| { |
| int pending = 0; |
| |
| /* |
| * If the IRQ was EOIed (called from vgic_process_maintenance) or it |
| * went from active to non-active (called from vgic_sync_hwirq) it was |
| * also ACKed and we we therefore assume we can clear the soft pending |
| * state (should it had been set) for this interrupt. |
| * |
| * Note: if the IRQ soft pending state was set after the IRQ was |
| * acked, it actually shouldn't be cleared, but we have no way of |
| * knowing that unless we start trapping ACKs when the soft-pending |
| * state is set. |
| */ |
| vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq); |
| |
| /* |
| * Tell the gic to start sampling this interrupt again. |
| */ |
| vgic_irq_clear_queued(vcpu, vlr.irq); |
| |
| /* Any additional pending interrupt? */ |
| if (vgic_irq_is_edge(vcpu, vlr.irq)) { |
| BUG_ON(!(vlr.state & LR_HW)); |
| pending = vgic_dist_irq_is_pending(vcpu, vlr.irq); |
| } else { |
| if (vgic_dist_irq_get_level(vcpu, vlr.irq)) { |
| vgic_cpu_irq_set(vcpu, vlr.irq); |
| pending = 1; |
| } else { |
| vgic_dist_irq_clear_pending(vcpu, vlr.irq); |
| vgic_cpu_irq_clear(vcpu, vlr.irq); |
| } |
| } |
| |
| /* |
| * Despite being EOIed, the LR may not have |
| * been marked as empty. |
| */ |
| vlr.state = 0; |
| vlr.hwirq = 0; |
| vgic_set_lr(vcpu, lr, vlr); |
| |
| return pending; |
| } |
| |
| static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) |
| { |
| u32 status = vgic_get_interrupt_status(vcpu); |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| struct kvm *kvm = vcpu->kvm; |
| int level_pending = 0; |
| |
| kvm_debug("STATUS = %08x\n", status); |
| |
| if (status & INT_STATUS_EOI) { |
| /* |
| * Some level interrupts have been EOIed. Clear their |
| * active bit. |
| */ |
| u64 eisr = vgic_get_eisr(vcpu); |
| unsigned long *eisr_ptr = u64_to_bitmask(&eisr); |
| int lr; |
| |
| for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) { |
| struct vgic_lr vlr = vgic_get_lr(vcpu, lr); |
| |
| WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq)); |
| WARN_ON(vlr.state & LR_STATE_MASK); |
| |
| |
| /* |
| * kvm_notify_acked_irq calls kvm_set_irq() |
| * to reset the IRQ level, which grabs the dist->lock |
| * so we call this before taking the dist->lock. |
| */ |
| kvm_notify_acked_irq(kvm, 0, |
| vlr.irq - VGIC_NR_PRIVATE_IRQS); |
| |
| spin_lock(&dist->lock); |
| level_pending |= process_queued_irq(vcpu, lr, vlr); |
| spin_unlock(&dist->lock); |
| } |
| } |
| |
| if (status & INT_STATUS_UNDERFLOW) |
| vgic_disable_underflow(vcpu); |
| |
| /* |
| * In the next iterations of the vcpu loop, if we sync the vgic state |
| * after flushing it, but before entering the guest (this happens for |
| * pending signals and vmid rollovers), then make sure we don't pick |
| * up any old maintenance interrupts here. |
| */ |
| vgic_clear_eisr(vcpu); |
| |
| return level_pending; |
| } |
| |
| /* |
| * Save the physical active state, and reset it to inactive. |
| * |
| * Return true if there's a pending forwarded interrupt to queue. |
| */ |
| static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| struct irq_phys_map *map; |
| bool phys_active; |
| bool level_pending; |
| int ret; |
| |
| if (!(vlr.state & LR_HW)) |
| return false; |
| |
| map = vgic_irq_map_search(vcpu, vlr.irq); |
| BUG_ON(!map); |
| |
| ret = irq_get_irqchip_state(map->irq, |
| IRQCHIP_STATE_ACTIVE, |
| &phys_active); |
| |
| WARN_ON(ret); |
| |
| if (phys_active) |
| return 0; |
| |
| spin_lock(&dist->lock); |
| level_pending = process_queued_irq(vcpu, lr, vlr); |
| spin_unlock(&dist->lock); |
| return level_pending; |
| } |
| |
| /* Sync back the VGIC state after a guest run */ |
| static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| u64 elrsr; |
| unsigned long *elrsr_ptr; |
| int lr, pending; |
| bool level_pending; |
| |
| level_pending = vgic_process_maintenance(vcpu); |
| |
| /* Deal with HW interrupts, and clear mappings for empty LRs */ |
| for (lr = 0; lr < vgic->nr_lr; lr++) { |
| struct vgic_lr vlr = vgic_get_lr(vcpu, lr); |
| |
| level_pending |= vgic_sync_hwirq(vcpu, lr, vlr); |
| BUG_ON(vlr.irq >= dist->nr_irqs); |
| } |
| |
| /* Check if we still have something up our sleeve... */ |
| elrsr = vgic_get_elrsr(vcpu); |
| elrsr_ptr = u64_to_bitmask(&elrsr); |
| pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr); |
| if (level_pending || pending < vgic->nr_lr) |
| set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); |
| } |
| |
| void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return; |
| |
| spin_lock(&dist->lock); |
| __kvm_vgic_flush_hwstate(vcpu); |
| spin_unlock(&dist->lock); |
| } |
| |
| void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) |
| { |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return; |
| |
| __kvm_vgic_sync_hwstate(vcpu); |
| } |
| |
| int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return 0; |
| |
| return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); |
| } |
| |
| void vgic_kick_vcpus(struct kvm *kvm) |
| { |
| struct kvm_vcpu *vcpu; |
| int c; |
| |
| /* |
| * We've injected an interrupt, time to find out who deserves |
| * a good kick... |
| */ |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| if (kvm_vgic_vcpu_pending_irq(vcpu)) |
| kvm_vcpu_kick(vcpu); |
| } |
| } |
| |
| static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level) |
| { |
| int edge_triggered = vgic_irq_is_edge(vcpu, irq); |
| |
| /* |
| * Only inject an interrupt if: |
| * - edge triggered and we have a rising edge |
| * - level triggered and we change level |
| */ |
| if (edge_triggered) { |
| int state = vgic_dist_irq_is_pending(vcpu, irq); |
| return level > state; |
| } else { |
| int state = vgic_dist_irq_get_level(vcpu, irq); |
| return level != state; |
| } |
| } |
| |
| static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, |
| struct irq_phys_map *map, |
| unsigned int irq_num, bool level) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int edge_triggered, level_triggered; |
| int enabled; |
| bool ret = true, can_inject = true; |
| |
| trace_vgic_update_irq_pending(cpuid, irq_num, level); |
| |
| if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020)) |
| return -EINVAL; |
| |
| spin_lock(&dist->lock); |
| |
| vcpu = kvm_get_vcpu(kvm, cpuid); |
| edge_triggered = vgic_irq_is_edge(vcpu, irq_num); |
| level_triggered = !edge_triggered; |
| |
| if (!vgic_validate_injection(vcpu, irq_num, level)) { |
| ret = false; |
| goto out; |
| } |
| |
| if (irq_num >= VGIC_NR_PRIVATE_IRQS) { |
| cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; |
| if (cpuid == VCPU_NOT_ALLOCATED) { |
| /* Pretend we use CPU0, and prevent injection */ |
| cpuid = 0; |
| can_inject = false; |
| } |
| vcpu = kvm_get_vcpu(kvm, cpuid); |
| } |
| |
| kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid); |
| |
| if (level) { |
| if (level_triggered) |
| vgic_dist_irq_set_level(vcpu, irq_num); |
| vgic_dist_irq_set_pending(vcpu, irq_num); |
| } else { |
| if (level_triggered) { |
| vgic_dist_irq_clear_level(vcpu, irq_num); |
| if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) { |
| vgic_dist_irq_clear_pending(vcpu, irq_num); |
| vgic_cpu_irq_clear(vcpu, irq_num); |
| if (!compute_pending_for_cpu(vcpu)) |
| clear_bit(cpuid, dist->irq_pending_on_cpu); |
| } |
| } |
| |
| ret = false; |
| goto out; |
| } |
| |
| enabled = vgic_irq_is_enabled(vcpu, irq_num); |
| |
| if (!enabled || !can_inject) { |
| ret = false; |
| goto out; |
| } |
| |
| if (!vgic_can_sample_irq(vcpu, irq_num)) { |
| /* |
| * Level interrupt in progress, will be picked up |
| * when EOId. |
| */ |
| ret = false; |
| goto out; |
| } |
| |
| if (level) { |
| vgic_cpu_irq_set(vcpu, irq_num); |
| set_bit(cpuid, dist->irq_pending_on_cpu); |
| } |
| |
| out: |
| spin_unlock(&dist->lock); |
| |
| if (ret) { |
| /* kick the specified vcpu */ |
| kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid)); |
| } |
| |
| return 0; |
| } |
| |
| static int vgic_lazy_init(struct kvm *kvm) |
| { |
| int ret = 0; |
| |
| if (unlikely(!vgic_initialized(kvm))) { |
| /* |
| * We only provide the automatic initialization of the VGIC |
| * for the legacy case of a GICv2. Any other type must |
| * be explicitly initialized once setup with the respective |
| * KVM device call. |
| */ |
| if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) |
| return -EBUSY; |
| |
| mutex_lock(&kvm->lock); |
| ret = vgic_init(kvm); |
| mutex_unlock(&kvm->lock); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic |
| * @kvm: The VM structure pointer |
| * @cpuid: The CPU for PPIs |
| * @irq_num: The IRQ number that is assigned to the device. This IRQ |
| * must not be mapped to a HW interrupt. |
| * @level: Edge-triggered: true: to trigger the interrupt |
| * false: to ignore the call |
| * Level-sensitive true: raise the input signal |
| * false: lower the input signal |
| * |
| * The GIC is not concerned with devices being active-LOW or active-HIGH for |
| * level-sensitive interrupts. You can think of the level parameter as 1 |
| * being HIGH and 0 being LOW and all devices being active-HIGH. |
| */ |
| int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, |
| bool level) |
| { |
| struct irq_phys_map *map; |
| int ret; |
| |
| ret = vgic_lazy_init(kvm); |
| if (ret) |
| return ret; |
| |
| map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num); |
| if (map) |
| return -EINVAL; |
| |
| return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level); |
| } |
| |
| /** |
| * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic |
| * @kvm: The VM structure pointer |
| * @cpuid: The CPU for PPIs |
| * @map: Pointer to a irq_phys_map structure describing the mapping |
| * @level: Edge-triggered: true: to trigger the interrupt |
| * false: to ignore the call |
| * Level-sensitive true: raise the input signal |
| * false: lower the input signal |
| * |
| * The GIC is not concerned with devices being active-LOW or active-HIGH for |
| * level-sensitive interrupts. You can think of the level parameter as 1 |
| * being HIGH and 0 being LOW and all devices being active-HIGH. |
| */ |
| int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid, |
| struct irq_phys_map *map, bool level) |
| { |
| int ret; |
| |
| ret = vgic_lazy_init(kvm); |
| if (ret) |
| return ret; |
| |
| return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level); |
| } |
| |
| static irqreturn_t vgic_maintenance_handler(int irq, void *data) |
| { |
| /* |
| * We cannot rely on the vgic maintenance interrupt to be |
| * delivered synchronously. This means we can only use it to |
| * exit the VM, and we perform the handling of EOIed |
| * interrupts on the exit path (see vgic_process_maintenance). |
| */ |
| return IRQ_HANDLED; |
| } |
| |
| static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu, |
| int virt_irq) |
| { |
| if (virt_irq < VGIC_NR_PRIVATE_IRQS) |
| return &vcpu->arch.vgic_cpu.irq_phys_map_list; |
| else |
| return &vcpu->kvm->arch.vgic.irq_phys_map_list; |
| } |
| |
| /** |
| * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ |
| * @vcpu: The VCPU pointer |
| * @virt_irq: The virtual irq number |
| * @irq: The Linux IRQ number |
| * |
| * Establish a mapping between a guest visible irq (@virt_irq) and a |
| * Linux irq (@irq). On injection, @virt_irq will be associated with |
| * the physical interrupt represented by @irq. This mapping can be |
| * established multiple times as long as the parameters are the same. |
| * |
| * Returns a valid pointer on success, and an error pointer otherwise |
| */ |
| struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, |
| int virt_irq, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq); |
| struct irq_phys_map *map; |
| struct irq_phys_map_entry *entry; |
| struct irq_desc *desc; |
| struct irq_data *data; |
| int phys_irq; |
| |
| desc = irq_to_desc(irq); |
| if (!desc) { |
| kvm_err("%s: no interrupt descriptor\n", __func__); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| data = irq_desc_get_irq_data(desc); |
| while (data->parent_data) |
| data = data->parent_data; |
| |
| phys_irq = data->hwirq; |
| |
| /* Create a new mapping */ |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock(&dist->irq_phys_map_lock); |
| |
| /* Try to match an existing mapping */ |
| map = vgic_irq_map_search(vcpu, virt_irq); |
| if (map) { |
| /* Make sure this mapping matches */ |
| if (map->phys_irq != phys_irq || |
| map->irq != irq) |
| map = ERR_PTR(-EINVAL); |
| |
| /* Found an existing, valid mapping */ |
| goto out; |
| } |
| |
| map = &entry->map; |
| map->virt_irq = virt_irq; |
| map->phys_irq = phys_irq; |
| map->irq = irq; |
| |
| list_add_tail_rcu(&entry->entry, root); |
| |
| out: |
| spin_unlock(&dist->irq_phys_map_lock); |
| /* If we've found a hit in the existing list, free the useless |
| * entry */ |
| if (IS_ERR(map) || map != &entry->map) |
| kfree(entry); |
| return map; |
| } |
| |
| static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu, |
| int virt_irq) |
| { |
| struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq); |
| struct irq_phys_map_entry *entry; |
| struct irq_phys_map *map; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(entry, root, entry) { |
| map = &entry->map; |
| if (map->virt_irq == virt_irq) { |
| rcu_read_unlock(); |
| return map; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| return NULL; |
| } |
| |
| static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu) |
| { |
| struct irq_phys_map_entry *entry; |
| |
| entry = container_of(rcu, struct irq_phys_map_entry, rcu); |
| kfree(entry); |
| } |
| |
| /** |
| * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping |
| * @vcpu: The VCPU pointer |
| * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq |
| * |
| * Remove an existing mapping between virtual and physical interrupts. |
| */ |
| int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| struct irq_phys_map_entry *entry; |
| struct list_head *root; |
| |
| if (!map) |
| return -EINVAL; |
| |
| root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq); |
| |
| spin_lock(&dist->irq_phys_map_lock); |
| |
| list_for_each_entry(entry, root, entry) { |
| if (&entry->map == map) { |
| list_del_rcu(&entry->entry); |
| call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu); |
| break; |
| } |
| } |
| |
| spin_unlock(&dist->irq_phys_map_lock); |
| |
| return 0; |
| } |
| |
| static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct irq_phys_map_entry *entry; |
| |
| spin_lock(&dist->irq_phys_map_lock); |
| |
| list_for_each_entry(entry, root, entry) { |
| list_del_rcu(&entry->entry); |
| call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu); |
| } |
| |
| spin_unlock(&dist->irq_phys_map_lock); |
| } |
| |
| void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| |
| kfree(vgic_cpu->pending_shared); |
| kfree(vgic_cpu->active_shared); |
| kfree(vgic_cpu->pend_act_shared); |
| vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list); |
| vgic_cpu->pending_shared = NULL; |
| vgic_cpu->active_shared = NULL; |
| vgic_cpu->pend_act_shared = NULL; |
| } |
| |
| static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| |
| int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8; |
| vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL); |
| vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL); |
| vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL); |
| |
| if (!vgic_cpu->pending_shared |
| || !vgic_cpu->active_shared |
| || !vgic_cpu->pend_act_shared) { |
| kvm_vgic_vcpu_destroy(vcpu); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Store the number of LRs per vcpu, so we don't have to go |
| * all the way to the distributor structure to find out. Only |
| * assembly code should use this one. |
| */ |
| vgic_cpu->nr_lr = vgic->nr_lr; |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage |
| * |
| * No memory allocation should be performed here, only static init. |
| */ |
| void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list); |
| } |
| |
| /** |
| * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW |
| * |
| * The host's GIC naturally limits the maximum amount of VCPUs a guest |
| * can use. |
| */ |
| int kvm_vgic_get_max_vcpus(void) |
| { |
| return vgic->max_gic_vcpus; |
| } |
| |
| void kvm_vgic_destroy(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_vgic_vcpu_destroy(vcpu); |
| |
| vgic_free_bitmap(&dist->irq_enabled); |
| vgic_free_bitmap(&dist->irq_level); |
| vgic_free_bitmap(&dist->irq_pending); |
| vgic_free_bitmap(&dist->irq_soft_pend); |
| vgic_free_bitmap(&dist->irq_queued); |
| vgic_free_bitmap(&dist->irq_cfg); |
| vgic_free_bytemap(&dist->irq_priority); |
| if (dist->irq_spi_target) { |
| for (i = 0; i < dist->nr_cpus; i++) |
| vgic_free_bitmap(&dist->irq_spi_target[i]); |
| } |
| kfree(dist->irq_sgi_sources); |
| kfree(dist->irq_spi_cpu); |
| kfree(dist->irq_spi_mpidr); |
| kfree(dist->irq_spi_target); |
| kfree(dist->irq_pending_on_cpu); |
| kfree(dist->irq_active_on_cpu); |
| vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list); |
| dist->irq_sgi_sources = NULL; |
| dist->irq_spi_cpu = NULL; |
| dist->irq_spi_target = NULL; |
| dist->irq_pending_on_cpu = NULL; |
| dist->irq_active_on_cpu = NULL; |
| dist->nr_cpus = 0; |
| } |
| |
| /* |
| * Allocate and initialize the various data structures. Must be called |
| * with kvm->lock held! |
| */ |
| int vgic_init(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int nr_cpus, nr_irqs; |
| int ret, i, vcpu_id; |
| |
| if (vgic_initialized(kvm)) |
| return 0; |
| |
| nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); |
| if (!nr_cpus) /* No vcpus? Can't be good... */ |
| return -ENODEV; |
| |
| /* |
| * If nobody configured the number of interrupts, use the |
| * legacy one. |
| */ |
| if (!dist->nr_irqs) |
| dist->nr_irqs = VGIC_NR_IRQS_LEGACY; |
| |
| nr_irqs = dist->nr_irqs; |
| |
| ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs); |
| ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs); |
| ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs); |
| ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs); |
| ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs); |
| ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs); |
| ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs); |
| ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs); |
| |
| if (ret) |
| goto out; |
| |
| dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL); |
| dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL); |
| dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus, |
| GFP_KERNEL); |
| dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long), |
| GFP_KERNEL); |
| dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long), |
| GFP_KERNEL); |
| if (!dist->irq_sgi_sources || |
| !dist->irq_spi_cpu || |
| !dist->irq_spi_target || |
| !dist->irq_pending_on_cpu || |
| !dist->irq_active_on_cpu) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < nr_cpus; i++) |
| ret |= vgic_init_bitmap(&dist->irq_spi_target[i], |
| nr_cpus, nr_irqs); |
| |
| if (ret) |
| goto out; |
| |
| ret = kvm->arch.vgic.vm_ops.init_model(kvm); |
| if (ret) |
| goto out; |
| |
| kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { |
| ret = vgic_vcpu_init_maps(vcpu, nr_irqs); |
| if (ret) { |
| kvm_err("VGIC: Failed to allocate vcpu memory\n"); |
| break; |
| } |
| |
| /* |
| * Enable and configure all SGIs to be edge-triggere and |
| * configure all PPIs as level-triggered. |
| */ |
| for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { |
| if (i < VGIC_NR_SGIS) { |
| /* SGIs */ |
| vgic_bitmap_set_irq_val(&dist->irq_enabled, |
| vcpu->vcpu_id, i, 1); |
| vgic_bitmap_set_irq_val(&dist->irq_cfg, |
| vcpu->vcpu_id, i, |
| VGIC_CFG_EDGE); |
| } else if (i < VGIC_NR_PRIVATE_IRQS) { |
| /* PPIs */ |
| vgic_bitmap_set_irq_val(&dist->irq_cfg, |
| vcpu->vcpu_id, i, |
| VGIC_CFG_LEVEL); |
| } |
| } |
| |
| vgic_enable(vcpu); |
| } |
| |
| out: |
| if (ret) |
| kvm_vgic_destroy(kvm); |
| |
| return ret; |
| } |
| |
| static int init_vgic_model(struct kvm *kvm, int type) |
| { |
| switch (type) { |
| case KVM_DEV_TYPE_ARM_VGIC_V2: |
| vgic_v2_init_emulation(kvm); |
| break; |
| #ifdef CONFIG_KVM_ARM_VGIC_V3 |
| case KVM_DEV_TYPE_ARM_VGIC_V3: |
| vgic_v3_init_emulation(kvm); |
| break; |
| #endif |
| default: |
| return -ENODEV; |
| } |
| |
| if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) |
| return -E2BIG; |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_vgic_early_init - Earliest possible vgic initialization stage |
| * |
| * No memory allocation should be performed here, only static init. |
| */ |
| void kvm_vgic_early_init(struct kvm *kvm) |
| { |
| spin_lock_init(&kvm->arch.vgic.lock); |
| spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock); |
| INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list); |
| } |
| |
| int kvm_vgic_create(struct kvm *kvm, u32 type) |
| { |
| int i, vcpu_lock_idx = -1, ret; |
| struct kvm_vcpu *vcpu; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (irqchip_in_kernel(kvm)) { |
| ret = -EEXIST; |
| goto out; |
| } |
| |
| /* |
| * This function is also called by the KVM_CREATE_IRQCHIP handler, |
| * which had no chance yet to check the availability of the GICv2 |
| * emulation. So check this here again. KVM_CREATE_DEVICE does |
| * the proper checks already. |
| */ |
| if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| /* |
| * Any time a vcpu is run, vcpu_load is called which tries to grab the |
| * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure |
| * that no other VCPUs are run while we create the vgic. |
| */ |
| ret = -EBUSY; |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!mutex_trylock(&vcpu->mutex)) |
| goto out_unlock; |
| vcpu_lock_idx = i; |
| } |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->arch.has_run_once) |
| goto out_unlock; |
| } |
| ret = 0; |
| |
| ret = init_vgic_model(kvm, type); |
| if (ret) |
| goto out_unlock; |
| |
| kvm->arch.vgic.in_kernel = true; |
| kvm->arch.vgic.vgic_model = type; |
| kvm->arch.vgic.vctrl_base = vgic->vctrl_base; |
| kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; |
| kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; |
| kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF; |
| |
| out_unlock: |
| for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { |
| vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); |
| mutex_unlock(&vcpu->mutex); |
| } |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| static int vgic_ioaddr_overlap(struct kvm *kvm) |
| { |
| phys_addr_t dist = kvm->arch.vgic.vgic_dist_base; |
| phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base; |
| |
| if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu)) |
| return 0; |
| if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) || |
| (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist)) |
| return -EBUSY; |
| return 0; |
| } |
| |
| static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, |
| phys_addr_t addr, phys_addr_t size) |
| { |
| int ret; |
| |
| if (addr & ~KVM_PHYS_MASK) |
| return -E2BIG; |
| |
| if (addr & (SZ_4K - 1)) |
| return -EINVAL; |
| |
| if (!IS_VGIC_ADDR_UNDEF(*ioaddr)) |
| return -EEXIST; |
| if (addr + size < addr) |
| return -EINVAL; |
| |
| *ioaddr = addr; |
| ret = vgic_ioaddr_overlap(kvm); |
| if (ret) |
| *ioaddr = VGIC_ADDR_UNDEF; |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_vgic_addr - set or get vgic VM base addresses |
| * @kvm: pointer to the vm struct |
| * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX |
| * @addr: pointer to address value |
| * @write: if true set the address in the VM address space, if false read the |
| * address |
| * |
| * Set or get the vgic base addresses for the distributor and the virtual CPU |
| * interface in the VM physical address space. These addresses are properties |
| * of the emulated core/SoC and therefore user space initially knows this |
| * information. |
| */ |
| int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) |
| { |
| int r = 0; |
| struct vgic_dist *vgic = &kvm->arch.vgic; |
| int type_needed; |
| phys_addr_t *addr_ptr, block_size; |
| phys_addr_t alignment; |
| |
| mutex_lock(&kvm->lock); |
| switch (type) { |
| case KVM_VGIC_V2_ADDR_TYPE_DIST: |
| type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; |
| addr_ptr = &vgic->vgic_dist_base; |
| block_size = KVM_VGIC_V2_DIST_SIZE; |
| alignment = SZ_4K; |
| break; |
| case KVM_VGIC_V2_ADDR_TYPE_CPU: |
| type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; |
| addr_ptr = &vgic->vgic_cpu_base; |
| block_size = KVM_VGIC_V2_CPU_SIZE; |
| alignment = SZ_4K; |
| break; |
| #ifdef CONFIG_KVM_ARM_VGIC_V3 |
| case KVM_VGIC_V3_ADDR_TYPE_DIST: |
| type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; |
| addr_ptr = &vgic->vgic_dist_base; |
| block_size = KVM_VGIC_V3_DIST_SIZE; |
| alignment = SZ_64K; |
| break; |
| case KVM_VGIC_V3_ADDR_TYPE_REDIST: |
| type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; |
| addr_ptr = &vgic->vgic_redist_base; |
| block_size = KVM_VGIC_V3_REDIST_SIZE; |
| alignment = SZ_64K; |
| break; |
| #endif |
| default: |
| r = -ENODEV; |
| goto out; |
| } |
| |
| if (vgic->vgic_model != type_needed) { |
| r = -ENODEV; |
| goto out; |
| } |
| |
| if (write) { |
| if (!IS_ALIGNED(*addr, alignment)) |
| r = -EINVAL; |
| else |
| r = vgic_ioaddr_assign(kvm, addr_ptr, *addr, |
| block_size); |
| } else { |
| *addr = *addr_ptr; |
| } |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| int r; |
| |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_ADDR: { |
| u64 __user *uaddr = (u64 __user *)(long)attr->addr; |
| u64 addr; |
| unsigned long type = (unsigned long)attr->attr; |
| |
| if (copy_from_user(&addr, uaddr, sizeof(addr))) |
| return -EFAULT; |
| |
| r = kvm_vgic_addr(dev->kvm, type, &addr, true); |
| return (r == -ENODEV) ? -ENXIO : r; |
| } |
| case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { |
| u32 __user *uaddr = (u32 __user *)(long)attr->addr; |
| u32 val; |
| int ret = 0; |
| |
| if (get_user(val, uaddr)) |
| return -EFAULT; |
| |
| /* |
| * We require: |
| * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs |
| * - at most 1024 interrupts |
| * - a multiple of 32 interrupts |
| */ |
| if (val < (VGIC_NR_PRIVATE_IRQS + 32) || |
| val > VGIC_MAX_IRQS || |
| (val & 31)) |
| return -EINVAL; |
| |
| mutex_lock(&dev->kvm->lock); |
| |
| if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs) |
| ret = -EBUSY; |
| else |
| dev->kvm->arch.vgic.nr_irqs = val; |
| |
| mutex_unlock(&dev->kvm->lock); |
| |
| return ret; |
| } |
| case KVM_DEV_ARM_VGIC_GRP_CTRL: { |
| switch (attr->attr) { |
| case KVM_DEV_ARM_VGIC_CTRL_INIT: |
| r = vgic_init(dev->kvm); |
| return r; |
| } |
| break; |
| } |
| } |
| |
| return -ENXIO; |
| } |
| |
| int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| int r = -ENXIO; |
| |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_ADDR: { |
| u64 __user *uaddr = (u64 __user *)(long)attr->addr; |
| u64 addr; |
| unsigned long type = (unsigned long)attr->attr; |
| |
| r = kvm_vgic_addr(dev->kvm, type, &addr, false); |
| if (r) |
| return (r == -ENODEV) ? -ENXIO : r; |
| |
| if (copy_to_user(uaddr, &addr, sizeof(addr))) |
| return -EFAULT; |
| break; |
| } |
| case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { |
| u32 __user *uaddr = (u32 __user *)(long)attr->addr; |
| |
| r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); |
| break; |
| } |
| |
| } |
| |
| return r; |
| } |
| |
| int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset) |
| { |
| if (vgic_find_range(ranges, 4, offset)) |
| return 0; |
| else |
| return -ENXIO; |
| } |
| |
| static void vgic_init_maintenance_interrupt(void *info) |
| { |
| enable_percpu_irq(vgic->maint_irq, 0); |
| } |
| |
| static int vgic_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *cpu) |
| { |
| switch (action) { |
| case CPU_STARTING: |
| case CPU_STARTING_FROZEN: |
| vgic_init_maintenance_interrupt(NULL); |
| break; |
| case CPU_DYING: |
| case CPU_DYING_FROZEN: |
| disable_percpu_irq(vgic->maint_irq); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block vgic_cpu_nb = { |
| .notifier_call = vgic_cpu_notify, |
| }; |
| |
| static const struct of_device_id vgic_ids[] = { |
| { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, }, |
| { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, }, |
| { .compatible = "arm,gic-400", .data = vgic_v2_probe, }, |
| { .compatible = "arm,gic-v3", .data = vgic_v3_probe, }, |
| {}, |
| }; |
| |
| int kvm_vgic_hyp_init(void) |
| { |
| const struct of_device_id *matched_id; |
| const int (*vgic_probe)(struct device_node *,const struct vgic_ops **, |
| const struct vgic_params **); |
| struct device_node *vgic_node; |
| int ret; |
| |
| vgic_node = of_find_matching_node_and_match(NULL, |
| vgic_ids, &matched_id); |
| if (!vgic_node) { |
| kvm_err("error: no compatible GIC node found\n"); |
| return -ENODEV; |
| } |
| |
| vgic_probe = matched_id->data; |
| ret = vgic_probe(vgic_node, &vgic_ops, &vgic); |
| if (ret) |
| return ret; |
| |
| ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler, |
| "vgic", kvm_get_running_vcpus()); |
| if (ret) { |
| kvm_err("Cannot register interrupt %d\n", vgic->maint_irq); |
| return ret; |
| } |
| |
| ret = __register_cpu_notifier(&vgic_cpu_nb); |
| if (ret) { |
| kvm_err("Cannot register vgic CPU notifier\n"); |
| goto out_free_irq; |
| } |
| |
| on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); |
| |
| return 0; |
| |
| out_free_irq: |
| free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); |
| return ret; |
| } |
| |
| int kvm_irq_map_gsi(struct kvm *kvm, |
| struct kvm_kernel_irq_routing_entry *entries, |
| int gsi) |
| { |
| return 0; |
| } |
| |
| int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin) |
| { |
| return pin; |
| } |
| |
| int kvm_set_irq(struct kvm *kvm, int irq_source_id, |
| u32 irq, int level, bool line_status) |
| { |
| unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS; |
| |
| trace_kvm_set_irq(irq, level, irq_source_id); |
| |
| BUG_ON(!vgic_initialized(kvm)); |
| |
| return kvm_vgic_inject_irq(kvm, 0, spi, level); |
| } |
| |
| /* MSI not implemented yet */ |
| int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, |
| struct kvm *kvm, int irq_source_id, |
| int level, bool line_status) |
| { |
| return 0; |
| } |