| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) STMicroelectronics 2018 - All Rights Reserved |
| * Author: Ludovic.barre@st.com for STMicroelectronics. |
| */ |
| #include <linux/bitfield.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/iopoll.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/card.h> |
| #include <linux/of_address.h> |
| #include <linux/reset.h> |
| #include <linux/scatterlist.h> |
| #include "mmci.h" |
| |
| #define SDMMC_LLI_BUF_LEN PAGE_SIZE |
| |
| #define DLYB_CR 0x0 |
| #define DLYB_CR_DEN BIT(0) |
| #define DLYB_CR_SEN BIT(1) |
| |
| #define DLYB_CFGR 0x4 |
| #define DLYB_CFGR_SEL_MASK GENMASK(3, 0) |
| #define DLYB_CFGR_UNIT_MASK GENMASK(14, 8) |
| #define DLYB_CFGR_LNG_MASK GENMASK(27, 16) |
| #define DLYB_CFGR_LNGF BIT(31) |
| |
| #define DLYB_NB_DELAY 11 |
| #define DLYB_CFGR_SEL_MAX (DLYB_NB_DELAY + 1) |
| #define DLYB_CFGR_UNIT_MAX 127 |
| |
| #define DLYB_LNG_TIMEOUT_US 1000 |
| #define SDMMC_VSWEND_TIMEOUT_US 10000 |
| |
| #define SYSCFG_DLYBSD_CR 0x0 |
| #define DLYBSD_CR_EN BIT(0) |
| #define DLYBSD_CR_RXTAPSEL_MASK GENMASK(6, 1) |
| #define DLYBSD_TAPSEL_NB 32 |
| #define DLYBSD_BYP_EN BIT(16) |
| #define DLYBSD_BYP_CMD GENMASK(21, 17) |
| #define DLYBSD_ANTIGLITCH_EN BIT(22) |
| |
| #define SYSCFG_DLYBSD_SR 0x4 |
| #define DLYBSD_SR_LOCK BIT(0) |
| #define DLYBSD_SR_RXTAPSEL_ACK BIT(1) |
| |
| #define DLYBSD_TIMEOUT_1S_IN_US 1000000 |
| |
| struct sdmmc_lli_desc { |
| u32 idmalar; |
| u32 idmabase; |
| u32 idmasize; |
| }; |
| |
| struct sdmmc_idma { |
| dma_addr_t sg_dma; |
| void *sg_cpu; |
| dma_addr_t bounce_dma_addr; |
| void *bounce_buf; |
| bool use_bounce_buffer; |
| }; |
| |
| struct sdmmc_dlyb; |
| |
| struct sdmmc_tuning_ops { |
| int (*dlyb_enable)(struct sdmmc_dlyb *dlyb); |
| void (*set_input_ck)(struct sdmmc_dlyb *dlyb); |
| int (*tuning_prepare)(struct mmci_host *host); |
| int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused, |
| int phase, bool sampler __maybe_unused); |
| }; |
| |
| struct sdmmc_dlyb { |
| void __iomem *base; |
| u32 unit; |
| u32 max; |
| struct sdmmc_tuning_ops *ops; |
| }; |
| |
| static int sdmmc_idma_validate_data(struct mmci_host *host, |
| struct mmc_data *data) |
| { |
| struct sdmmc_idma *idma = host->dma_priv; |
| struct device *dev = mmc_dev(host->mmc); |
| struct scatterlist *sg; |
| int i; |
| |
| /* |
| * idma has constraints on idmabase & idmasize for each element |
| * excepted the last element which has no constraint on idmasize |
| */ |
| idma->use_bounce_buffer = false; |
| for_each_sg(data->sg, sg, data->sg_len - 1, i) { |
| if (!IS_ALIGNED(sg->offset, sizeof(u32)) || |
| !IS_ALIGNED(sg->length, |
| host->variant->stm32_idmabsize_align)) { |
| dev_dbg(mmc_dev(host->mmc), |
| "unaligned scatterlist: ofst:%x length:%d\n", |
| data->sg->offset, data->sg->length); |
| goto use_bounce_buffer; |
| } |
| } |
| |
| if (!IS_ALIGNED(sg->offset, sizeof(u32))) { |
| dev_dbg(mmc_dev(host->mmc), |
| "unaligned last scatterlist: ofst:%x length:%d\n", |
| data->sg->offset, data->sg->length); |
| goto use_bounce_buffer; |
| } |
| |
| return 0; |
| |
| use_bounce_buffer: |
| if (!idma->bounce_buf) { |
| idma->bounce_buf = dmam_alloc_coherent(dev, |
| host->mmc->max_req_size, |
| &idma->bounce_dma_addr, |
| GFP_KERNEL); |
| if (!idma->bounce_buf) { |
| dev_err(dev, "Unable to map allocate DMA bounce buffer.\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| idma->use_bounce_buffer = true; |
| |
| return 0; |
| } |
| |
| static int _sdmmc_idma_prep_data(struct mmci_host *host, |
| struct mmc_data *data) |
| { |
| struct sdmmc_idma *idma = host->dma_priv; |
| |
| if (idma->use_bounce_buffer) { |
| if (data->flags & MMC_DATA_WRITE) { |
| unsigned int xfer_bytes = data->blksz * data->blocks; |
| |
| sg_copy_to_buffer(data->sg, data->sg_len, |
| idma->bounce_buf, xfer_bytes); |
| dma_wmb(); |
| } |
| } else { |
| int n_elem; |
| |
| n_elem = dma_map_sg(mmc_dev(host->mmc), |
| data->sg, |
| data->sg_len, |
| mmc_get_dma_dir(data)); |
| |
| if (!n_elem) { |
| dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n"); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| static int sdmmc_idma_prep_data(struct mmci_host *host, |
| struct mmc_data *data, bool next) |
| { |
| /* Check if job is already prepared. */ |
| if (!next && data->host_cookie == host->next_cookie) |
| return 0; |
| |
| return _sdmmc_idma_prep_data(host, data); |
| } |
| |
| static void sdmmc_idma_unprep_data(struct mmci_host *host, |
| struct mmc_data *data, int err) |
| { |
| struct sdmmc_idma *idma = host->dma_priv; |
| |
| if (idma->use_bounce_buffer) { |
| if (data->flags & MMC_DATA_READ) { |
| unsigned int xfer_bytes = data->blksz * data->blocks; |
| |
| sg_copy_from_buffer(data->sg, data->sg_len, |
| idma->bounce_buf, xfer_bytes); |
| } |
| } else { |
| dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, |
| mmc_get_dma_dir(data)); |
| } |
| } |
| |
| static int sdmmc_idma_setup(struct mmci_host *host) |
| { |
| struct sdmmc_idma *idma; |
| struct device *dev = mmc_dev(host->mmc); |
| |
| idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL); |
| if (!idma) |
| return -ENOMEM; |
| |
| host->dma_priv = idma; |
| |
| if (host->variant->dma_lli) { |
| idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN, |
| &idma->sg_dma, GFP_KERNEL); |
| if (!idma->sg_cpu) { |
| dev_err(dev, "Failed to alloc IDMA descriptor\n"); |
| return -ENOMEM; |
| } |
| host->mmc->max_segs = SDMMC_LLI_BUF_LEN / |
| sizeof(struct sdmmc_lli_desc); |
| host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask; |
| |
| host->mmc->max_req_size = SZ_1M; |
| } else { |
| host->mmc->max_segs = 1; |
| host->mmc->max_seg_size = host->mmc->max_req_size; |
| } |
| |
| return dma_set_max_seg_size(dev, host->mmc->max_seg_size); |
| } |
| |
| static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl) |
| |
| { |
| struct sdmmc_idma *idma = host->dma_priv; |
| struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu; |
| struct mmc_data *data = host->data; |
| struct scatterlist *sg; |
| int i; |
| |
| if (!host->variant->dma_lli || data->sg_len == 1 || |
| idma->use_bounce_buffer) { |
| u32 dma_addr; |
| |
| if (idma->use_bounce_buffer) |
| dma_addr = idma->bounce_dma_addr; |
| else |
| dma_addr = sg_dma_address(data->sg); |
| |
| writel_relaxed(dma_addr, |
| host->base + MMCI_STM32_IDMABASE0R); |
| writel_relaxed(MMCI_STM32_IDMAEN, |
| host->base + MMCI_STM32_IDMACTRLR); |
| return 0; |
| } |
| |
| for_each_sg(data->sg, sg, data->sg_len, i) { |
| desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc); |
| desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS |
| | MMCI_STM32_ABR; |
| desc[i].idmabase = sg_dma_address(sg); |
| desc[i].idmasize = sg_dma_len(sg); |
| } |
| |
| /* notice the end of link list */ |
| desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA; |
| |
| dma_wmb(); |
| writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR); |
| writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR); |
| writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R); |
| writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER); |
| writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN, |
| host->base + MMCI_STM32_IDMACTRLR); |
| |
| return 0; |
| } |
| |
| static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data) |
| { |
| writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR); |
| |
| if (!data->host_cookie) |
| sdmmc_idma_unprep_data(host, data, 0); |
| } |
| |
| static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired) |
| { |
| unsigned int clk = 0, ddr = 0; |
| |
| if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 || |
| host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) |
| ddr = MCI_STM32_CLK_DDR; |
| |
| /* |
| * cclk = mclk / (2 * clkdiv) |
| * clkdiv 0 => bypass |
| * in ddr mode bypass is not possible |
| */ |
| if (desired) { |
| if (desired >= host->mclk && !ddr) { |
| host->cclk = host->mclk; |
| } else { |
| clk = DIV_ROUND_UP(host->mclk, 2 * desired); |
| if (clk > MCI_STM32_CLK_CLKDIV_MSK) |
| clk = MCI_STM32_CLK_CLKDIV_MSK; |
| host->cclk = host->mclk / (2 * clk); |
| } |
| } else { |
| /* |
| * while power-on phase the clock can't be define to 0, |
| * Only power-off and power-cyc deactivate the clock. |
| * if desired clock is 0, set max divider |
| */ |
| clk = MCI_STM32_CLK_CLKDIV_MSK; |
| host->cclk = host->mclk / (2 * clk); |
| } |
| |
| /* Set actual clock for debug */ |
| if (host->mmc->ios.power_mode == MMC_POWER_ON) |
| host->mmc->actual_clock = host->cclk; |
| else |
| host->mmc->actual_clock = 0; |
| |
| if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) |
| clk |= MCI_STM32_CLK_WIDEBUS_4; |
| if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) |
| clk |= MCI_STM32_CLK_WIDEBUS_8; |
| |
| clk |= MCI_STM32_CLK_HWFCEN; |
| clk |= host->clk_reg_add; |
| clk |= ddr; |
| |
| if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) |
| clk |= MCI_STM32_CLK_BUSSPEED; |
| |
| mmci_write_clkreg(host, clk); |
| } |
| |
| static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb) |
| { |
| if (!dlyb || !dlyb->base) |
| return; |
| |
| /* Output clock = Input clock */ |
| writel_relaxed(0, dlyb->base + DLYB_CR); |
| } |
| |
| static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr) |
| { |
| struct mmc_ios ios = host->mmc->ios; |
| struct sdmmc_dlyb *dlyb = host->variant_priv; |
| |
| /* adds OF options */ |
| pwr = host->pwr_reg_add; |
| |
| if (dlyb && dlyb->ops->set_input_ck) |
| dlyb->ops->set_input_ck(dlyb); |
| |
| if (ios.power_mode == MMC_POWER_OFF) { |
| /* Only a reset could power-off sdmmc */ |
| reset_control_assert(host->rst); |
| udelay(2); |
| reset_control_deassert(host->rst); |
| |
| /* |
| * Set the SDMMC in Power-cycle state. |
| * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK |
| * are driven low, to prevent the Card from being supplied |
| * through the signal lines. |
| */ |
| mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr); |
| } else if (ios.power_mode == MMC_POWER_ON) { |
| /* |
| * After power-off (reset): the irq mask defined in probe |
| * functionis lost |
| * ault irq mask (probe) must be activated |
| */ |
| writel(MCI_IRQENABLE | host->variant->start_err, |
| host->base + MMCIMASK0); |
| |
| /* preserves voltage switch bits */ |
| pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN | |
| MCI_STM32_VSWITCH); |
| |
| /* |
| * After a power-cycle state, we must set the SDMMC in |
| * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are |
| * driven high. Then we can set the SDMMC to Power-on state |
| */ |
| mmci_write_pwrreg(host, MCI_PWR_OFF | pwr); |
| mdelay(1); |
| mmci_write_pwrreg(host, MCI_PWR_ON | pwr); |
| } |
| } |
| |
| static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host) |
| { |
| u32 datactrl; |
| |
| datactrl = mmci_dctrl_blksz(host); |
| |
| if (host->hw_revision >= 3) { |
| u32 thr = 0; |
| |
| if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 || |
| host->mmc->ios.timing == MMC_TIMING_MMC_HS200) { |
| thr = ffs(min_t(unsigned int, host->data->blksz, |
| host->variant->fifosize)); |
| thr = min_t(u32, thr, MMCI_STM32_THR_MASK); |
| } |
| |
| writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR); |
| } |
| |
| if (host->mmc->card && mmc_card_sdio(host->mmc->card) && |
| host->data->blocks == 1) |
| datactrl |= MCI_DPSM_STM32_MODE_SDIO; |
| else if (host->data->stop && !host->mrq->sbc) |
| datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP; |
| else |
| datactrl |= MCI_DPSM_STM32_MODE_BLOCK; |
| |
| return datactrl; |
| } |
| |
| static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd, |
| u32 status, u32 err_msk) |
| { |
| void __iomem *base = host->base; |
| u32 busy_d0, busy_d0end, mask, sdmmc_status; |
| |
| mask = readl_relaxed(base + MMCIMASK0); |
| sdmmc_status = readl_relaxed(base + MMCISTATUS); |
| busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END; |
| busy_d0 = sdmmc_status & MCI_STM32_BUSYD0; |
| |
| /* complete if there is an error or busy_d0end */ |
| if ((status & err_msk) || busy_d0end) |
| goto complete; |
| |
| /* |
| * On response the busy signaling is reflected in the BUSYD0 flag. |
| * if busy_d0 is in-progress we must activate busyd0end interrupt |
| * to wait this completion. Else this request has no busy step. |
| */ |
| if (busy_d0) { |
| if (!host->busy_status) { |
| writel_relaxed(mask | host->variant->busy_detect_mask, |
| base + MMCIMASK0); |
| host->busy_status = status & |
| (MCI_CMDSENT | MCI_CMDRESPEND); |
| } |
| return false; |
| } |
| |
| complete: |
| if (host->busy_status) { |
| writel_relaxed(mask & ~host->variant->busy_detect_mask, |
| base + MMCIMASK0); |
| host->busy_status = 0; |
| } |
| |
| writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR); |
| |
| return true; |
| } |
| |
| static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb) |
| { |
| writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR); |
| |
| return 0; |
| } |
| |
| static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb, |
| int unit, int phase, bool sampler) |
| { |
| u32 cfgr; |
| |
| writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR); |
| |
| cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) | |
| FIELD_PREP(DLYB_CFGR_SEL_MASK, phase); |
| writel_relaxed(cfgr, dlyb->base + DLYB_CFGR); |
| |
| if (!sampler) |
| writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR); |
| |
| return 0; |
| } |
| |
| static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host) |
| { |
| struct sdmmc_dlyb *dlyb = host->variant_priv; |
| u32 cfgr; |
| int i, lng, ret; |
| |
| for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) { |
| dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true); |
| |
| ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr, |
| (cfgr & DLYB_CFGR_LNGF), |
| 1, DLYB_LNG_TIMEOUT_US); |
| if (ret) { |
| dev_warn(mmc_dev(host->mmc), |
| "delay line cfg timeout unit:%d cfgr:%d\n", |
| i, cfgr); |
| continue; |
| } |
| |
| lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr); |
| if (lng < BIT(DLYB_NB_DELAY) && lng > 0) |
| break; |
| } |
| |
| if (i > DLYB_CFGR_UNIT_MAX) |
| return -EINVAL; |
| |
| dlyb->unit = i; |
| dlyb->max = __fls(lng); |
| |
| return 0; |
| } |
| |
| static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb) |
| { |
| u32 cr, sr; |
| |
| cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR); |
| cr |= DLYBSD_CR_EN; |
| |
| writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR); |
| |
| return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR, |
| sr, sr & DLYBSD_SR_LOCK, 1, |
| DLYBSD_TIMEOUT_1S_IN_US); |
| } |
| |
| static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb, |
| int unit __maybe_unused, int phase, |
| bool sampler __maybe_unused) |
| { |
| u32 cr, sr; |
| |
| cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR); |
| cr &= ~DLYBSD_CR_RXTAPSEL_MASK; |
| cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase); |
| |
| writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR); |
| |
| return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR, |
| sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1, |
| DLYBSD_TIMEOUT_1S_IN_US); |
| } |
| |
| static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host) |
| { |
| struct sdmmc_dlyb *dlyb = host->variant_priv; |
| |
| dlyb->max = DLYBSD_TAPSEL_NB; |
| |
| return 0; |
| } |
| |
| static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode) |
| { |
| struct sdmmc_dlyb *dlyb = host->variant_priv; |
| int cur_len = 0, max_len = 0, end_of_len = 0; |
| int phase, ret; |
| |
| for (phase = 0; phase <= dlyb->max; phase++) { |
| ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false); |
| if (ret) { |
| dev_err(mmc_dev(host->mmc), "tuning config failed\n"); |
| return ret; |
| } |
| |
| if (mmc_send_tuning(host->mmc, opcode, NULL)) { |
| cur_len = 0; |
| } else { |
| cur_len++; |
| if (cur_len > max_len) { |
| max_len = cur_len; |
| end_of_len = phase; |
| } |
| } |
| } |
| |
| if (!max_len) { |
| dev_err(mmc_dev(host->mmc), "no tuning point found\n"); |
| return -EINVAL; |
| } |
| |
| if (dlyb->ops->set_input_ck) |
| dlyb->ops->set_input_ck(dlyb); |
| |
| phase = end_of_len - max_len / 2; |
| ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false); |
| if (ret) { |
| dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n"); |
| return ret; |
| } |
| |
| dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n", |
| dlyb->unit, dlyb->max, phase); |
| |
| return 0; |
| } |
| |
| static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct sdmmc_dlyb *dlyb = host->variant_priv; |
| u32 clk; |
| int ret; |
| |
| if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 && |
| host->mmc->ios.timing != MMC_TIMING_MMC_HS200) || |
| host->mmc->actual_clock <= 50000000) |
| return 0; |
| |
| if (!dlyb || !dlyb->base) |
| return -EINVAL; |
| |
| ret = dlyb->ops->dlyb_enable(dlyb); |
| if (ret) |
| return ret; |
| |
| /* |
| * SDMMC_FBCK is selected when an external Delay Block is needed |
| * with SDR104 or HS200. |
| */ |
| clk = host->clk_reg; |
| clk &= ~MCI_STM32_CLK_SEL_MSK; |
| clk |= MCI_STM32_CLK_SELFBCK; |
| mmci_write_clkreg(host, clk); |
| |
| ret = dlyb->ops->tuning_prepare(host); |
| if (ret) |
| return ret; |
| |
| return sdmmc_dlyb_phase_tuning(host, opcode); |
| } |
| |
| static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host) |
| { |
| /* clear the voltage switch completion flag */ |
| writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR); |
| /* enable Voltage switch procedure */ |
| mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN); |
| } |
| |
| static int sdmmc_post_sig_volt_switch(struct mmci_host *host, |
| struct mmc_ios *ios) |
| { |
| unsigned long flags; |
| u32 status; |
| int ret = 0; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 && |
| host->pwr_reg & MCI_STM32_VSWITCHEN) { |
| mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH); |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| /* wait voltage switch completion while 10ms */ |
| ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS, |
| status, |
| (status & MCI_STM32_VSWEND), |
| 10, SDMMC_VSWEND_TIMEOUT_US); |
| |
| writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC, |
| host->base + MMCICLEAR); |
| spin_lock_irqsave(&host->lock, flags); |
| mmci_write_pwrreg(host, host->pwr_reg & |
| ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH)); |
| } |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| return ret; |
| } |
| |
| static struct mmci_host_ops sdmmc_variant_ops = { |
| .validate_data = sdmmc_idma_validate_data, |
| .prep_data = sdmmc_idma_prep_data, |
| .unprep_data = sdmmc_idma_unprep_data, |
| .get_datactrl_cfg = sdmmc_get_dctrl_cfg, |
| .dma_setup = sdmmc_idma_setup, |
| .dma_start = sdmmc_idma_start, |
| .dma_finalize = sdmmc_idma_finalize, |
| .set_clkreg = mmci_sdmmc_set_clkreg, |
| .set_pwrreg = mmci_sdmmc_set_pwrreg, |
| .busy_complete = sdmmc_busy_complete, |
| .pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch, |
| .post_sig_volt_switch = sdmmc_post_sig_volt_switch, |
| }; |
| |
| static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = { |
| .dlyb_enable = sdmmc_dlyb_mp15_enable, |
| .set_input_ck = sdmmc_dlyb_mp15_input_ck, |
| .tuning_prepare = sdmmc_dlyb_mp15_prepare, |
| .set_cfg = sdmmc_dlyb_mp15_set_cfg, |
| }; |
| |
| static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = { |
| .dlyb_enable = sdmmc_dlyb_mp25_enable, |
| .tuning_prepare = sdmmc_dlyb_mp25_prepare, |
| .set_cfg = sdmmc_dlyb_mp25_set_cfg, |
| }; |
| |
| void sdmmc_variant_init(struct mmci_host *host) |
| { |
| struct device_node *np = host->mmc->parent->of_node; |
| void __iomem *base_dlyb; |
| struct sdmmc_dlyb *dlyb; |
| |
| host->ops = &sdmmc_variant_ops; |
| host->pwr_reg = readl_relaxed(host->base + MMCIPOWER); |
| |
| base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL); |
| if (IS_ERR(base_dlyb)) |
| return; |
| |
| dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL); |
| if (!dlyb) |
| return; |
| |
| dlyb->base = base_dlyb; |
| if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2")) |
| dlyb->ops = &dlyb_tuning_mp25_ops; |
| else |
| dlyb->ops = &dlyb_tuning_mp15_ops; |
| |
| host->variant_priv = dlyb; |
| host->mmc_ops->execute_tuning = sdmmc_execute_tuning; |
| } |