| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * ESSIV skcipher and aead template for block encryption |
| * |
| * This template encapsulates the ESSIV IV generation algorithm used by |
| * dm-crypt and fscrypt, which converts the initial vector for the skcipher |
| * used for block encryption, by encrypting it using the hash of the |
| * skcipher key as encryption key. Usually, the input IV is a 64-bit sector |
| * number in LE representation zero-padded to the size of the IV, but this |
| * is not assumed by this driver. |
| * |
| * The typical use of this template is to instantiate the skcipher |
| * 'essiv(cbc(aes),sha256)', which is the only instantiation used by |
| * fscrypt, and the most relevant one for dm-crypt. However, dm-crypt |
| * also permits ESSIV to be used in combination with the authenc template, |
| * e.g., 'essiv(authenc(hmac(sha256),cbc(aes)),sha256)', in which case |
| * we need to instantiate an aead that accepts the same special key format |
| * as the authenc template, and deals with the way the encrypted IV is |
| * embedded into the AAD area of the aead request. This means the AEAD |
| * flavor produced by this template is tightly coupled to the way dm-crypt |
| * happens to use it. |
| * |
| * Copyright (c) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org> |
| * |
| * Heavily based on: |
| * adiantum length-preserving encryption mode |
| * |
| * Copyright 2018 Google LLC |
| */ |
| |
| #include <crypto/authenc.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/module.h> |
| |
| #include "internal.h" |
| |
| struct essiv_instance_ctx { |
| union { |
| struct crypto_skcipher_spawn skcipher_spawn; |
| struct crypto_aead_spawn aead_spawn; |
| } u; |
| char essiv_cipher_name[CRYPTO_MAX_ALG_NAME]; |
| char shash_driver_name[CRYPTO_MAX_ALG_NAME]; |
| }; |
| |
| struct essiv_tfm_ctx { |
| union { |
| struct crypto_skcipher *skcipher; |
| struct crypto_aead *aead; |
| } u; |
| struct crypto_cipher *essiv_cipher; |
| struct crypto_shash *hash; |
| int ivoffset; |
| }; |
| |
| struct essiv_aead_request_ctx { |
| struct scatterlist sg[4]; |
| u8 *assoc; |
| struct aead_request aead_req; |
| }; |
| |
| static int essiv_skcipher_setkey(struct crypto_skcipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| SHASH_DESC_ON_STACK(desc, tctx->hash); |
| u8 salt[HASH_MAX_DIGESTSIZE]; |
| int err; |
| |
| crypto_skcipher_clear_flags(tctx->u.skcipher, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(tctx->u.skcipher, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_skcipher_setkey(tctx->u.skcipher, key, keylen); |
| crypto_skcipher_set_flags(tfm, |
| crypto_skcipher_get_flags(tctx->u.skcipher) & |
| CRYPTO_TFM_RES_MASK); |
| if (err) |
| return err; |
| |
| desc->tfm = tctx->hash; |
| err = crypto_shash_digest(desc, key, keylen, salt); |
| if (err) |
| return err; |
| |
| crypto_cipher_clear_flags(tctx->essiv_cipher, CRYPTO_TFM_REQ_MASK); |
| crypto_cipher_set_flags(tctx->essiv_cipher, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_cipher_setkey(tctx->essiv_cipher, salt, |
| crypto_shash_digestsize(tctx->hash)); |
| crypto_skcipher_set_flags(tfm, |
| crypto_cipher_get_flags(tctx->essiv_cipher) & |
| CRYPTO_TFM_RES_MASK); |
| |
| return err; |
| } |
| |
| static int essiv_aead_setkey(struct crypto_aead *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); |
| SHASH_DESC_ON_STACK(desc, tctx->hash); |
| struct crypto_authenc_keys keys; |
| u8 salt[HASH_MAX_DIGESTSIZE]; |
| int err; |
| |
| crypto_aead_clear_flags(tctx->u.aead, CRYPTO_TFM_REQ_MASK); |
| crypto_aead_set_flags(tctx->u.aead, crypto_aead_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_aead_setkey(tctx->u.aead, key, keylen); |
| crypto_aead_set_flags(tfm, crypto_aead_get_flags(tctx->u.aead) & |
| CRYPTO_TFM_RES_MASK); |
| if (err) |
| return err; |
| |
| if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) { |
| crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| desc->tfm = tctx->hash; |
| err = crypto_shash_init(desc) ?: |
| crypto_shash_update(desc, keys.enckey, keys.enckeylen) ?: |
| crypto_shash_finup(desc, keys.authkey, keys.authkeylen, salt); |
| if (err) |
| return err; |
| |
| crypto_cipher_clear_flags(tctx->essiv_cipher, CRYPTO_TFM_REQ_MASK); |
| crypto_cipher_set_flags(tctx->essiv_cipher, crypto_aead_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_cipher_setkey(tctx->essiv_cipher, salt, |
| crypto_shash_digestsize(tctx->hash)); |
| crypto_aead_set_flags(tfm, crypto_cipher_get_flags(tctx->essiv_cipher) & |
| CRYPTO_TFM_RES_MASK); |
| |
| return err; |
| } |
| |
| static int essiv_aead_setauthsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); |
| |
| return crypto_aead_setauthsize(tctx->u.aead, authsize); |
| } |
| |
| static void essiv_skcipher_done(struct crypto_async_request *areq, int err) |
| { |
| struct skcipher_request *req = areq->data; |
| |
| skcipher_request_complete(req, err); |
| } |
| |
| static int essiv_skcipher_crypt(struct skcipher_request *req, bool enc) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct skcipher_request *subreq = skcipher_request_ctx(req); |
| |
| crypto_cipher_encrypt_one(tctx->essiv_cipher, req->iv, req->iv); |
| |
| skcipher_request_set_tfm(subreq, tctx->u.skcipher); |
| skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, |
| req->iv); |
| skcipher_request_set_callback(subreq, skcipher_request_flags(req), |
| essiv_skcipher_done, req); |
| |
| return enc ? crypto_skcipher_encrypt(subreq) : |
| crypto_skcipher_decrypt(subreq); |
| } |
| |
| static int essiv_skcipher_encrypt(struct skcipher_request *req) |
| { |
| return essiv_skcipher_crypt(req, true); |
| } |
| |
| static int essiv_skcipher_decrypt(struct skcipher_request *req) |
| { |
| return essiv_skcipher_crypt(req, false); |
| } |
| |
| static void essiv_aead_done(struct crypto_async_request *areq, int err) |
| { |
| struct aead_request *req = areq->data; |
| struct essiv_aead_request_ctx *rctx = aead_request_ctx(req); |
| |
| kfree(rctx->assoc); |
| aead_request_complete(req, err); |
| } |
| |
| static int essiv_aead_crypt(struct aead_request *req, bool enc) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| const struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); |
| struct essiv_aead_request_ctx *rctx = aead_request_ctx(req); |
| struct aead_request *subreq = &rctx->aead_req; |
| struct scatterlist *src = req->src; |
| int err; |
| |
| crypto_cipher_encrypt_one(tctx->essiv_cipher, req->iv, req->iv); |
| |
| /* |
| * dm-crypt embeds the sector number and the IV in the AAD region, so |
| * we have to copy the converted IV into the right scatterlist before |
| * we pass it on. |
| */ |
| rctx->assoc = NULL; |
| if (req->src == req->dst || !enc) { |
| scatterwalk_map_and_copy(req->iv, req->dst, |
| req->assoclen - crypto_aead_ivsize(tfm), |
| crypto_aead_ivsize(tfm), 1); |
| } else { |
| u8 *iv = (u8 *)aead_request_ctx(req) + tctx->ivoffset; |
| int ivsize = crypto_aead_ivsize(tfm); |
| int ssize = req->assoclen - ivsize; |
| struct scatterlist *sg; |
| int nents; |
| |
| if (ssize < 0) |
| return -EINVAL; |
| |
| nents = sg_nents_for_len(req->src, ssize); |
| if (nents < 0) |
| return -EINVAL; |
| |
| memcpy(iv, req->iv, ivsize); |
| sg_init_table(rctx->sg, 4); |
| |
| if (unlikely(nents > 1)) { |
| /* |
| * This is a case that rarely occurs in practice, but |
| * for correctness, we have to deal with it nonetheless. |
| */ |
| rctx->assoc = kmalloc(ssize, GFP_ATOMIC); |
| if (!rctx->assoc) |
| return -ENOMEM; |
| |
| scatterwalk_map_and_copy(rctx->assoc, req->src, 0, |
| ssize, 0); |
| sg_set_buf(rctx->sg, rctx->assoc, ssize); |
| } else { |
| sg_set_page(rctx->sg, sg_page(req->src), ssize, |
| req->src->offset); |
| } |
| |
| sg_set_buf(rctx->sg + 1, iv, ivsize); |
| sg = scatterwalk_ffwd(rctx->sg + 2, req->src, req->assoclen); |
| if (sg != rctx->sg + 2) |
| sg_chain(rctx->sg, 3, sg); |
| |
| src = rctx->sg; |
| } |
| |
| aead_request_set_tfm(subreq, tctx->u.aead); |
| aead_request_set_ad(subreq, req->assoclen); |
| aead_request_set_callback(subreq, aead_request_flags(req), |
| essiv_aead_done, req); |
| aead_request_set_crypt(subreq, src, req->dst, req->cryptlen, req->iv); |
| |
| err = enc ? crypto_aead_encrypt(subreq) : |
| crypto_aead_decrypt(subreq); |
| |
| if (rctx->assoc && err != -EINPROGRESS) |
| kfree(rctx->assoc); |
| return err; |
| } |
| |
| static int essiv_aead_encrypt(struct aead_request *req) |
| { |
| return essiv_aead_crypt(req, true); |
| } |
| |
| static int essiv_aead_decrypt(struct aead_request *req) |
| { |
| return essiv_aead_crypt(req, false); |
| } |
| |
| static int essiv_init_tfm(struct essiv_instance_ctx *ictx, |
| struct essiv_tfm_ctx *tctx) |
| { |
| struct crypto_cipher *essiv_cipher; |
| struct crypto_shash *hash; |
| int err; |
| |
| essiv_cipher = crypto_alloc_cipher(ictx->essiv_cipher_name, 0, 0); |
| if (IS_ERR(essiv_cipher)) |
| return PTR_ERR(essiv_cipher); |
| |
| hash = crypto_alloc_shash(ictx->shash_driver_name, 0, 0); |
| if (IS_ERR(hash)) { |
| err = PTR_ERR(hash); |
| goto err_free_essiv_cipher; |
| } |
| |
| tctx->essiv_cipher = essiv_cipher; |
| tctx->hash = hash; |
| |
| return 0; |
| |
| err_free_essiv_cipher: |
| crypto_free_cipher(essiv_cipher); |
| return err; |
| } |
| |
| static int essiv_skcipher_init_tfm(struct crypto_skcipher *tfm) |
| { |
| struct skcipher_instance *inst = skcipher_alg_instance(tfm); |
| struct essiv_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct crypto_skcipher *skcipher; |
| int err; |
| |
| skcipher = crypto_spawn_skcipher(&ictx->u.skcipher_spawn); |
| if (IS_ERR(skcipher)) |
| return PTR_ERR(skcipher); |
| |
| crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) + |
| crypto_skcipher_reqsize(skcipher)); |
| |
| err = essiv_init_tfm(ictx, tctx); |
| if (err) { |
| crypto_free_skcipher(skcipher); |
| return err; |
| } |
| |
| tctx->u.skcipher = skcipher; |
| return 0; |
| } |
| |
| static int essiv_aead_init_tfm(struct crypto_aead *tfm) |
| { |
| struct aead_instance *inst = aead_alg_instance(tfm); |
| struct essiv_instance_ctx *ictx = aead_instance_ctx(inst); |
| struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); |
| struct crypto_aead *aead; |
| unsigned int subreq_size; |
| int err; |
| |
| BUILD_BUG_ON(offsetofend(struct essiv_aead_request_ctx, aead_req) != |
| sizeof(struct essiv_aead_request_ctx)); |
| |
| aead = crypto_spawn_aead(&ictx->u.aead_spawn); |
| if (IS_ERR(aead)) |
| return PTR_ERR(aead); |
| |
| subreq_size = FIELD_SIZEOF(struct essiv_aead_request_ctx, aead_req) + |
| crypto_aead_reqsize(aead); |
| |
| tctx->ivoffset = offsetof(struct essiv_aead_request_ctx, aead_req) + |
| subreq_size; |
| crypto_aead_set_reqsize(tfm, tctx->ivoffset + crypto_aead_ivsize(aead)); |
| |
| err = essiv_init_tfm(ictx, tctx); |
| if (err) { |
| crypto_free_aead(aead); |
| return err; |
| } |
| |
| tctx->u.aead = aead; |
| return 0; |
| } |
| |
| static void essiv_skcipher_exit_tfm(struct crypto_skcipher *tfm) |
| { |
| struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| |
| crypto_free_skcipher(tctx->u.skcipher); |
| crypto_free_cipher(tctx->essiv_cipher); |
| crypto_free_shash(tctx->hash); |
| } |
| |
| static void essiv_aead_exit_tfm(struct crypto_aead *tfm) |
| { |
| struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); |
| |
| crypto_free_aead(tctx->u.aead); |
| crypto_free_cipher(tctx->essiv_cipher); |
| crypto_free_shash(tctx->hash); |
| } |
| |
| static void essiv_skcipher_free_instance(struct skcipher_instance *inst) |
| { |
| struct essiv_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| |
| crypto_drop_skcipher(&ictx->u.skcipher_spawn); |
| kfree(inst); |
| } |
| |
| static void essiv_aead_free_instance(struct aead_instance *inst) |
| { |
| struct essiv_instance_ctx *ictx = aead_instance_ctx(inst); |
| |
| crypto_drop_aead(&ictx->u.aead_spawn); |
| kfree(inst); |
| } |
| |
| static bool parse_cipher_name(char *essiv_cipher_name, const char *cra_name) |
| { |
| const char *p, *q; |
| int len; |
| |
| /* find the last opening parens */ |
| p = strrchr(cra_name, '('); |
| if (!p++) |
| return false; |
| |
| /* find the first closing parens in the tail of the string */ |
| q = strchr(p, ')'); |
| if (!q) |
| return false; |
| |
| len = q - p; |
| if (len >= CRYPTO_MAX_ALG_NAME) |
| return false; |
| |
| memcpy(essiv_cipher_name, p, len); |
| essiv_cipher_name[len] = '\0'; |
| return true; |
| } |
| |
| static bool essiv_supported_algorithms(const char *essiv_cipher_name, |
| struct shash_alg *hash_alg, |
| int ivsize) |
| { |
| struct crypto_alg *alg; |
| bool ret = false; |
| |
| alg = crypto_alg_mod_lookup(essiv_cipher_name, |
| CRYPTO_ALG_TYPE_CIPHER, |
| CRYPTO_ALG_TYPE_MASK); |
| if (IS_ERR(alg)) |
| return false; |
| |
| if (hash_alg->digestsize < alg->cra_cipher.cia_min_keysize || |
| hash_alg->digestsize > alg->cra_cipher.cia_max_keysize) |
| goto out; |
| |
| if (ivsize != alg->cra_blocksize) |
| goto out; |
| |
| if (crypto_shash_alg_needs_key(hash_alg)) |
| goto out; |
| |
| ret = true; |
| |
| out: |
| crypto_mod_put(alg); |
| return ret; |
| } |
| |
| static int essiv_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| struct crypto_attr_type *algt; |
| const char *inner_cipher_name; |
| const char *shash_name; |
| struct skcipher_instance *skcipher_inst = NULL; |
| struct aead_instance *aead_inst = NULL; |
| struct crypto_instance *inst; |
| struct crypto_alg *base, *block_base; |
| struct essiv_instance_ctx *ictx; |
| struct skcipher_alg *skcipher_alg = NULL; |
| struct aead_alg *aead_alg = NULL; |
| struct crypto_alg *_hash_alg; |
| struct shash_alg *hash_alg; |
| int ivsize; |
| u32 type; |
| int err; |
| |
| algt = crypto_get_attr_type(tb); |
| if (IS_ERR(algt)) |
| return PTR_ERR(algt); |
| |
| inner_cipher_name = crypto_attr_alg_name(tb[1]); |
| if (IS_ERR(inner_cipher_name)) |
| return PTR_ERR(inner_cipher_name); |
| |
| shash_name = crypto_attr_alg_name(tb[2]); |
| if (IS_ERR(shash_name)) |
| return PTR_ERR(shash_name); |
| |
| type = algt->type & algt->mask; |
| |
| switch (type) { |
| case CRYPTO_ALG_TYPE_SKCIPHER: |
| skcipher_inst = kzalloc(sizeof(*skcipher_inst) + |
| sizeof(*ictx), GFP_KERNEL); |
| if (!skcipher_inst) |
| return -ENOMEM; |
| inst = skcipher_crypto_instance(skcipher_inst); |
| base = &skcipher_inst->alg.base; |
| ictx = crypto_instance_ctx(inst); |
| |
| /* Symmetric cipher, e.g., "cbc(aes)" */ |
| crypto_set_skcipher_spawn(&ictx->u.skcipher_spawn, inst); |
| err = crypto_grab_skcipher(&ictx->u.skcipher_spawn, |
| inner_cipher_name, 0, |
| crypto_requires_sync(algt->type, |
| algt->mask)); |
| if (err) |
| goto out_free_inst; |
| skcipher_alg = crypto_spawn_skcipher_alg(&ictx->u.skcipher_spawn); |
| block_base = &skcipher_alg->base; |
| ivsize = crypto_skcipher_alg_ivsize(skcipher_alg); |
| break; |
| |
| case CRYPTO_ALG_TYPE_AEAD: |
| aead_inst = kzalloc(sizeof(*aead_inst) + |
| sizeof(*ictx), GFP_KERNEL); |
| if (!aead_inst) |
| return -ENOMEM; |
| inst = aead_crypto_instance(aead_inst); |
| base = &aead_inst->alg.base; |
| ictx = crypto_instance_ctx(inst); |
| |
| /* AEAD cipher, e.g., "authenc(hmac(sha256),cbc(aes))" */ |
| crypto_set_aead_spawn(&ictx->u.aead_spawn, inst); |
| err = crypto_grab_aead(&ictx->u.aead_spawn, |
| inner_cipher_name, 0, |
| crypto_requires_sync(algt->type, |
| algt->mask)); |
| if (err) |
| goto out_free_inst; |
| aead_alg = crypto_spawn_aead_alg(&ictx->u.aead_spawn); |
| block_base = &aead_alg->base; |
| if (!strstarts(block_base->cra_name, "authenc(")) { |
| pr_warn("Only authenc() type AEADs are supported by ESSIV\n"); |
| err = -EINVAL; |
| goto out_drop_skcipher; |
| } |
| ivsize = aead_alg->ivsize; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| if (!parse_cipher_name(ictx->essiv_cipher_name, block_base->cra_name)) { |
| pr_warn("Failed to parse ESSIV cipher name from skcipher cra_name\n"); |
| err = -EINVAL; |
| goto out_drop_skcipher; |
| } |
| |
| /* Synchronous hash, e.g., "sha256" */ |
| _hash_alg = crypto_alg_mod_lookup(shash_name, |
| CRYPTO_ALG_TYPE_SHASH, |
| CRYPTO_ALG_TYPE_MASK); |
| if (IS_ERR(_hash_alg)) { |
| err = PTR_ERR(_hash_alg); |
| goto out_drop_skcipher; |
| } |
| hash_alg = __crypto_shash_alg(_hash_alg); |
| |
| /* Check the set of algorithms */ |
| if (!essiv_supported_algorithms(ictx->essiv_cipher_name, hash_alg, |
| ivsize)) { |
| pr_warn("Unsupported essiv instantiation: essiv(%s,%s)\n", |
| block_base->cra_name, hash_alg->base.cra_name); |
| err = -EINVAL; |
| goto out_free_hash; |
| } |
| |
| /* record the driver name so we can instantiate this exact algo later */ |
| strlcpy(ictx->shash_driver_name, hash_alg->base.cra_driver_name, |
| CRYPTO_MAX_ALG_NAME); |
| |
| /* Instance fields */ |
| |
| err = -ENAMETOOLONG; |
| if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, |
| "essiv(%s,%s)", block_base->cra_name, |
| hash_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) |
| goto out_free_hash; |
| if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| "essiv(%s,%s)", block_base->cra_driver_name, |
| hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) |
| goto out_free_hash; |
| |
| base->cra_flags = block_base->cra_flags & CRYPTO_ALG_ASYNC; |
| base->cra_blocksize = block_base->cra_blocksize; |
| base->cra_ctxsize = sizeof(struct essiv_tfm_ctx); |
| base->cra_alignmask = block_base->cra_alignmask; |
| base->cra_priority = block_base->cra_priority; |
| |
| if (type == CRYPTO_ALG_TYPE_SKCIPHER) { |
| skcipher_inst->alg.setkey = essiv_skcipher_setkey; |
| skcipher_inst->alg.encrypt = essiv_skcipher_encrypt; |
| skcipher_inst->alg.decrypt = essiv_skcipher_decrypt; |
| skcipher_inst->alg.init = essiv_skcipher_init_tfm; |
| skcipher_inst->alg.exit = essiv_skcipher_exit_tfm; |
| |
| skcipher_inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(skcipher_alg); |
| skcipher_inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(skcipher_alg); |
| skcipher_inst->alg.ivsize = ivsize; |
| skcipher_inst->alg.chunksize = crypto_skcipher_alg_chunksize(skcipher_alg); |
| skcipher_inst->alg.walksize = crypto_skcipher_alg_walksize(skcipher_alg); |
| |
| skcipher_inst->free = essiv_skcipher_free_instance; |
| |
| err = skcipher_register_instance(tmpl, skcipher_inst); |
| } else { |
| aead_inst->alg.setkey = essiv_aead_setkey; |
| aead_inst->alg.setauthsize = essiv_aead_setauthsize; |
| aead_inst->alg.encrypt = essiv_aead_encrypt; |
| aead_inst->alg.decrypt = essiv_aead_decrypt; |
| aead_inst->alg.init = essiv_aead_init_tfm; |
| aead_inst->alg.exit = essiv_aead_exit_tfm; |
| |
| aead_inst->alg.ivsize = ivsize; |
| aead_inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(aead_alg); |
| aead_inst->alg.chunksize = crypto_aead_alg_chunksize(aead_alg); |
| |
| aead_inst->free = essiv_aead_free_instance; |
| |
| err = aead_register_instance(tmpl, aead_inst); |
| } |
| |
| if (err) |
| goto out_free_hash; |
| |
| crypto_mod_put(_hash_alg); |
| return 0; |
| |
| out_free_hash: |
| crypto_mod_put(_hash_alg); |
| out_drop_skcipher: |
| if (type == CRYPTO_ALG_TYPE_SKCIPHER) |
| crypto_drop_skcipher(&ictx->u.skcipher_spawn); |
| else |
| crypto_drop_aead(&ictx->u.aead_spawn); |
| out_free_inst: |
| kfree(skcipher_inst); |
| kfree(aead_inst); |
| return err; |
| } |
| |
| /* essiv(cipher_name, shash_name) */ |
| static struct crypto_template essiv_tmpl = { |
| .name = "essiv", |
| .create = essiv_create, |
| .module = THIS_MODULE, |
| }; |
| |
| static int __init essiv_module_init(void) |
| { |
| return crypto_register_template(&essiv_tmpl); |
| } |
| |
| static void __exit essiv_module_exit(void) |
| { |
| crypto_unregister_template(&essiv_tmpl); |
| } |
| |
| subsys_initcall(essiv_module_init); |
| module_exit(essiv_module_exit); |
| |
| MODULE_DESCRIPTION("ESSIV skcipher/aead wrapper for block encryption"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS_CRYPTO("essiv"); |