| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2012 Regents of the University of California |
| * Copyright (C) 2017 SiFive |
| * Copyright (C) 2021 Western Digital Corporation or its affiliates. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/cpumask.h> |
| #include <linux/mm.h> |
| #include <linux/percpu.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/static_key.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mmu_context.h> |
| |
| #ifdef CONFIG_MMU |
| |
| DEFINE_STATIC_KEY_FALSE(use_asid_allocator); |
| |
| static unsigned long asid_bits; |
| static unsigned long num_asids; |
| unsigned long asid_mask; |
| |
| static atomic_long_t current_version; |
| |
| static DEFINE_RAW_SPINLOCK(context_lock); |
| static cpumask_t context_tlb_flush_pending; |
| static unsigned long *context_asid_map; |
| |
| static DEFINE_PER_CPU(atomic_long_t, active_context); |
| static DEFINE_PER_CPU(unsigned long, reserved_context); |
| |
| static bool check_update_reserved_context(unsigned long cntx, |
| unsigned long newcntx) |
| { |
| int cpu; |
| bool hit = false; |
| |
| /* |
| * Iterate over the set of reserved CONTEXT looking for a match. |
| * If we find one, then we can update our mm to use new CONTEXT |
| * (i.e. the same CONTEXT in the current_version) but we can't |
| * exit the loop early, since we need to ensure that all copies |
| * of the old CONTEXT are updated to reflect the mm. Failure to do |
| * so could result in us missing the reserved CONTEXT in a future |
| * version. |
| */ |
| for_each_possible_cpu(cpu) { |
| if (per_cpu(reserved_context, cpu) == cntx) { |
| hit = true; |
| per_cpu(reserved_context, cpu) = newcntx; |
| } |
| } |
| |
| return hit; |
| } |
| |
| static void __flush_context(void) |
| { |
| int i; |
| unsigned long cntx; |
| |
| /* Must be called with context_lock held */ |
| lockdep_assert_held(&context_lock); |
| |
| /* Update the list of reserved ASIDs and the ASID bitmap. */ |
| bitmap_zero(context_asid_map, num_asids); |
| |
| /* Mark already active ASIDs as used */ |
| for_each_possible_cpu(i) { |
| cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0); |
| /* |
| * If this CPU has already been through a rollover, but |
| * hasn't run another task in the meantime, we must preserve |
| * its reserved CONTEXT, as this is the only trace we have of |
| * the process it is still running. |
| */ |
| if (cntx == 0) |
| cntx = per_cpu(reserved_context, i); |
| |
| __set_bit(cntx & asid_mask, context_asid_map); |
| per_cpu(reserved_context, i) = cntx; |
| } |
| |
| /* Mark ASID #0 as used because it is used at boot-time */ |
| __set_bit(0, context_asid_map); |
| |
| /* Queue a TLB invalidation for each CPU on next context-switch */ |
| cpumask_setall(&context_tlb_flush_pending); |
| } |
| |
| static unsigned long __new_context(struct mm_struct *mm) |
| { |
| static u32 cur_idx = 1; |
| unsigned long cntx = atomic_long_read(&mm->context.id); |
| unsigned long asid, ver = atomic_long_read(¤t_version); |
| |
| /* Must be called with context_lock held */ |
| lockdep_assert_held(&context_lock); |
| |
| if (cntx != 0) { |
| unsigned long newcntx = ver | (cntx & asid_mask); |
| |
| /* |
| * If our current CONTEXT was active during a rollover, we |
| * can continue to use it and this was just a false alarm. |
| */ |
| if (check_update_reserved_context(cntx, newcntx)) |
| return newcntx; |
| |
| /* |
| * We had a valid CONTEXT in a previous life, so try to |
| * re-use it if possible. |
| */ |
| if (!__test_and_set_bit(cntx & asid_mask, context_asid_map)) |
| return newcntx; |
| } |
| |
| /* |
| * Allocate a free ASID. If we can't find one then increment |
| * current_version and flush all ASIDs. |
| */ |
| asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx); |
| if (asid != num_asids) |
| goto set_asid; |
| |
| /* We're out of ASIDs, so increment current_version */ |
| ver = atomic_long_add_return_relaxed(num_asids, ¤t_version); |
| |
| /* Flush everything */ |
| __flush_context(); |
| |
| /* We have more ASIDs than CPUs, so this will always succeed */ |
| asid = find_next_zero_bit(context_asid_map, num_asids, 1); |
| |
| set_asid: |
| __set_bit(asid, context_asid_map); |
| cur_idx = asid; |
| return asid | ver; |
| } |
| |
| static void set_mm_asid(struct mm_struct *mm, unsigned int cpu) |
| { |
| unsigned long flags; |
| bool need_flush_tlb = false; |
| unsigned long cntx, old_active_cntx; |
| |
| cntx = atomic_long_read(&mm->context.id); |
| |
| /* |
| * If our active_context is non-zero and the context matches the |
| * current_version, then we update the active_context entry with a |
| * relaxed cmpxchg. |
| * |
| * Following is how we handle racing with a concurrent rollover: |
| * |
| * - We get a zero back from the cmpxchg and end up waiting on the |
| * lock. Taking the lock synchronises with the rollover and so |
| * we are forced to see the updated verion. |
| * |
| * - We get a valid context back from the cmpxchg then we continue |
| * using old ASID because __flush_context() would have marked ASID |
| * of active_context as used and next context switch we will |
| * allocate new context. |
| */ |
| old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu)); |
| if (old_active_cntx && |
| ((cntx & ~asid_mask) == atomic_long_read(¤t_version)) && |
| atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu), |
| old_active_cntx, cntx)) |
| goto switch_mm_fast; |
| |
| raw_spin_lock_irqsave(&context_lock, flags); |
| |
| /* Check that our ASID belongs to the current_version. */ |
| cntx = atomic_long_read(&mm->context.id); |
| if ((cntx & ~asid_mask) != atomic_long_read(¤t_version)) { |
| cntx = __new_context(mm); |
| atomic_long_set(&mm->context.id, cntx); |
| } |
| |
| if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending)) |
| need_flush_tlb = true; |
| |
| atomic_long_set(&per_cpu(active_context, cpu), cntx); |
| |
| raw_spin_unlock_irqrestore(&context_lock, flags); |
| |
| switch_mm_fast: |
| csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | |
| ((cntx & asid_mask) << SATP_ASID_SHIFT) | |
| satp_mode); |
| |
| if (need_flush_tlb) |
| local_flush_tlb_all(); |
| } |
| |
| static void set_mm_noasid(struct mm_struct *mm) |
| { |
| /* Switch the page table and blindly nuke entire local TLB */ |
| csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode); |
| local_flush_tlb_all(); |
| } |
| |
| static inline void set_mm(struct mm_struct *prev, |
| struct mm_struct *next, unsigned int cpu) |
| { |
| /* |
| * The mm_cpumask indicates which harts' TLBs contain the virtual |
| * address mapping of the mm. Compared to noasid, using asid |
| * can't guarantee that stale TLB entries are invalidated because |
| * the asid mechanism wouldn't flush TLB for every switch_mm for |
| * performance. So when using asid, keep all CPUs footmarks in |
| * cpumask() until mm reset. |
| */ |
| cpumask_set_cpu(cpu, mm_cpumask(next)); |
| if (static_branch_unlikely(&use_asid_allocator)) { |
| set_mm_asid(next, cpu); |
| } else { |
| cpumask_clear_cpu(cpu, mm_cpumask(prev)); |
| set_mm_noasid(next); |
| } |
| } |
| |
| static int __init asids_init(void) |
| { |
| unsigned long old; |
| |
| /* Figure-out number of ASID bits in HW */ |
| old = csr_read(CSR_SATP); |
| asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT); |
| csr_write(CSR_SATP, asid_bits); |
| asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT) & SATP_ASID_MASK; |
| asid_bits = fls_long(asid_bits); |
| csr_write(CSR_SATP, old); |
| |
| /* |
| * In the process of determining number of ASID bits (above) |
| * we polluted the TLB of current HART so let's do TLB flushed |
| * to remove unwanted TLB enteries. |
| */ |
| local_flush_tlb_all(); |
| |
| /* Pre-compute ASID details */ |
| if (asid_bits) { |
| num_asids = 1 << asid_bits; |
| asid_mask = num_asids - 1; |
| } |
| |
| /* |
| * Use ASID allocator only if number of HW ASIDs are |
| * at-least twice more than CPUs |
| */ |
| if (num_asids > (2 * num_possible_cpus())) { |
| atomic_long_set(¤t_version, num_asids); |
| |
| context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL); |
| if (!context_asid_map) |
| panic("Failed to allocate bitmap for %lu ASIDs\n", |
| num_asids); |
| |
| __set_bit(0, context_asid_map); |
| |
| static_branch_enable(&use_asid_allocator); |
| |
| pr_info("ASID allocator using %lu bits (%lu entries)\n", |
| asid_bits, num_asids); |
| } else { |
| pr_info("ASID allocator disabled (%lu bits)\n", asid_bits); |
| } |
| |
| return 0; |
| } |
| early_initcall(asids_init); |
| #else |
| static inline void set_mm(struct mm_struct *prev, |
| struct mm_struct *next, unsigned int cpu) |
| { |
| /* Nothing to do here when there is no MMU */ |
| } |
| #endif |
| |
| /* |
| * When necessary, performs a deferred icache flush for the given MM context, |
| * on the local CPU. RISC-V has no direct mechanism for instruction cache |
| * shoot downs, so instead we send an IPI that informs the remote harts they |
| * need to flush their local instruction caches. To avoid pathologically slow |
| * behavior in a common case (a bunch of single-hart processes on a many-hart |
| * machine, ie 'make -j') we avoid the IPIs for harts that are not currently |
| * executing a MM context and instead schedule a deferred local instruction |
| * cache flush to be performed before execution resumes on each hart. This |
| * actually performs that local instruction cache flush, which implicitly only |
| * refers to the current hart. |
| * |
| * The "cpu" argument must be the current local CPU number. |
| */ |
| static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu) |
| { |
| #ifdef CONFIG_SMP |
| cpumask_t *mask = &mm->context.icache_stale_mask; |
| |
| if (cpumask_test_cpu(cpu, mask)) { |
| cpumask_clear_cpu(cpu, mask); |
| /* |
| * Ensure the remote hart's writes are visible to this hart. |
| * This pairs with a barrier in flush_icache_mm. |
| */ |
| smp_mb(); |
| local_flush_icache_all(); |
| } |
| |
| #endif |
| } |
| |
| void switch_mm(struct mm_struct *prev, struct mm_struct *next, |
| struct task_struct *task) |
| { |
| unsigned int cpu; |
| |
| if (unlikely(prev == next)) |
| return; |
| |
| membarrier_arch_switch_mm(prev, next, task); |
| |
| /* |
| * Mark the current MM context as inactive, and the next as |
| * active. This is at least used by the icache flushing |
| * routines in order to determine who should be flushed. |
| */ |
| cpu = smp_processor_id(); |
| |
| set_mm(prev, next, cpu); |
| |
| flush_icache_deferred(next, cpu); |
| } |