| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2014 Intel Corporation |
| */ |
| |
| /** |
| * DOC: Logical Rings, Logical Ring Contexts and Execlists |
| * |
| * Motivation: |
| * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". |
| * These expanded contexts enable a number of new abilities, especially |
| * "Execlists" (also implemented in this file). |
| * |
| * One of the main differences with the legacy HW contexts is that logical |
| * ring contexts incorporate many more things to the context's state, like |
| * PDPs or ringbuffer control registers: |
| * |
| * The reason why PDPs are included in the context is straightforward: as |
| * PPGTTs (per-process GTTs) are actually per-context, having the PDPs |
| * contained there mean you don't need to do a ppgtt->switch_mm yourself, |
| * instead, the GPU will do it for you on the context switch. |
| * |
| * But, what about the ringbuffer control registers (head, tail, etc..)? |
| * shouldn't we just need a set of those per engine command streamer? This is |
| * where the name "Logical Rings" starts to make sense: by virtualizing the |
| * rings, the engine cs shifts to a new "ring buffer" with every context |
| * switch. When you want to submit a workload to the GPU you: A) choose your |
| * context, B) find its appropriate virtualized ring, C) write commands to it |
| * and then, finally, D) tell the GPU to switch to that context. |
| * |
| * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch |
| * to a contexts is via a context execution list, ergo "Execlists". |
| * |
| * LRC implementation: |
| * Regarding the creation of contexts, we have: |
| * |
| * - One global default context. |
| * - One local default context for each opened fd. |
| * - One local extra context for each context create ioctl call. |
| * |
| * Now that ringbuffers belong per-context (and not per-engine, like before) |
| * and that contexts are uniquely tied to a given engine (and not reusable, |
| * like before) we need: |
| * |
| * - One ringbuffer per-engine inside each context. |
| * - One backing object per-engine inside each context. |
| * |
| * The global default context starts its life with these new objects fully |
| * allocated and populated. The local default context for each opened fd is |
| * more complex, because we don't know at creation time which engine is going |
| * to use them. To handle this, we have implemented a deferred creation of LR |
| * contexts: |
| * |
| * The local context starts its life as a hollow or blank holder, that only |
| * gets populated for a given engine once we receive an execbuffer. If later |
| * on we receive another execbuffer ioctl for the same context but a different |
| * engine, we allocate/populate a new ringbuffer and context backing object and |
| * so on. |
| * |
| * Finally, regarding local contexts created using the ioctl call: as they are |
| * only allowed with the render ring, we can allocate & populate them right |
| * away (no need to defer anything, at least for now). |
| * |
| * Execlists implementation: |
| * Execlists are the new method by which, on gen8+ hardware, workloads are |
| * submitted for execution (as opposed to the legacy, ringbuffer-based, method). |
| * This method works as follows: |
| * |
| * When a request is committed, its commands (the BB start and any leading or |
| * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer |
| * for the appropriate context. The tail pointer in the hardware context is not |
| * updated at this time, but instead, kept by the driver in the ringbuffer |
| * structure. A structure representing this request is added to a request queue |
| * for the appropriate engine: this structure contains a copy of the context's |
| * tail after the request was written to the ring buffer and a pointer to the |
| * context itself. |
| * |
| * If the engine's request queue was empty before the request was added, the |
| * queue is processed immediately. Otherwise the queue will be processed during |
| * a context switch interrupt. In any case, elements on the queue will get sent |
| * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a |
| * globally unique 20-bits submission ID. |
| * |
| * When execution of a request completes, the GPU updates the context status |
| * buffer with a context complete event and generates a context switch interrupt. |
| * During the interrupt handling, the driver examines the events in the buffer: |
| * for each context complete event, if the announced ID matches that on the head |
| * of the request queue, then that request is retired and removed from the queue. |
| * |
| * After processing, if any requests were retired and the queue is not empty |
| * then a new execution list can be submitted. The two requests at the front of |
| * the queue are next to be submitted but since a context may not occur twice in |
| * an execution list, if subsequent requests have the same ID as the first then |
| * the two requests must be combined. This is done simply by discarding requests |
| * at the head of the queue until either only one requests is left (in which case |
| * we use a NULL second context) or the first two requests have unique IDs. |
| * |
| * By always executing the first two requests in the queue the driver ensures |
| * that the GPU is kept as busy as possible. In the case where a single context |
| * completes but a second context is still executing, the request for this second |
| * context will be at the head of the queue when we remove the first one. This |
| * request will then be resubmitted along with a new request for a different context, |
| * which will cause the hardware to continue executing the second request and queue |
| * the new request (the GPU detects the condition of a context getting preempted |
| * with the same context and optimizes the context switch flow by not doing |
| * preemption, but just sampling the new tail pointer). |
| * |
| */ |
| #include <linux/interrupt.h> |
| #include <linux/string_helpers.h> |
| |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| #include "i915_trace.h" |
| #include "i915_vgpu.h" |
| #include "gen8_engine_cs.h" |
| #include "intel_breadcrumbs.h" |
| #include "intel_context.h" |
| #include "intel_engine_heartbeat.h" |
| #include "intel_engine_pm.h" |
| #include "intel_engine_regs.h" |
| #include "intel_engine_stats.h" |
| #include "intel_execlists_submission.h" |
| #include "intel_gt.h" |
| #include "intel_gt_irq.h" |
| #include "intel_gt_pm.h" |
| #include "intel_gt_regs.h" |
| #include "intel_gt_requests.h" |
| #include "intel_lrc.h" |
| #include "intel_lrc_reg.h" |
| #include "intel_mocs.h" |
| #include "intel_reset.h" |
| #include "intel_ring.h" |
| #include "intel_workarounds.h" |
| #include "shmem_utils.h" |
| |
| #define RING_EXECLIST_QFULL (1 << 0x2) |
| #define RING_EXECLIST1_VALID (1 << 0x3) |
| #define RING_EXECLIST0_VALID (1 << 0x4) |
| #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) |
| #define RING_EXECLIST1_ACTIVE (1 << 0x11) |
| #define RING_EXECLIST0_ACTIVE (1 << 0x12) |
| |
| #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) |
| #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) |
| #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) |
| #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) |
| #define GEN8_CTX_STATUS_COMPLETE (1 << 4) |
| #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) |
| |
| #define GEN8_CTX_STATUS_COMPLETED_MASK \ |
| (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) |
| |
| #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */ |
| #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */ |
| #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15) |
| #define GEN12_IDLE_CTX_ID 0x7FF |
| #define GEN12_CSB_CTX_VALID(csb_dw) \ |
| (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID) |
| |
| #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE BIT(1) /* upper csb dword */ |
| #define XEHP_CSB_SW_CTX_ID_MASK GENMASK(31, 10) |
| #define XEHP_IDLE_CTX_ID 0xFFFF |
| #define XEHP_CSB_CTX_VALID(csb_dw) \ |
| (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID) |
| |
| /* Typical size of the average request (2 pipecontrols and a MI_BB) */ |
| #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ |
| |
| struct virtual_engine { |
| struct intel_engine_cs base; |
| struct intel_context context; |
| struct rcu_work rcu; |
| |
| /* |
| * We allow only a single request through the virtual engine at a time |
| * (each request in the timeline waits for the completion fence of |
| * the previous before being submitted). By restricting ourselves to |
| * only submitting a single request, each request is placed on to a |
| * physical to maximise load spreading (by virtue of the late greedy |
| * scheduling -- each real engine takes the next available request |
| * upon idling). |
| */ |
| struct i915_request *request; |
| |
| /* |
| * We keep a rbtree of available virtual engines inside each physical |
| * engine, sorted by priority. Here we preallocate the nodes we need |
| * for the virtual engine, indexed by physical_engine->id. |
| */ |
| struct ve_node { |
| struct rb_node rb; |
| int prio; |
| } nodes[I915_NUM_ENGINES]; |
| |
| /* And finally, which physical engines this virtual engine maps onto. */ |
| unsigned int num_siblings; |
| struct intel_engine_cs *siblings[]; |
| }; |
| |
| static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) |
| { |
| GEM_BUG_ON(!intel_engine_is_virtual(engine)); |
| return container_of(engine, struct virtual_engine, base); |
| } |
| |
| static struct intel_context * |
| execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, |
| unsigned long flags); |
| |
| static struct i915_request * |
| __active_request(const struct intel_timeline * const tl, |
| struct i915_request *rq, |
| int error) |
| { |
| struct i915_request *active = rq; |
| |
| list_for_each_entry_from_reverse(rq, &tl->requests, link) { |
| if (__i915_request_is_complete(rq)) |
| break; |
| |
| if (error) { |
| i915_request_set_error_once(rq, error); |
| __i915_request_skip(rq); |
| } |
| active = rq; |
| } |
| |
| return active; |
| } |
| |
| static struct i915_request * |
| active_request(const struct intel_timeline * const tl, struct i915_request *rq) |
| { |
| return __active_request(tl, rq, 0); |
| } |
| |
| static void ring_set_paused(const struct intel_engine_cs *engine, int state) |
| { |
| /* |
| * We inspect HWS_PREEMPT with a semaphore inside |
| * engine->emit_fini_breadcrumb. If the dword is true, |
| * the ring is paused as the semaphore will busywait |
| * until the dword is false. |
| */ |
| engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state; |
| if (state) |
| wmb(); |
| } |
| |
| static struct i915_priolist *to_priolist(struct rb_node *rb) |
| { |
| return rb_entry(rb, struct i915_priolist, node); |
| } |
| |
| static int rq_prio(const struct i915_request *rq) |
| { |
| return READ_ONCE(rq->sched.attr.priority); |
| } |
| |
| static int effective_prio(const struct i915_request *rq) |
| { |
| int prio = rq_prio(rq); |
| |
| /* |
| * If this request is special and must not be interrupted at any |
| * cost, so be it. Note we are only checking the most recent request |
| * in the context and so may be masking an earlier vip request. It |
| * is hoped that under the conditions where nopreempt is used, this |
| * will not matter (i.e. all requests to that context will be |
| * nopreempt for as long as desired). |
| */ |
| if (i915_request_has_nopreempt(rq)) |
| prio = I915_PRIORITY_UNPREEMPTABLE; |
| |
| return prio; |
| } |
| |
| static int queue_prio(const struct i915_sched_engine *sched_engine) |
| { |
| struct rb_node *rb; |
| |
| rb = rb_first_cached(&sched_engine->queue); |
| if (!rb) |
| return INT_MIN; |
| |
| return to_priolist(rb)->priority; |
| } |
| |
| static int virtual_prio(const struct intel_engine_execlists *el) |
| { |
| struct rb_node *rb = rb_first_cached(&el->virtual); |
| |
| return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN; |
| } |
| |
| static bool need_preempt(const struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| int last_prio; |
| |
| if (!intel_engine_has_semaphores(engine)) |
| return false; |
| |
| /* |
| * Check if the current priority hint merits a preemption attempt. |
| * |
| * We record the highest value priority we saw during rescheduling |
| * prior to this dequeue, therefore we know that if it is strictly |
| * less than the current tail of ESLP[0], we do not need to force |
| * a preempt-to-idle cycle. |
| * |
| * However, the priority hint is a mere hint that we may need to |
| * preempt. If that hint is stale or we may be trying to preempt |
| * ourselves, ignore the request. |
| * |
| * More naturally we would write |
| * prio >= max(0, last); |
| * except that we wish to prevent triggering preemption at the same |
| * priority level: the task that is running should remain running |
| * to preserve FIFO ordering of dependencies. |
| */ |
| last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1); |
| if (engine->sched_engine->queue_priority_hint <= last_prio) |
| return false; |
| |
| /* |
| * Check against the first request in ELSP[1], it will, thanks to the |
| * power of PI, be the highest priority of that context. |
| */ |
| if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) && |
| rq_prio(list_next_entry(rq, sched.link)) > last_prio) |
| return true; |
| |
| /* |
| * If the inflight context did not trigger the preemption, then maybe |
| * it was the set of queued requests? Pick the highest priority in |
| * the queue (the first active priolist) and see if it deserves to be |
| * running instead of ELSP[0]. |
| * |
| * The highest priority request in the queue can not be either |
| * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same |
| * context, it's priority would not exceed ELSP[0] aka last_prio. |
| */ |
| return max(virtual_prio(&engine->execlists), |
| queue_prio(engine->sched_engine)) > last_prio; |
| } |
| |
| __maybe_unused static bool |
| assert_priority_queue(const struct i915_request *prev, |
| const struct i915_request *next) |
| { |
| /* |
| * Without preemption, the prev may refer to the still active element |
| * which we refuse to let go. |
| * |
| * Even with preemption, there are times when we think it is better not |
| * to preempt and leave an ostensibly lower priority request in flight. |
| */ |
| if (i915_request_is_active(prev)) |
| return true; |
| |
| return rq_prio(prev) >= rq_prio(next); |
| } |
| |
| static struct i915_request * |
| __unwind_incomplete_requests(struct intel_engine_cs *engine) |
| { |
| struct i915_request *rq, *rn, *active = NULL; |
| struct list_head *pl; |
| int prio = I915_PRIORITY_INVALID; |
| |
| lockdep_assert_held(&engine->sched_engine->lock); |
| |
| list_for_each_entry_safe_reverse(rq, rn, |
| &engine->sched_engine->requests, |
| sched.link) { |
| if (__i915_request_is_complete(rq)) { |
| list_del_init(&rq->sched.link); |
| continue; |
| } |
| |
| __i915_request_unsubmit(rq); |
| |
| GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); |
| if (rq_prio(rq) != prio) { |
| prio = rq_prio(rq); |
| pl = i915_sched_lookup_priolist(engine->sched_engine, |
| prio); |
| } |
| GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine)); |
| |
| list_move(&rq->sched.link, pl); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| |
| /* Check in case we rollback so far we wrap [size/2] */ |
| if (intel_ring_direction(rq->ring, |
| rq->tail, |
| rq->ring->tail + 8) > 0) |
| rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE; |
| |
| active = rq; |
| } |
| |
| return active; |
| } |
| |
| struct i915_request * |
| execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) |
| { |
| struct intel_engine_cs *engine = |
| container_of(execlists, typeof(*engine), execlists); |
| |
| return __unwind_incomplete_requests(engine); |
| } |
| |
| static void |
| execlists_context_status_change(struct i915_request *rq, unsigned long status) |
| { |
| /* |
| * Only used when GVT-g is enabled now. When GVT-g is disabled, |
| * The compiler should eliminate this function as dead-code. |
| */ |
| if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) |
| return; |
| |
| atomic_notifier_call_chain(&rq->engine->context_status_notifier, |
| status, rq); |
| } |
| |
| static void reset_active(struct i915_request *rq, |
| struct intel_engine_cs *engine) |
| { |
| struct intel_context * const ce = rq->context; |
| u32 head; |
| |
| /* |
| * The executing context has been cancelled. We want to prevent |
| * further execution along this context and propagate the error on |
| * to anything depending on its results. |
| * |
| * In __i915_request_submit(), we apply the -EIO and remove the |
| * requests' payloads for any banned requests. But first, we must |
| * rewind the context back to the start of the incomplete request so |
| * that we do not jump back into the middle of the batch. |
| * |
| * We preserve the breadcrumbs and semaphores of the incomplete |
| * requests so that inter-timeline dependencies (i.e other timelines) |
| * remain correctly ordered. And we defer to __i915_request_submit() |
| * so that all asynchronous waits are correctly handled. |
| */ |
| ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n", |
| rq->fence.context, rq->fence.seqno); |
| |
| /* On resubmission of the active request, payload will be scrubbed */ |
| if (__i915_request_is_complete(rq)) |
| head = rq->tail; |
| else |
| head = __active_request(ce->timeline, rq, -EIO)->head; |
| head = intel_ring_wrap(ce->ring, head); |
| |
| /* Scrub the context image to prevent replaying the previous batch */ |
| lrc_init_regs(ce, engine, true); |
| |
| /* We've switched away, so this should be a no-op, but intent matters */ |
| ce->lrc.lrca = lrc_update_regs(ce, engine, head); |
| } |
| |
| static bool bad_request(const struct i915_request *rq) |
| { |
| return rq->fence.error && i915_request_started(rq); |
| } |
| |
| static struct intel_engine_cs * |
| __execlists_schedule_in(struct i915_request *rq) |
| { |
| struct intel_engine_cs * const engine = rq->engine; |
| struct intel_context * const ce = rq->context; |
| |
| intel_context_get(ce); |
| |
| if (unlikely(intel_context_is_closed(ce) && |
| !intel_engine_has_heartbeat(engine))) |
| intel_context_set_exiting(ce); |
| |
| if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq))) |
| reset_active(rq, engine); |
| |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| lrc_check_regs(ce, engine, "before"); |
| |
| if (ce->tag) { |
| /* Use a fixed tag for OA and friends */ |
| GEM_BUG_ON(ce->tag <= BITS_PER_LONG); |
| ce->lrc.ccid = ce->tag; |
| } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { |
| /* We don't need a strict matching tag, just different values */ |
| unsigned int tag = ffs(READ_ONCE(engine->context_tag)); |
| |
| GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG); |
| clear_bit(tag - 1, &engine->context_tag); |
| ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32); |
| |
| BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); |
| |
| } else { |
| /* We don't need a strict matching tag, just different values */ |
| unsigned int tag = __ffs(engine->context_tag); |
| |
| GEM_BUG_ON(tag >= BITS_PER_LONG); |
| __clear_bit(tag, &engine->context_tag); |
| ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32); |
| |
| BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); |
| } |
| |
| ce->lrc.ccid |= engine->execlists.ccid; |
| |
| __intel_gt_pm_get(engine->gt); |
| if (engine->fw_domain && !engine->fw_active++) |
| intel_uncore_forcewake_get(engine->uncore, engine->fw_domain); |
| execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); |
| intel_engine_context_in(engine); |
| |
| CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid); |
| |
| return engine; |
| } |
| |
| static void execlists_schedule_in(struct i915_request *rq, int idx) |
| { |
| struct intel_context * const ce = rq->context; |
| struct intel_engine_cs *old; |
| |
| GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine)); |
| trace_i915_request_in(rq, idx); |
| |
| old = ce->inflight; |
| if (!old) |
| old = __execlists_schedule_in(rq); |
| WRITE_ONCE(ce->inflight, ptr_inc(old)); |
| |
| GEM_BUG_ON(intel_context_inflight(ce) != rq->engine); |
| } |
| |
| static void |
| resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve) |
| { |
| struct intel_engine_cs *engine = rq->engine; |
| |
| spin_lock_irq(&engine->sched_engine->lock); |
| |
| clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| WRITE_ONCE(rq->engine, &ve->base); |
| ve->base.submit_request(rq); |
| |
| spin_unlock_irq(&engine->sched_engine->lock); |
| } |
| |
| static void kick_siblings(struct i915_request *rq, struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| struct intel_engine_cs *engine = rq->engine; |
| |
| /* |
| * After this point, the rq may be transferred to a new sibling, so |
| * before we clear ce->inflight make sure that the context has been |
| * removed from the b->signalers and furthermore we need to make sure |
| * that the concurrent iterator in signal_irq_work is no longer |
| * following ce->signal_link. |
| */ |
| if (!list_empty(&ce->signals)) |
| intel_context_remove_breadcrumbs(ce, engine->breadcrumbs); |
| |
| /* |
| * This engine is now too busy to run this virtual request, so |
| * see if we can find an alternative engine for it to execute on. |
| * Once a request has become bonded to this engine, we treat it the |
| * same as other native request. |
| */ |
| if (i915_request_in_priority_queue(rq) && |
| rq->execution_mask != engine->mask) |
| resubmit_virtual_request(rq, ve); |
| |
| if (READ_ONCE(ve->request)) |
| tasklet_hi_schedule(&ve->base.sched_engine->tasklet); |
| } |
| |
| static void __execlists_schedule_out(struct i915_request * const rq, |
| struct intel_context * const ce) |
| { |
| struct intel_engine_cs * const engine = rq->engine; |
| unsigned int ccid; |
| |
| /* |
| * NB process_csb() is not under the engine->sched_engine->lock and hence |
| * schedule_out can race with schedule_in meaning that we should |
| * refrain from doing non-trivial work here. |
| */ |
| |
| CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid); |
| GEM_BUG_ON(ce->inflight != engine); |
| |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| lrc_check_regs(ce, engine, "after"); |
| |
| /* |
| * If we have just completed this context, the engine may now be |
| * idle and we want to re-enter powersaving. |
| */ |
| if (intel_timeline_is_last(ce->timeline, rq) && |
| __i915_request_is_complete(rq)) |
| intel_engine_add_retire(engine, ce->timeline); |
| |
| ccid = ce->lrc.ccid; |
| if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { |
| ccid >>= XEHP_SW_CTX_ID_SHIFT - 32; |
| ccid &= XEHP_MAX_CONTEXT_HW_ID; |
| } else { |
| ccid >>= GEN11_SW_CTX_ID_SHIFT - 32; |
| ccid &= GEN12_MAX_CONTEXT_HW_ID; |
| } |
| |
| if (ccid < BITS_PER_LONG) { |
| GEM_BUG_ON(ccid == 0); |
| GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag)); |
| __set_bit(ccid - 1, &engine->context_tag); |
| } |
| intel_engine_context_out(engine); |
| execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT); |
| if (engine->fw_domain && !--engine->fw_active) |
| intel_uncore_forcewake_put(engine->uncore, engine->fw_domain); |
| intel_gt_pm_put_async_untracked(engine->gt); |
| |
| /* |
| * If this is part of a virtual engine, its next request may |
| * have been blocked waiting for access to the active context. |
| * We have to kick all the siblings again in case we need to |
| * switch (e.g. the next request is not runnable on this |
| * engine). Hopefully, we will already have submitted the next |
| * request before the tasklet runs and do not need to rebuild |
| * each virtual tree and kick everyone again. |
| */ |
| if (ce->engine != engine) |
| kick_siblings(rq, ce); |
| |
| WRITE_ONCE(ce->inflight, NULL); |
| intel_context_put(ce); |
| } |
| |
| static inline void execlists_schedule_out(struct i915_request *rq) |
| { |
| struct intel_context * const ce = rq->context; |
| |
| trace_i915_request_out(rq); |
| |
| GEM_BUG_ON(!ce->inflight); |
| ce->inflight = ptr_dec(ce->inflight); |
| if (!__intel_context_inflight_count(ce->inflight)) |
| __execlists_schedule_out(rq, ce); |
| |
| i915_request_put(rq); |
| } |
| |
| static u32 map_i915_prio_to_lrc_desc_prio(int prio) |
| { |
| if (prio > I915_PRIORITY_NORMAL) |
| return GEN12_CTX_PRIORITY_HIGH; |
| else if (prio < I915_PRIORITY_NORMAL) |
| return GEN12_CTX_PRIORITY_LOW; |
| else |
| return GEN12_CTX_PRIORITY_NORMAL; |
| } |
| |
| static u64 execlists_update_context(struct i915_request *rq) |
| { |
| struct intel_context *ce = rq->context; |
| u64 desc; |
| u32 tail, prev; |
| |
| desc = ce->lrc.desc; |
| if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY) |
| desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq)); |
| |
| /* |
| * WaIdleLiteRestore:bdw,skl |
| * |
| * We should never submit the context with the same RING_TAIL twice |
| * just in case we submit an empty ring, which confuses the HW. |
| * |
| * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of |
| * the normal request to be able to always advance the RING_TAIL on |
| * subsequent resubmissions (for lite restore). Should that fail us, |
| * and we try and submit the same tail again, force the context |
| * reload. |
| * |
| * If we need to return to a preempted context, we need to skip the |
| * lite-restore and force it to reload the RING_TAIL. Otherwise, the |
| * HW has a tendency to ignore us rewinding the TAIL to the end of |
| * an earlier request. |
| */ |
| GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail); |
| prev = rq->ring->tail; |
| tail = intel_ring_set_tail(rq->ring, rq->tail); |
| if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0)) |
| desc |= CTX_DESC_FORCE_RESTORE; |
| ce->lrc_reg_state[CTX_RING_TAIL] = tail; |
| rq->tail = rq->wa_tail; |
| |
| /* |
| * Make sure the context image is complete before we submit it to HW. |
| * |
| * Ostensibly, writes (including the WCB) should be flushed prior to |
| * an uncached write such as our mmio register access, the empirical |
| * evidence (esp. on Braswell) suggests that the WC write into memory |
| * may not be visible to the HW prior to the completion of the UC |
| * register write and that we may begin execution from the context |
| * before its image is complete leading to invalid PD chasing. |
| */ |
| wmb(); |
| |
| ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE; |
| return desc; |
| } |
| |
| static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) |
| { |
| if (execlists->ctrl_reg) { |
| writel(lower_32_bits(desc), execlists->submit_reg + port * 2); |
| writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); |
| } else { |
| writel(upper_32_bits(desc), execlists->submit_reg); |
| writel(lower_32_bits(desc), execlists->submit_reg); |
| } |
| } |
| |
| static __maybe_unused char * |
| dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq) |
| { |
| if (!rq) |
| return ""; |
| |
| snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d", |
| prefix, |
| rq->context->lrc.ccid, |
| rq->fence.context, rq->fence.seqno, |
| __i915_request_is_complete(rq) ? "!" : |
| __i915_request_has_started(rq) ? "*" : |
| "", |
| rq_prio(rq)); |
| |
| return buf; |
| } |
| |
| static __maybe_unused noinline void |
| trace_ports(const struct intel_engine_execlists *execlists, |
| const char *msg, |
| struct i915_request * const *ports) |
| { |
| const struct intel_engine_cs *engine = |
| container_of(execlists, typeof(*engine), execlists); |
| char __maybe_unused p0[40], p1[40]; |
| |
| if (!ports[0]) |
| return; |
| |
| ENGINE_TRACE(engine, "%s { %s%s }\n", msg, |
| dump_port(p0, sizeof(p0), "", ports[0]), |
| dump_port(p1, sizeof(p1), ", ", ports[1])); |
| } |
| |
| static bool |
| reset_in_progress(const struct intel_engine_cs *engine) |
| { |
| return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet)); |
| } |
| |
| static __maybe_unused noinline bool |
| assert_pending_valid(const struct intel_engine_execlists *execlists, |
| const char *msg) |
| { |
| struct intel_engine_cs *engine = |
| container_of(execlists, typeof(*engine), execlists); |
| struct i915_request * const *port, *rq, *prev = NULL; |
| struct intel_context *ce = NULL; |
| u32 ccid = -1; |
| |
| trace_ports(execlists, msg, execlists->pending); |
| |
| /* We may be messing around with the lists during reset, lalala */ |
| if (reset_in_progress(engine)) |
| return true; |
| |
| if (!execlists->pending[0]) { |
| GEM_TRACE_ERR("%s: Nothing pending for promotion!\n", |
| engine->name); |
| return false; |
| } |
| |
| if (execlists->pending[execlists_num_ports(execlists)]) { |
| GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n", |
| engine->name, execlists_num_ports(execlists)); |
| return false; |
| } |
| |
| for (port = execlists->pending; (rq = *port); port++) { |
| unsigned long flags; |
| bool ok = true; |
| |
| GEM_BUG_ON(!kref_read(&rq->fence.refcount)); |
| GEM_BUG_ON(!i915_request_is_active(rq)); |
| |
| if (ce == rq->context) { |
| GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n", |
| engine->name, |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| return false; |
| } |
| ce = rq->context; |
| |
| if (ccid == ce->lrc.ccid) { |
| GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n", |
| engine->name, |
| ccid, ce->timeline->fence_context, |
| port - execlists->pending); |
| return false; |
| } |
| ccid = ce->lrc.ccid; |
| |
| /* |
| * Sentinels are supposed to be the last request so they flush |
| * the current execution off the HW. Check that they are the only |
| * request in the pending submission. |
| * |
| * NB: Due to the async nature of preempt-to-busy and request |
| * cancellation we need to handle the case where request |
| * becomes a sentinel in parallel to CSB processing. |
| */ |
| if (prev && i915_request_has_sentinel(prev) && |
| !READ_ONCE(prev->fence.error)) { |
| GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n", |
| engine->name, |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| return false; |
| } |
| prev = rq; |
| |
| /* |
| * We want virtual requests to only be in the first slot so |
| * that they are never stuck behind a hog and can be immediately |
| * transferred onto the next idle engine. |
| */ |
| if (rq->execution_mask != engine->mask && |
| port != execlists->pending) { |
| GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n", |
| engine->name, |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| return false; |
| } |
| |
| /* Hold tightly onto the lock to prevent concurrent retires! */ |
| if (!spin_trylock_irqsave(&rq->lock, flags)) |
| continue; |
| |
| if (__i915_request_is_complete(rq)) |
| goto unlock; |
| |
| if (i915_active_is_idle(&ce->active) && |
| !intel_context_is_barrier(ce)) { |
| GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n", |
| engine->name, |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| ok = false; |
| goto unlock; |
| } |
| |
| if (!i915_vma_is_pinned(ce->state)) { |
| GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n", |
| engine->name, |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| ok = false; |
| goto unlock; |
| } |
| |
| if (!i915_vma_is_pinned(ce->ring->vma)) { |
| GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n", |
| engine->name, |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| ok = false; |
| goto unlock; |
| } |
| |
| unlock: |
| spin_unlock_irqrestore(&rq->lock, flags); |
| if (!ok) |
| return false; |
| } |
| |
| return ce; |
| } |
| |
| static void execlists_submit_ports(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists *execlists = &engine->execlists; |
| unsigned int n; |
| |
| GEM_BUG_ON(!assert_pending_valid(execlists, "submit")); |
| |
| /* |
| * We can skip acquiring intel_runtime_pm_get() here as it was taken |
| * on our behalf by the request (see i915_gem_mark_busy()) and it will |
| * not be relinquished until the device is idle (see |
| * i915_gem_idle_work_handler()). As a precaution, we make sure |
| * that all ELSP are drained i.e. we have processed the CSB, |
| * before allowing ourselves to idle and calling intel_runtime_pm_put(). |
| */ |
| GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); |
| |
| /* |
| * ELSQ note: the submit queue is not cleared after being submitted |
| * to the HW so we need to make sure we always clean it up. This is |
| * currently ensured by the fact that we always write the same number |
| * of elsq entries, keep this in mind before changing the loop below. |
| */ |
| for (n = execlists_num_ports(execlists); n--; ) { |
| struct i915_request *rq = execlists->pending[n]; |
| |
| write_desc(execlists, |
| rq ? execlists_update_context(rq) : 0, |
| n); |
| } |
| |
| /* we need to manually load the submit queue */ |
| if (execlists->ctrl_reg) |
| writel(EL_CTRL_LOAD, execlists->ctrl_reg); |
| } |
| |
| static bool ctx_single_port_submission(const struct intel_context *ce) |
| { |
| return (IS_ENABLED(CONFIG_DRM_I915_GVT) && |
| intel_context_force_single_submission(ce)); |
| } |
| |
| static bool can_merge_ctx(const struct intel_context *prev, |
| const struct intel_context *next) |
| { |
| if (prev != next) |
| return false; |
| |
| if (ctx_single_port_submission(prev)) |
| return false; |
| |
| return true; |
| } |
| |
| static unsigned long i915_request_flags(const struct i915_request *rq) |
| { |
| return READ_ONCE(rq->fence.flags); |
| } |
| |
| static bool can_merge_rq(const struct i915_request *prev, |
| const struct i915_request *next) |
| { |
| GEM_BUG_ON(prev == next); |
| GEM_BUG_ON(!assert_priority_queue(prev, next)); |
| |
| /* |
| * We do not submit known completed requests. Therefore if the next |
| * request is already completed, we can pretend to merge it in |
| * with the previous context (and we will skip updating the ELSP |
| * and tracking). Thus hopefully keeping the ELSP full with active |
| * contexts, despite the best efforts of preempt-to-busy to confuse |
| * us. |
| */ |
| if (__i915_request_is_complete(next)) |
| return true; |
| |
| if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) & |
| (BIT(I915_FENCE_FLAG_NOPREEMPT) | |
| BIT(I915_FENCE_FLAG_SENTINEL)))) |
| return false; |
| |
| if (!can_merge_ctx(prev->context, next->context)) |
| return false; |
| |
| GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno)); |
| return true; |
| } |
| |
| static bool virtual_matches(const struct virtual_engine *ve, |
| const struct i915_request *rq, |
| const struct intel_engine_cs *engine) |
| { |
| const struct intel_engine_cs *inflight; |
| |
| if (!rq) |
| return false; |
| |
| if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ |
| return false; |
| |
| /* |
| * We track when the HW has completed saving the context image |
| * (i.e. when we have seen the final CS event switching out of |
| * the context) and must not overwrite the context image before |
| * then. This restricts us to only using the active engine |
| * while the previous virtualized request is inflight (so |
| * we reuse the register offsets). This is a very small |
| * hystersis on the greedy seelction algorithm. |
| */ |
| inflight = intel_context_inflight(&ve->context); |
| if (inflight && inflight != engine) |
| return false; |
| |
| return true; |
| } |
| |
| static struct virtual_engine * |
| first_virtual_engine(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists *el = &engine->execlists; |
| struct rb_node *rb = rb_first_cached(&el->virtual); |
| |
| while (rb) { |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| struct i915_request *rq = READ_ONCE(ve->request); |
| |
| /* lazily cleanup after another engine handled rq */ |
| if (!rq || !virtual_matches(ve, rq, engine)) { |
| rb_erase_cached(rb, &el->virtual); |
| RB_CLEAR_NODE(rb); |
| rb = rb_first_cached(&el->virtual); |
| continue; |
| } |
| |
| return ve; |
| } |
| |
| return NULL; |
| } |
| |
| static void virtual_xfer_context(struct virtual_engine *ve, |
| struct intel_engine_cs *engine) |
| { |
| unsigned int n; |
| |
| if (likely(engine == ve->siblings[0])) |
| return; |
| |
| GEM_BUG_ON(READ_ONCE(ve->context.inflight)); |
| if (!intel_engine_has_relative_mmio(engine)) |
| lrc_update_offsets(&ve->context, engine); |
| |
| /* |
| * Move the bound engine to the top of the list for |
| * future execution. We then kick this tasklet first |
| * before checking others, so that we preferentially |
| * reuse this set of bound registers. |
| */ |
| for (n = 1; n < ve->num_siblings; n++) { |
| if (ve->siblings[n] == engine) { |
| swap(ve->siblings[n], ve->siblings[0]); |
| break; |
| } |
| } |
| } |
| |
| static void defer_request(struct i915_request *rq, struct list_head * const pl) |
| { |
| LIST_HEAD(list); |
| |
| /* |
| * We want to move the interrupted request to the back of |
| * the round-robin list (i.e. its priority level), but |
| * in doing so, we must then move all requests that were in |
| * flight and were waiting for the interrupted request to |
| * be run after it again. |
| */ |
| do { |
| struct i915_dependency *p; |
| |
| GEM_BUG_ON(i915_request_is_active(rq)); |
| list_move_tail(&rq->sched.link, pl); |
| |
| for_each_waiter(p, rq) { |
| struct i915_request *w = |
| container_of(p->waiter, typeof(*w), sched); |
| |
| if (p->flags & I915_DEPENDENCY_WEAK) |
| continue; |
| |
| /* Leave semaphores spinning on the other engines */ |
| if (w->engine != rq->engine) |
| continue; |
| |
| /* No waiter should start before its signaler */ |
| GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) && |
| __i915_request_has_started(w) && |
| !__i915_request_is_complete(rq)); |
| |
| if (!i915_request_is_ready(w)) |
| continue; |
| |
| if (rq_prio(w) < rq_prio(rq)) |
| continue; |
| |
| GEM_BUG_ON(rq_prio(w) > rq_prio(rq)); |
| GEM_BUG_ON(i915_request_is_active(w)); |
| list_move_tail(&w->sched.link, &list); |
| } |
| |
| rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); |
| } while (rq); |
| } |
| |
| static void defer_active(struct intel_engine_cs *engine) |
| { |
| struct i915_request *rq; |
| |
| rq = __unwind_incomplete_requests(engine); |
| if (!rq) |
| return; |
| |
| defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine, |
| rq_prio(rq))); |
| } |
| |
| static bool |
| timeslice_yield(const struct intel_engine_execlists *el, |
| const struct i915_request *rq) |
| { |
| /* |
| * Once bitten, forever smitten! |
| * |
| * If the active context ever busy-waited on a semaphore, |
| * it will be treated as a hog until the end of its timeslice (i.e. |
| * until it is scheduled out and replaced by a new submission, |
| * possibly even its own lite-restore). The HW only sends an interrupt |
| * on the first miss, and we do know if that semaphore has been |
| * signaled, or even if it is now stuck on another semaphore. Play |
| * safe, yield if it might be stuck -- it will be given a fresh |
| * timeslice in the near future. |
| */ |
| return rq->context->lrc.ccid == READ_ONCE(el->yield); |
| } |
| |
| static bool needs_timeslice(const struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| if (!intel_engine_has_timeslices(engine)) |
| return false; |
| |
| /* If not currently active, or about to switch, wait for next event */ |
| if (!rq || __i915_request_is_complete(rq)) |
| return false; |
| |
| /* We do not need to start the timeslice until after the ACK */ |
| if (READ_ONCE(engine->execlists.pending[0])) |
| return false; |
| |
| /* If ELSP[1] is occupied, always check to see if worth slicing */ |
| if (!list_is_last_rcu(&rq->sched.link, |
| &engine->sched_engine->requests)) { |
| ENGINE_TRACE(engine, "timeslice required for second inflight context\n"); |
| return true; |
| } |
| |
| /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */ |
| if (!i915_sched_engine_is_empty(engine->sched_engine)) { |
| ENGINE_TRACE(engine, "timeslice required for queue\n"); |
| return true; |
| } |
| |
| if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) { |
| ENGINE_TRACE(engine, "timeslice required for virtual\n"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool |
| timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq) |
| { |
| const struct intel_engine_execlists *el = &engine->execlists; |
| |
| if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq)) |
| return false; |
| |
| if (!needs_timeslice(engine, rq)) |
| return false; |
| |
| return timer_expired(&el->timer) || timeslice_yield(el, rq); |
| } |
| |
| static unsigned long timeslice(const struct intel_engine_cs *engine) |
| { |
| return READ_ONCE(engine->props.timeslice_duration_ms); |
| } |
| |
| static void start_timeslice(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists *el = &engine->execlists; |
| unsigned long duration; |
| |
| /* Disable the timer if there is nothing to switch to */ |
| duration = 0; |
| if (needs_timeslice(engine, *el->active)) { |
| /* Avoid continually prolonging an active timeslice */ |
| if (timer_active(&el->timer)) { |
| /* |
| * If we just submitted a new ELSP after an old |
| * context, that context may have already consumed |
| * its timeslice, so recheck. |
| */ |
| if (!timer_pending(&el->timer)) |
| tasklet_hi_schedule(&engine->sched_engine->tasklet); |
| return; |
| } |
| |
| duration = timeslice(engine); |
| } |
| |
| set_timer_ms(&el->timer, duration); |
| } |
| |
| static void record_preemption(struct intel_engine_execlists *execlists) |
| { |
| (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); |
| } |
| |
| static unsigned long active_preempt_timeout(struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| if (!rq) |
| return 0; |
| |
| /* Only allow ourselves to force reset the currently active context */ |
| engine->execlists.preempt_target = rq; |
| |
| /* Force a fast reset for terminated contexts (ignoring sysfs!) */ |
| if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq))) |
| return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS; |
| |
| return READ_ONCE(engine->props.preempt_timeout_ms); |
| } |
| |
| static void set_preempt_timeout(struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| if (!intel_engine_has_preempt_reset(engine)) |
| return; |
| |
| set_timer_ms(&engine->execlists.preempt, |
| active_preempt_timeout(engine, rq)); |
| } |
| |
| static bool completed(const struct i915_request *rq) |
| { |
| if (i915_request_has_sentinel(rq)) |
| return false; |
| |
| return __i915_request_is_complete(rq); |
| } |
| |
| static void execlists_dequeue(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct i915_sched_engine * const sched_engine = engine->sched_engine; |
| struct i915_request **port = execlists->pending; |
| struct i915_request ** const last_port = port + execlists->port_mask; |
| struct i915_request *last, * const *active; |
| struct virtual_engine *ve; |
| struct rb_node *rb; |
| bool submit = false; |
| |
| /* |
| * Hardware submission is through 2 ports. Conceptually each port |
| * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is |
| * static for a context, and unique to each, so we only execute |
| * requests belonging to a single context from each ring. RING_HEAD |
| * is maintained by the CS in the context image, it marks the place |
| * where it got up to last time, and through RING_TAIL we tell the CS |
| * where we want to execute up to this time. |
| * |
| * In this list the requests are in order of execution. Consecutive |
| * requests from the same context are adjacent in the ringbuffer. We |
| * can combine these requests into a single RING_TAIL update: |
| * |
| * RING_HEAD...req1...req2 |
| * ^- RING_TAIL |
| * since to execute req2 the CS must first execute req1. |
| * |
| * Our goal then is to point each port to the end of a consecutive |
| * sequence of requests as being the most optimal (fewest wake ups |
| * and context switches) submission. |
| */ |
| |
| spin_lock(&sched_engine->lock); |
| |
| /* |
| * If the queue is higher priority than the last |
| * request in the currently active context, submit afresh. |
| * We will resubmit again afterwards in case we need to split |
| * the active context to interject the preemption request, |
| * i.e. we will retrigger preemption following the ack in case |
| * of trouble. |
| * |
| */ |
| active = execlists->active; |
| while ((last = *active) && completed(last)) |
| active++; |
| |
| if (last) { |
| if (need_preempt(engine, last)) { |
| ENGINE_TRACE(engine, |
| "preempting last=%llx:%lld, prio=%d, hint=%d\n", |
| last->fence.context, |
| last->fence.seqno, |
| last->sched.attr.priority, |
| sched_engine->queue_priority_hint); |
| record_preemption(execlists); |
| |
| /* |
| * Don't let the RING_HEAD advance past the breadcrumb |
| * as we unwind (and until we resubmit) so that we do |
| * not accidentally tell it to go backwards. |
| */ |
| ring_set_paused(engine, 1); |
| |
| /* |
| * Note that we have not stopped the GPU at this point, |
| * so we are unwinding the incomplete requests as they |
| * remain inflight and so by the time we do complete |
| * the preemption, some of the unwound requests may |
| * complete! |
| */ |
| __unwind_incomplete_requests(engine); |
| |
| last = NULL; |
| } else if (timeslice_expired(engine, last)) { |
| ENGINE_TRACE(engine, |
| "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n", |
| str_yes_no(timer_expired(&execlists->timer)), |
| last->fence.context, last->fence.seqno, |
| rq_prio(last), |
| sched_engine->queue_priority_hint, |
| str_yes_no(timeslice_yield(execlists, last))); |
| |
| /* |
| * Consume this timeslice; ensure we start a new one. |
| * |
| * The timeslice expired, and we will unwind the |
| * running contexts and recompute the next ELSP. |
| * If that submit will be the same pair of contexts |
| * (due to dependency ordering), we will skip the |
| * submission. If we don't cancel the timer now, |
| * we will see that the timer has expired and |
| * reschedule the tasklet; continually until the |
| * next context switch or other preemption event. |
| * |
| * Since we have decided to reschedule based on |
| * consumption of this timeslice, if we submit the |
| * same context again, grant it a full timeslice. |
| */ |
| cancel_timer(&execlists->timer); |
| ring_set_paused(engine, 1); |
| defer_active(engine); |
| |
| /* |
| * Unlike for preemption, if we rewind and continue |
| * executing the same context as previously active, |
| * the order of execution will remain the same and |
| * the tail will only advance. We do not need to |
| * force a full context restore, as a lite-restore |
| * is sufficient to resample the monotonic TAIL. |
| * |
| * If we switch to any other context, similarly we |
| * will not rewind TAIL of current context, and |
| * normal save/restore will preserve state and allow |
| * us to later continue executing the same request. |
| */ |
| last = NULL; |
| } else { |
| /* |
| * Otherwise if we already have a request pending |
| * for execution after the current one, we can |
| * just wait until the next CS event before |
| * queuing more. In either case we will force a |
| * lite-restore preemption event, but if we wait |
| * we hopefully coalesce several updates into a single |
| * submission. |
| */ |
| if (active[1]) { |
| /* |
| * Even if ELSP[1] is occupied and not worthy |
| * of timeslices, our queue might be. |
| */ |
| spin_unlock(&sched_engine->lock); |
| return; |
| } |
| } |
| } |
| |
| /* XXX virtual is always taking precedence */ |
| while ((ve = first_virtual_engine(engine))) { |
| struct i915_request *rq; |
| |
| spin_lock(&ve->base.sched_engine->lock); |
| |
| rq = ve->request; |
| if (unlikely(!virtual_matches(ve, rq, engine))) |
| goto unlock; /* lost the race to a sibling */ |
| |
| GEM_BUG_ON(rq->engine != &ve->base); |
| GEM_BUG_ON(rq->context != &ve->context); |
| |
| if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) { |
| spin_unlock(&ve->base.sched_engine->lock); |
| break; |
| } |
| |
| if (last && !can_merge_rq(last, rq)) { |
| spin_unlock(&ve->base.sched_engine->lock); |
| spin_unlock(&engine->sched_engine->lock); |
| return; /* leave this for another sibling */ |
| } |
| |
| ENGINE_TRACE(engine, |
| "virtual rq=%llx:%lld%s, new engine? %s\n", |
| rq->fence.context, |
| rq->fence.seqno, |
| __i915_request_is_complete(rq) ? "!" : |
| __i915_request_has_started(rq) ? "*" : |
| "", |
| str_yes_no(engine != ve->siblings[0])); |
| |
| WRITE_ONCE(ve->request, NULL); |
| WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN); |
| |
| rb = &ve->nodes[engine->id].rb; |
| rb_erase_cached(rb, &execlists->virtual); |
| RB_CLEAR_NODE(rb); |
| |
| GEM_BUG_ON(!(rq->execution_mask & engine->mask)); |
| WRITE_ONCE(rq->engine, engine); |
| |
| if (__i915_request_submit(rq)) { |
| /* |
| * Only after we confirm that we will submit |
| * this request (i.e. it has not already |
| * completed), do we want to update the context. |
| * |
| * This serves two purposes. It avoids |
| * unnecessary work if we are resubmitting an |
| * already completed request after timeslicing. |
| * But more importantly, it prevents us altering |
| * ve->siblings[] on an idle context, where |
| * we may be using ve->siblings[] in |
| * virtual_context_enter / virtual_context_exit. |
| */ |
| virtual_xfer_context(ve, engine); |
| GEM_BUG_ON(ve->siblings[0] != engine); |
| |
| submit = true; |
| last = rq; |
| } |
| |
| i915_request_put(rq); |
| unlock: |
| spin_unlock(&ve->base.sched_engine->lock); |
| |
| /* |
| * Hmm, we have a bunch of virtual engine requests, |
| * but the first one was already completed (thanks |
| * preempt-to-busy!). Keep looking at the veng queue |
| * until we have no more relevant requests (i.e. |
| * the normal submit queue has higher priority). |
| */ |
| if (submit) |
| break; |
| } |
| |
| while ((rb = rb_first_cached(&sched_engine->queue))) { |
| struct i915_priolist *p = to_priolist(rb); |
| struct i915_request *rq, *rn; |
| |
| priolist_for_each_request_consume(rq, rn, p) { |
| bool merge = true; |
| |
| /* |
| * Can we combine this request with the current port? |
| * It has to be the same context/ringbuffer and not |
| * have any exceptions (e.g. GVT saying never to |
| * combine contexts). |
| * |
| * If we can combine the requests, we can execute both |
| * by updating the RING_TAIL to point to the end of the |
| * second request, and so we never need to tell the |
| * hardware about the first. |
| */ |
| if (last && !can_merge_rq(last, rq)) { |
| /* |
| * If we are on the second port and cannot |
| * combine this request with the last, then we |
| * are done. |
| */ |
| if (port == last_port) |
| goto done; |
| |
| /* |
| * We must not populate both ELSP[] with the |
| * same LRCA, i.e. we must submit 2 different |
| * contexts if we submit 2 ELSP. |
| */ |
| if (last->context == rq->context) |
| goto done; |
| |
| if (i915_request_has_sentinel(last)) |
| goto done; |
| |
| /* |
| * We avoid submitting virtual requests into |
| * the secondary ports so that we can migrate |
| * the request immediately to another engine |
| * rather than wait for the primary request. |
| */ |
| if (rq->execution_mask != engine->mask) |
| goto done; |
| |
| /* |
| * If GVT overrides us we only ever submit |
| * port[0], leaving port[1] empty. Note that we |
| * also have to be careful that we don't queue |
| * the same context (even though a different |
| * request) to the second port. |
| */ |
| if (ctx_single_port_submission(last->context) || |
| ctx_single_port_submission(rq->context)) |
| goto done; |
| |
| merge = false; |
| } |
| |
| if (__i915_request_submit(rq)) { |
| if (!merge) { |
| *port++ = i915_request_get(last); |
| last = NULL; |
| } |
| |
| GEM_BUG_ON(last && |
| !can_merge_ctx(last->context, |
| rq->context)); |
| GEM_BUG_ON(last && |
| i915_seqno_passed(last->fence.seqno, |
| rq->fence.seqno)); |
| |
| submit = true; |
| last = rq; |
| } |
| } |
| |
| rb_erase_cached(&p->node, &sched_engine->queue); |
| i915_priolist_free(p); |
| } |
| done: |
| *port++ = i915_request_get(last); |
| |
| /* |
| * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. |
| * |
| * We choose the priority hint such that if we add a request of greater |
| * priority than this, we kick the submission tasklet to decide on |
| * the right order of submitting the requests to hardware. We must |
| * also be prepared to reorder requests as they are in-flight on the |
| * HW. We derive the priority hint then as the first "hole" in |
| * the HW submission ports and if there are no available slots, |
| * the priority of the lowest executing request, i.e. last. |
| * |
| * When we do receive a higher priority request ready to run from the |
| * user, see queue_request(), the priority hint is bumped to that |
| * request triggering preemption on the next dequeue (or subsequent |
| * interrupt for secondary ports). |
| */ |
| sched_engine->queue_priority_hint = queue_prio(sched_engine); |
| i915_sched_engine_reset_on_empty(sched_engine); |
| spin_unlock(&sched_engine->lock); |
| |
| /* |
| * We can skip poking the HW if we ended up with exactly the same set |
| * of requests as currently running, e.g. trying to timeslice a pair |
| * of ordered contexts. |
| */ |
| if (submit && |
| memcmp(active, |
| execlists->pending, |
| (port - execlists->pending) * sizeof(*port))) { |
| *port = NULL; |
| while (port-- != execlists->pending) |
| execlists_schedule_in(*port, port - execlists->pending); |
| |
| WRITE_ONCE(execlists->yield, -1); |
| set_preempt_timeout(engine, *active); |
| execlists_submit_ports(engine); |
| } else { |
| ring_set_paused(engine, 0); |
| while (port-- != execlists->pending) |
| i915_request_put(*port); |
| *execlists->pending = NULL; |
| } |
| } |
| |
| static void execlists_dequeue_irq(struct intel_engine_cs *engine) |
| { |
| local_irq_disable(); /* Suspend interrupts across request submission */ |
| execlists_dequeue(engine); |
| local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */ |
| } |
| |
| static void clear_ports(struct i915_request **ports, int count) |
| { |
| memset_p((void **)ports, NULL, count); |
| } |
| |
| static void |
| copy_ports(struct i915_request **dst, struct i915_request **src, int count) |
| { |
| /* A memcpy_p() would be very useful here! */ |
| while (count--) |
| WRITE_ONCE(*dst++, *src++); /* avoid write tearing */ |
| } |
| |
| static struct i915_request ** |
| cancel_port_requests(struct intel_engine_execlists * const execlists, |
| struct i915_request **inactive) |
| { |
| struct i915_request * const *port; |
| |
| for (port = execlists->pending; *port; port++) |
| *inactive++ = *port; |
| clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending)); |
| |
| /* Mark the end of active before we overwrite *active */ |
| for (port = xchg(&execlists->active, execlists->pending); *port; port++) |
| *inactive++ = *port; |
| clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight)); |
| |
| smp_wmb(); /* complete the seqlock for execlists_active() */ |
| WRITE_ONCE(execlists->active, execlists->inflight); |
| |
| /* Having cancelled all outstanding process_csb(), stop their timers */ |
| GEM_BUG_ON(execlists->pending[0]); |
| cancel_timer(&execlists->timer); |
| cancel_timer(&execlists->preempt); |
| |
| return inactive; |
| } |
| |
| /* |
| * Starting with Gen12, the status has a new format: |
| * |
| * bit 0: switched to new queue |
| * bit 1: reserved |
| * bit 2: semaphore wait mode (poll or signal), only valid when |
| * switch detail is set to "wait on semaphore" |
| * bits 3-5: engine class |
| * bits 6-11: engine instance |
| * bits 12-14: reserved |
| * bits 15-25: sw context id of the lrc the GT switched to |
| * bits 26-31: sw counter of the lrc the GT switched to |
| * bits 32-35: context switch detail |
| * - 0: ctx complete |
| * - 1: wait on sync flip |
| * - 2: wait on vblank |
| * - 3: wait on scanline |
| * - 4: wait on semaphore |
| * - 5: context preempted (not on SEMAPHORE_WAIT or |
| * WAIT_FOR_EVENT) |
| * bit 36: reserved |
| * bits 37-43: wait detail (for switch detail 1 to 4) |
| * bits 44-46: reserved |
| * bits 47-57: sw context id of the lrc the GT switched away from |
| * bits 58-63: sw counter of the lrc the GT switched away from |
| * |
| * Xe_HP csb shuffles things around compared to TGL: |
| * |
| * bits 0-3: context switch detail (same possible values as TGL) |
| * bits 4-9: engine instance |
| * bits 10-25: sw context id of the lrc the GT switched to |
| * bits 26-31: sw counter of the lrc the GT switched to |
| * bit 32: semaphore wait mode (poll or signal), Only valid when |
| * switch detail is set to "wait on semaphore" |
| * bit 33: switched to new queue |
| * bits 34-41: wait detail (for switch detail 1 to 4) |
| * bits 42-57: sw context id of the lrc the GT switched away from |
| * bits 58-63: sw counter of the lrc the GT switched away from |
| */ |
| static inline bool |
| __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue, |
| u8 switch_detail) |
| { |
| /* |
| * The context switch detail is not guaranteed to be 5 when a preemption |
| * occurs, so we can't just check for that. The check below works for |
| * all the cases we care about, including preemptions of WAIT |
| * instructions and lite-restore. Preempt-to-idle via the CTRL register |
| * would require some extra handling, but we don't support that. |
| */ |
| if (!ctx_away_valid || new_queue) { |
| GEM_BUG_ON(!ctx_to_valid); |
| return true; |
| } |
| |
| /* |
| * switch detail = 5 is covered by the case above and we do not expect a |
| * context switch on an unsuccessful wait instruction since we always |
| * use polling mode. |
| */ |
| GEM_BUG_ON(switch_detail); |
| return false; |
| } |
| |
| static bool xehp_csb_parse(const u64 csb) |
| { |
| return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */ |
| XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */ |
| upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE, |
| GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb))); |
| } |
| |
| static bool gen12_csb_parse(const u64 csb) |
| { |
| return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */ |
| GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */ |
| lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE, |
| GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb))); |
| } |
| |
| static bool gen8_csb_parse(const u64 csb) |
| { |
| return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED); |
| } |
| |
| static noinline u64 |
| wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb) |
| { |
| u64 entry; |
| |
| /* |
| * Reading from the HWSP has one particular advantage: we can detect |
| * a stale entry. Since the write into HWSP is broken, we have no reason |
| * to trust the HW at all, the mmio entry may equally be unordered, so |
| * we prefer the path that is self-checking and as a last resort, |
| * return the mmio value. |
| * |
| * tgl,dg1:HSDES#22011327657 |
| */ |
| preempt_disable(); |
| if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) { |
| int idx = csb - engine->execlists.csb_status; |
| int status; |
| |
| status = GEN8_EXECLISTS_STATUS_BUF; |
| if (idx >= 6) { |
| status = GEN11_EXECLISTS_STATUS_BUF2; |
| idx -= 6; |
| } |
| status += sizeof(u64) * idx; |
| |
| entry = intel_uncore_read64(engine->uncore, |
| _MMIO(engine->mmio_base + status)); |
| } |
| preempt_enable(); |
| |
| return entry; |
| } |
| |
| static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb) |
| { |
| u64 entry = READ_ONCE(*csb); |
| |
| /* |
| * Unfortunately, the GPU does not always serialise its write |
| * of the CSB entries before its write of the CSB pointer, at least |
| * from the perspective of the CPU, using what is known as a Global |
| * Observation Point. We may read a new CSB tail pointer, but then |
| * read the stale CSB entries, causing us to misinterpret the |
| * context-switch events, and eventually declare the GPU hung. |
| * |
| * icl:HSDES#1806554093 |
| * tgl:HSDES#22011248461 |
| */ |
| if (unlikely(entry == -1)) |
| entry = wa_csb_read(engine, csb); |
| |
| /* Consume this entry so that we can spot its future reuse. */ |
| WRITE_ONCE(*csb, -1); |
| |
| /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */ |
| return entry; |
| } |
| |
| static void new_timeslice(struct intel_engine_execlists *el) |
| { |
| /* By cancelling, we will start afresh in start_timeslice() */ |
| cancel_timer(&el->timer); |
| } |
| |
| static struct i915_request ** |
| process_csb(struct intel_engine_cs *engine, struct i915_request **inactive) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| u64 * const buf = execlists->csb_status; |
| const u8 num_entries = execlists->csb_size; |
| struct i915_request **prev; |
| u8 head, tail; |
| |
| /* |
| * As we modify our execlists state tracking we require exclusive |
| * access. Either we are inside the tasklet, or the tasklet is disabled |
| * and we assume that is only inside the reset paths and so serialised. |
| */ |
| GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) && |
| !reset_in_progress(engine)); |
| |
| /* |
| * Note that csb_write, csb_status may be either in HWSP or mmio. |
| * When reading from the csb_write mmio register, we have to be |
| * careful to only use the GEN8_CSB_WRITE_PTR portion, which is |
| * the low 4bits. As it happens we know the next 4bits are always |
| * zero and so we can simply masked off the low u8 of the register |
| * and treat it identically to reading from the HWSP (without having |
| * to use explicit shifting and masking, and probably bifurcating |
| * the code to handle the legacy mmio read). |
| */ |
| head = execlists->csb_head; |
| tail = READ_ONCE(*execlists->csb_write); |
| if (unlikely(head == tail)) |
| return inactive; |
| |
| /* |
| * We will consume all events from HW, or at least pretend to. |
| * |
| * The sequence of events from the HW is deterministic, and derived |
| * from our writes to the ELSP, with a smidgen of variability for |
| * the arrival of the asynchronous requests wrt to the inflight |
| * execution. If the HW sends an event that does not correspond with |
| * the one we are expecting, we have to abandon all hope as we lose |
| * all tracking of what the engine is actually executing. We will |
| * only detect we are out of sequence with the HW when we get an |
| * 'impossible' event because we have already drained our own |
| * preemption/promotion queue. If this occurs, we know that we likely |
| * lost track of execution earlier and must unwind and restart, the |
| * simplest way is by stop processing the event queue and force the |
| * engine to reset. |
| */ |
| execlists->csb_head = tail; |
| ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail); |
| |
| /* |
| * Hopefully paired with a wmb() in HW! |
| * |
| * We must complete the read of the write pointer before any reads |
| * from the CSB, so that we do not see stale values. Without an rmb |
| * (lfence) the HW may speculatively perform the CSB[] reads *before* |
| * we perform the READ_ONCE(*csb_write). |
| */ |
| rmb(); |
| |
| /* Remember who was last running under the timer */ |
| prev = inactive; |
| *prev = NULL; |
| |
| do { |
| bool promote; |
| u64 csb; |
| |
| if (++head == num_entries) |
| head = 0; |
| |
| /* |
| * We are flying near dragons again. |
| * |
| * We hold a reference to the request in execlist_port[] |
| * but no more than that. We are operating in softirq |
| * context and so cannot hold any mutex or sleep. That |
| * prevents us stopping the requests we are processing |
| * in port[] from being retired simultaneously (the |
| * breadcrumb will be complete before we see the |
| * context-switch). As we only hold the reference to the |
| * request, any pointer chasing underneath the request |
| * is subject to a potential use-after-free. Thus we |
| * store all of the bookkeeping within port[] as |
| * required, and avoid using unguarded pointers beneath |
| * request itself. The same applies to the atomic |
| * status notifier. |
| */ |
| |
| csb = csb_read(engine, buf + head); |
| ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n", |
| head, upper_32_bits(csb), lower_32_bits(csb)); |
| |
| if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) |
| promote = xehp_csb_parse(csb); |
| else if (GRAPHICS_VER(engine->i915) >= 12) |
| promote = gen12_csb_parse(csb); |
| else |
| promote = gen8_csb_parse(csb); |
| if (promote) { |
| struct i915_request * const *old = execlists->active; |
| |
| if (GEM_WARN_ON(!*execlists->pending)) { |
| execlists->error_interrupt |= ERROR_CSB; |
| break; |
| } |
| |
| ring_set_paused(engine, 0); |
| |
| /* Point active to the new ELSP; prevent overwriting */ |
| WRITE_ONCE(execlists->active, execlists->pending); |
| smp_wmb(); /* notify execlists_active() */ |
| |
| /* cancel old inflight, prepare for switch */ |
| trace_ports(execlists, "preempted", old); |
| while (*old) |
| *inactive++ = *old++; |
| |
| /* switch pending to inflight */ |
| GEM_BUG_ON(!assert_pending_valid(execlists, "promote")); |
| copy_ports(execlists->inflight, |
| execlists->pending, |
| execlists_num_ports(execlists)); |
| smp_wmb(); /* complete the seqlock */ |
| WRITE_ONCE(execlists->active, execlists->inflight); |
| |
| /* XXX Magic delay for tgl */ |
| ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); |
| |
| WRITE_ONCE(execlists->pending[0], NULL); |
| } else { |
| if (GEM_WARN_ON(!*execlists->active)) { |
| execlists->error_interrupt |= ERROR_CSB; |
| break; |
| } |
| |
| /* port0 completed, advanced to port1 */ |
| trace_ports(execlists, "completed", execlists->active); |
| |
| /* |
| * We rely on the hardware being strongly |
| * ordered, that the breadcrumb write is |
| * coherent (visible from the CPU) before the |
| * user interrupt is processed. One might assume |
| * that the breadcrumb write being before the |
| * user interrupt and the CS event for the context |
| * switch would therefore be before the CS event |
| * itself... |
| */ |
| if (GEM_SHOW_DEBUG() && |
| !__i915_request_is_complete(*execlists->active)) { |
| struct i915_request *rq = *execlists->active; |
| const u32 *regs __maybe_unused = |
| rq->context->lrc_reg_state; |
| |
| ENGINE_TRACE(engine, |
| "context completed before request!\n"); |
| ENGINE_TRACE(engine, |
| "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n", |
| ENGINE_READ(engine, RING_START), |
| ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR, |
| ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR, |
| ENGINE_READ(engine, RING_CTL), |
| ENGINE_READ(engine, RING_MI_MODE)); |
| ENGINE_TRACE(engine, |
| "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ", |
| i915_ggtt_offset(rq->ring->vma), |
| rq->head, rq->tail, |
| rq->fence.context, |
| lower_32_bits(rq->fence.seqno), |
| hwsp_seqno(rq)); |
| ENGINE_TRACE(engine, |
| "ctx:{start:%08x, head:%04x, tail:%04x}, ", |
| regs[CTX_RING_START], |
| regs[CTX_RING_HEAD], |
| regs[CTX_RING_TAIL]); |
| } |
| |
| *inactive++ = *execlists->active++; |
| |
| GEM_BUG_ON(execlists->active - execlists->inflight > |
| execlists_num_ports(execlists)); |
| } |
| } while (head != tail); |
| |
| /* |
| * Gen11 has proven to fail wrt global observation point between |
| * entry and tail update, failing on the ordering and thus |
| * we see an old entry in the context status buffer. |
| * |
| * Forcibly evict out entries for the next gpu csb update, |
| * to increase the odds that we get a fresh entries with non |
| * working hardware. The cost for doing so comes out mostly with |
| * the wash as hardware, working or not, will need to do the |
| * invalidation before. |
| */ |
| drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0])); |
| |
| /* |
| * We assume that any event reflects a change in context flow |
| * and merits a fresh timeslice. We reinstall the timer after |
| * inspecting the queue to see if we need to resumbit. |
| */ |
| if (*prev != *execlists->active) { /* elide lite-restores */ |
| struct intel_context *prev_ce = NULL, *active_ce = NULL; |
| |
| /* |
| * Note the inherent discrepancy between the HW runtime, |
| * recorded as part of the context switch, and the CPU |
| * adjustment for active contexts. We have to hope that |
| * the delay in processing the CS event is very small |
| * and consistent. It works to our advantage to have |
| * the CPU adjustment _undershoot_ (i.e. start later than) |
| * the CS timestamp so we never overreport the runtime |
| * and correct overselves later when updating from HW. |
| */ |
| if (*prev) |
| prev_ce = (*prev)->context; |
| if (*execlists->active) |
| active_ce = (*execlists->active)->context; |
| if (prev_ce != active_ce) { |
| if (prev_ce) |
| lrc_runtime_stop(prev_ce); |
| if (active_ce) |
| lrc_runtime_start(active_ce); |
| } |
| new_timeslice(execlists); |
| } |
| |
| return inactive; |
| } |
| |
| static void post_process_csb(struct i915_request **port, |
| struct i915_request **last) |
| { |
| while (port != last) |
| execlists_schedule_out(*port++); |
| } |
| |
| static void __execlists_hold(struct i915_request *rq) |
| { |
| LIST_HEAD(list); |
| |
| do { |
| struct i915_dependency *p; |
| |
| if (i915_request_is_active(rq)) |
| __i915_request_unsubmit(rq); |
| |
| clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| list_move_tail(&rq->sched.link, |
| &rq->engine->sched_engine->hold); |
| i915_request_set_hold(rq); |
| RQ_TRACE(rq, "on hold\n"); |
| |
| for_each_waiter(p, rq) { |
| struct i915_request *w = |
| container_of(p->waiter, typeof(*w), sched); |
| |
| if (p->flags & I915_DEPENDENCY_WEAK) |
| continue; |
| |
| /* Leave semaphores spinning on the other engines */ |
| if (w->engine != rq->engine) |
| continue; |
| |
| if (!i915_request_is_ready(w)) |
| continue; |
| |
| if (__i915_request_is_complete(w)) |
| continue; |
| |
| if (i915_request_on_hold(w)) |
| continue; |
| |
| list_move_tail(&w->sched.link, &list); |
| } |
| |
| rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); |
| } while (rq); |
| } |
| |
| static bool execlists_hold(struct intel_engine_cs *engine, |
| struct i915_request *rq) |
| { |
| if (i915_request_on_hold(rq)) |
| return false; |
| |
| spin_lock_irq(&engine->sched_engine->lock); |
| |
| if (__i915_request_is_complete(rq)) { /* too late! */ |
| rq = NULL; |
| goto unlock; |
| } |
| |
| /* |
| * Transfer this request onto the hold queue to prevent it |
| * being resumbitted to HW (and potentially completed) before we have |
| * released it. Since we may have already submitted following |
| * requests, we need to remove those as well. |
| */ |
| GEM_BUG_ON(i915_request_on_hold(rq)); |
| GEM_BUG_ON(rq->engine != engine); |
| __execlists_hold(rq); |
| GEM_BUG_ON(list_empty(&engine->sched_engine->hold)); |
| |
| unlock: |
| spin_unlock_irq(&engine->sched_engine->lock); |
| return rq; |
| } |
| |
| static bool hold_request(const struct i915_request *rq) |
| { |
| struct i915_dependency *p; |
| bool result = false; |
| |
| /* |
| * If one of our ancestors is on hold, we must also be on hold, |
| * otherwise we will bypass it and execute before it. |
| */ |
| rcu_read_lock(); |
| for_each_signaler(p, rq) { |
| const struct i915_request *s = |
| container_of(p->signaler, typeof(*s), sched); |
| |
| if (s->engine != rq->engine) |
| continue; |
| |
| result = i915_request_on_hold(s); |
| if (result) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return result; |
| } |
| |
| static void __execlists_unhold(struct i915_request *rq) |
| { |
| LIST_HEAD(list); |
| |
| do { |
| struct i915_dependency *p; |
| |
| RQ_TRACE(rq, "hold release\n"); |
| |
| GEM_BUG_ON(!i915_request_on_hold(rq)); |
| GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); |
| |
| i915_request_clear_hold(rq); |
| list_move_tail(&rq->sched.link, |
| i915_sched_lookup_priolist(rq->engine->sched_engine, |
| rq_prio(rq))); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| |
| /* Also release any children on this engine that are ready */ |
| for_each_waiter(p, rq) { |
| struct i915_request *w = |
| container_of(p->waiter, typeof(*w), sched); |
| |
| if (p->flags & I915_DEPENDENCY_WEAK) |
| continue; |
| |
| if (w->engine != rq->engine) |
| continue; |
| |
| if (!i915_request_on_hold(w)) |
| continue; |
| |
| /* Check that no other parents are also on hold */ |
| if (hold_request(w)) |
| continue; |
| |
| list_move_tail(&w->sched.link, &list); |
| } |
| |
| rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); |
| } while (rq); |
| } |
| |
| static void execlists_unhold(struct intel_engine_cs *engine, |
| struct i915_request *rq) |
| { |
| spin_lock_irq(&engine->sched_engine->lock); |
| |
| /* |
| * Move this request back to the priority queue, and all of its |
| * children and grandchildren that were suspended along with it. |
| */ |
| __execlists_unhold(rq); |
| |
| if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) { |
| engine->sched_engine->queue_priority_hint = rq_prio(rq); |
| tasklet_hi_schedule(&engine->sched_engine->tasklet); |
| } |
| |
| spin_unlock_irq(&engine->sched_engine->lock); |
| } |
| |
| struct execlists_capture { |
| struct work_struct work; |
| struct i915_request *rq; |
| struct i915_gpu_coredump *error; |
| }; |
| |
| static void execlists_capture_work(struct work_struct *work) |
| { |
| struct execlists_capture *cap = container_of(work, typeof(*cap), work); |
| const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL | |
| __GFP_NOWARN; |
| struct intel_engine_cs *engine = cap->rq->engine; |
| struct intel_gt_coredump *gt = cap->error->gt; |
| struct intel_engine_capture_vma *vma; |
| |
| /* Compress all the objects attached to the request, slow! */ |
| vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp); |
| if (vma) { |
| struct i915_vma_compress *compress = |
| i915_vma_capture_prepare(gt); |
| |
| intel_engine_coredump_add_vma(gt->engine, vma, compress); |
| i915_vma_capture_finish(gt, compress); |
| } |
| |
| gt->simulated = gt->engine->simulated; |
| cap->error->simulated = gt->simulated; |
| |
| /* Publish the error state, and announce it to the world */ |
| i915_error_state_store(cap->error); |
| i915_gpu_coredump_put(cap->error); |
| |
| /* Return this request and all that depend upon it for signaling */ |
| execlists_unhold(engine, cap->rq); |
| i915_request_put(cap->rq); |
| |
| kfree(cap); |
| } |
| |
| static struct execlists_capture *capture_regs(struct intel_engine_cs *engine) |
| { |
| const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; |
| struct execlists_capture *cap; |
| |
| cap = kmalloc(sizeof(*cap), gfp); |
| if (!cap) |
| return NULL; |
| |
| cap->error = i915_gpu_coredump_alloc(engine->i915, gfp); |
| if (!cap->error) |
| goto err_cap; |
| |
| cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE); |
| if (!cap->error->gt) |
| goto err_gpu; |
| |
| cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE); |
| if (!cap->error->gt->engine) |
| goto err_gt; |
| |
| cap->error->gt->engine->hung = true; |
| |
| return cap; |
| |
| err_gt: |
| kfree(cap->error->gt); |
| err_gpu: |
| kfree(cap->error); |
| err_cap: |
| kfree(cap); |
| return NULL; |
| } |
| |
| static struct i915_request * |
| active_context(struct intel_engine_cs *engine, u32 ccid) |
| { |
| const struct intel_engine_execlists * const el = &engine->execlists; |
| struct i915_request * const *port, *rq; |
| |
| /* |
| * Use the most recent result from process_csb(), but just in case |
| * we trigger an error (via interrupt) before the first CS event has |
| * been written, peek at the next submission. |
| */ |
| |
| for (port = el->active; (rq = *port); port++) { |
| if (rq->context->lrc.ccid == ccid) { |
| ENGINE_TRACE(engine, |
| "ccid:%x found at active:%zd\n", |
| ccid, port - el->active); |
| return rq; |
| } |
| } |
| |
| for (port = el->pending; (rq = *port); port++) { |
| if (rq->context->lrc.ccid == ccid) { |
| ENGINE_TRACE(engine, |
| "ccid:%x found at pending:%zd\n", |
| ccid, port - el->pending); |
| return rq; |
| } |
| } |
| |
| ENGINE_TRACE(engine, "ccid:%x not found\n", ccid); |
| return NULL; |
| } |
| |
| static u32 active_ccid(struct intel_engine_cs *engine) |
| { |
| return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI); |
| } |
| |
| static void execlists_capture(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| struct execlists_capture *cap; |
| |
| if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)) |
| return; |
| |
| /* |
| * We need to _quickly_ capture the engine state before we reset. |
| * We are inside an atomic section (softirq) here and we are delaying |
| * the forced preemption event. |
| */ |
| cap = capture_regs(engine); |
| if (!cap) |
| return; |
| |
| spin_lock_irq(&engine->sched_engine->lock); |
| cap->rq = active_context(engine, active_ccid(engine)); |
| if (cap->rq) { |
| cap->rq = active_request(cap->rq->context->timeline, cap->rq); |
| cap->rq = i915_request_get_rcu(cap->rq); |
| } |
| spin_unlock_irq(&engine->sched_engine->lock); |
| if (!cap->rq) |
| goto err_free; |
| |
| /* |
| * Remove the request from the execlists queue, and take ownership |
| * of the request. We pass it to our worker who will _slowly_ compress |
| * all the pages the _user_ requested for debugging their batch, after |
| * which we return it to the queue for signaling. |
| * |
| * By removing them from the execlists queue, we also remove the |
| * requests from being processed by __unwind_incomplete_requests() |
| * during the intel_engine_reset(), and so they will *not* be replayed |
| * afterwards. |
| * |
| * Note that because we have not yet reset the engine at this point, |
| * it is possible for the request that we have identified as being |
| * guilty, did in fact complete and we will then hit an arbitration |
| * point allowing the outstanding preemption to succeed. The likelihood |
| * of that is very low (as capturing of the engine registers should be |
| * fast enough to run inside an irq-off atomic section!), so we will |
| * simply hold that request accountable for being non-preemptible |
| * long enough to force the reset. |
| */ |
| if (!execlists_hold(engine, cap->rq)) |
| goto err_rq; |
| |
| INIT_WORK(&cap->work, execlists_capture_work); |
| queue_work(i915->unordered_wq, &cap->work); |
| return; |
| |
| err_rq: |
| i915_request_put(cap->rq); |
| err_free: |
| i915_gpu_coredump_put(cap->error); |
| kfree(cap); |
| } |
| |
| static void execlists_reset(struct intel_engine_cs *engine, const char *msg) |
| { |
| const unsigned int bit = I915_RESET_ENGINE + engine->id; |
| unsigned long *lock = &engine->gt->reset.flags; |
| |
| if (!intel_has_reset_engine(engine->gt)) |
| return; |
| |
| if (test_and_set_bit(bit, lock)) |
| return; |
| |
| ENGINE_TRACE(engine, "reset for %s\n", msg); |
| |
| /* Mark this tasklet as disabled to avoid waiting for it to complete */ |
| tasklet_disable_nosync(&engine->sched_engine->tasklet); |
| |
| ring_set_paused(engine, 1); /* Freeze the current request in place */ |
| execlists_capture(engine); |
| intel_engine_reset(engine, msg); |
| |
| tasklet_enable(&engine->sched_engine->tasklet); |
| clear_and_wake_up_bit(bit, lock); |
| } |
| |
| static bool preempt_timeout(const struct intel_engine_cs *const engine) |
| { |
| const struct timer_list *t = &engine->execlists.preempt; |
| |
| if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) |
| return false; |
| |
| if (!timer_expired(t)) |
| return false; |
| |
| return engine->execlists.pending[0]; |
| } |
| |
| /* |
| * Check the unread Context Status Buffers and manage the submission of new |
| * contexts to the ELSP accordingly. |
| */ |
| static void execlists_submission_tasklet(struct tasklet_struct *t) |
| { |
| struct i915_sched_engine *sched_engine = |
| from_tasklet(sched_engine, t, tasklet); |
| struct intel_engine_cs * const engine = sched_engine->private_data; |
| struct i915_request *post[2 * EXECLIST_MAX_PORTS]; |
| struct i915_request **inactive; |
| |
| rcu_read_lock(); |
| inactive = process_csb(engine, post); |
| GEM_BUG_ON(inactive - post > ARRAY_SIZE(post)); |
| |
| if (unlikely(preempt_timeout(engine))) { |
| const struct i915_request *rq = *engine->execlists.active; |
| |
| /* |
| * If after the preempt-timeout expired, we are still on the |
| * same active request/context as before we initiated the |
| * preemption, reset the engine. |
| * |
| * However, if we have processed a CS event to switch contexts, |
| * but not yet processed the CS event for the pending |
| * preemption, reset the timer allowing the new context to |
| * gracefully exit. |
| */ |
| cancel_timer(&engine->execlists.preempt); |
| if (rq == engine->execlists.preempt_target) |
| engine->execlists.error_interrupt |= ERROR_PREEMPT; |
| else |
| set_timer_ms(&engine->execlists.preempt, |
| active_preempt_timeout(engine, rq)); |
| } |
| |
| if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) { |
| const char *msg; |
| |
| /* Generate the error message in priority wrt to the user! */ |
| if (engine->execlists.error_interrupt & GENMASK(15, 0)) |
| msg = "CS error"; /* thrown by a user payload */ |
| else if (engine->execlists.error_interrupt & ERROR_CSB) |
| msg = "invalid CSB event"; |
| else if (engine->execlists.error_interrupt & ERROR_PREEMPT) |
| msg = "preemption time out"; |
| else |
| msg = "internal error"; |
| |
| engine->execlists.error_interrupt = 0; |
| execlists_reset(engine, msg); |
| } |
| |
| if (!engine->execlists.pending[0]) { |
| execlists_dequeue_irq(engine); |
| start_timeslice(engine); |
| } |
| |
| post_process_csb(post, inactive); |
| rcu_read_unlock(); |
| } |
| |
| static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir) |
| { |
| bool tasklet = false; |
| |
| if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) { |
| u32 eir; |
| |
| /* Upper 16b are the enabling mask, rsvd for internal errors */ |
| eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0); |
| ENGINE_TRACE(engine, "CS error: %x\n", eir); |
| |
| /* Disable the error interrupt until after the reset */ |
| if (likely(eir)) { |
| ENGINE_WRITE(engine, RING_EMR, ~0u); |
| ENGINE_WRITE(engine, RING_EIR, eir); |
| WRITE_ONCE(engine->execlists.error_interrupt, eir); |
| tasklet = true; |
| } |
| } |
| |
| if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) { |
| WRITE_ONCE(engine->execlists.yield, |
| ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI)); |
| ENGINE_TRACE(engine, "semaphore yield: %08x\n", |
| engine->execlists.yield); |
| if (del_timer(&engine->execlists.timer)) |
| tasklet = true; |
| } |
| |
| if (iir & GT_CONTEXT_SWITCH_INTERRUPT) |
| tasklet = true; |
| |
| if (iir & GT_RENDER_USER_INTERRUPT) |
| intel_engine_signal_breadcrumbs(engine); |
| |
| if (tasklet) |
| tasklet_hi_schedule(&engine->sched_engine->tasklet); |
| } |
| |
| static void __execlists_kick(struct intel_engine_execlists *execlists) |
| { |
| struct intel_engine_cs *engine = |
| container_of(execlists, typeof(*engine), execlists); |
| |
| /* Kick the tasklet for some interrupt coalescing and reset handling */ |
| tasklet_hi_schedule(&engine->sched_engine->tasklet); |
| } |
| |
| #define execlists_kick(t, member) \ |
| __execlists_kick(container_of(t, struct intel_engine_execlists, member)) |
| |
| static void execlists_timeslice(struct timer_list *timer) |
| { |
| execlists_kick(timer, timer); |
| } |
| |
| static void execlists_preempt(struct timer_list *timer) |
| { |
| execlists_kick(timer, preempt); |
| } |
| |
| static void queue_request(struct intel_engine_cs *engine, |
| struct i915_request *rq) |
| { |
| GEM_BUG_ON(!list_empty(&rq->sched.link)); |
| list_add_tail(&rq->sched.link, |
| i915_sched_lookup_priolist(engine->sched_engine, |
| rq_prio(rq))); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| } |
| |
| static bool submit_queue(struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| struct i915_sched_engine *sched_engine = engine->sched_engine; |
| |
| if (rq_prio(rq) <= sched_engine->queue_priority_hint) |
| return false; |
| |
| sched_engine->queue_priority_hint = rq_prio(rq); |
| return true; |
| } |
| |
| static bool ancestor_on_hold(const struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| GEM_BUG_ON(i915_request_on_hold(rq)); |
| return !list_empty(&engine->sched_engine->hold) && hold_request(rq); |
| } |
| |
| static void execlists_submit_request(struct i915_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| unsigned long flags; |
| |
| /* Will be called from irq-context when using foreign fences. */ |
| spin_lock_irqsave(&engine->sched_engine->lock, flags); |
| |
| if (unlikely(ancestor_on_hold(engine, request))) { |
| RQ_TRACE(request, "ancestor on hold\n"); |
| list_add_tail(&request->sched.link, |
| &engine->sched_engine->hold); |
| i915_request_set_hold(request); |
| } else { |
| queue_request(engine, request); |
| |
| GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine)); |
| GEM_BUG_ON(list_empty(&request->sched.link)); |
| |
| if (submit_queue(engine, request)) |
| __execlists_kick(&engine->execlists); |
| } |
| |
| spin_unlock_irqrestore(&engine->sched_engine->lock, flags); |
| } |
| |
| static int |
| __execlists_context_pre_pin(struct intel_context *ce, |
| struct intel_engine_cs *engine, |
| struct i915_gem_ww_ctx *ww, void **vaddr) |
| { |
| int err; |
| |
| err = lrc_pre_pin(ce, engine, ww, vaddr); |
| if (err) |
| return err; |
| |
| if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) { |
| lrc_init_state(ce, engine, *vaddr); |
| |
| __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size); |
| } |
| |
| return 0; |
| } |
| |
| static int execlists_context_pre_pin(struct intel_context *ce, |
| struct i915_gem_ww_ctx *ww, |
| void **vaddr) |
| { |
| return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr); |
| } |
| |
| static int execlists_context_pin(struct intel_context *ce, void *vaddr) |
| { |
| return lrc_pin(ce, ce->engine, vaddr); |
| } |
| |
| static int execlists_context_alloc(struct intel_context *ce) |
| { |
| return lrc_alloc(ce, ce->engine); |
| } |
| |
| static void execlists_context_cancel_request(struct intel_context *ce, |
| struct i915_request *rq) |
| { |
| struct intel_engine_cs *engine = NULL; |
| |
| i915_request_active_engine(rq, &engine); |
| |
| if (engine && intel_engine_pulse(engine)) |
| intel_gt_handle_error(engine->gt, engine->mask, 0, |
| "request cancellation by %s", |
| current->comm); |
| } |
| |
| static struct intel_context * |
| execlists_create_parallel(struct intel_engine_cs **engines, |
| unsigned int num_siblings, |
| unsigned int width) |
| { |
| struct intel_context *parent = NULL, *ce, *err; |
| int i; |
| |
| GEM_BUG_ON(num_siblings != 1); |
| |
| for (i = 0; i < width; ++i) { |
| ce = intel_context_create(engines[i]); |
| if (IS_ERR(ce)) { |
| err = ce; |
| goto unwind; |
| } |
| |
| if (i == 0) |
| parent = ce; |
| else |
| intel_context_bind_parent_child(parent, ce); |
| } |
| |
| parent->parallel.fence_context = dma_fence_context_alloc(1); |
| |
| intel_context_set_nopreempt(parent); |
| for_each_child(parent, ce) |
| intel_context_set_nopreempt(ce); |
| |
| return parent; |
| |
| unwind: |
| if (parent) |
| intel_context_put(parent); |
| return err; |
| } |
| |
| static const struct intel_context_ops execlists_context_ops = { |
| .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES, |
| |
| .alloc = execlists_context_alloc, |
| |
| .cancel_request = execlists_context_cancel_request, |
| |
| .pre_pin = execlists_context_pre_pin, |
| .pin = execlists_context_pin, |
| .unpin = lrc_unpin, |
| .post_unpin = lrc_post_unpin, |
| |
| .enter = intel_context_enter_engine, |
| .exit = intel_context_exit_engine, |
| |
| .reset = lrc_reset, |
| .destroy = lrc_destroy, |
| |
| .create_parallel = execlists_create_parallel, |
| .create_virtual = execlists_create_virtual, |
| }; |
| |
| static int emit_pdps(struct i915_request *rq) |
| { |
| const struct intel_engine_cs * const engine = rq->engine; |
| struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm); |
| int err, i; |
| u32 *cs; |
| |
| GEM_BUG_ON(intel_vgpu_active(rq->i915)); |
| |
| /* |
| * Beware ye of the dragons, this sequence is magic! |
| * |
| * Small changes to this sequence can cause anything from |
| * GPU hangs to forcewake errors and machine lockups! |
| */ |
| |
| cs = intel_ring_begin(rq, 2); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| *cs++ = MI_NOOP; |
| intel_ring_advance(rq, cs); |
| |
| /* Flush any residual operations from the context load */ |
| err = engine->emit_flush(rq, EMIT_FLUSH); |
| if (err) |
| return err; |
| |
| /* Magic required to prevent forcewake errors! */ |
| err = engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| return err; |
| |
| cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* Ensure the LRI have landed before we invalidate & continue */ |
| *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; |
| for (i = GEN8_3LVL_PDPES; i--; ) { |
| const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); |
| u32 base = engine->mmio_base; |
| |
| *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); |
| *cs++ = upper_32_bits(pd_daddr); |
| *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); |
| *cs++ = lower_32_bits(pd_daddr); |
| } |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| intel_ring_advance(rq, cs); |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static int execlists_request_alloc(struct i915_request *request) |
| { |
| int ret; |
| |
| GEM_BUG_ON(!intel_context_is_pinned(request->context)); |
| |
| /* |
| * Flush enough space to reduce the likelihood of waiting after |
| * we start building the request - in which case we will just |
| * have to repeat work. |
| */ |
| request->reserved_space += EXECLISTS_REQUEST_SIZE; |
| |
| /* |
| * Note that after this point, we have committed to using |
| * this request as it is being used to both track the |
| * state of engine initialisation and liveness of the |
| * golden renderstate above. Think twice before you try |
| * to cancel/unwind this request now. |
| */ |
| |
| if (!i915_vm_is_4lvl(request->context->vm)) { |
| ret = emit_pdps(request); |
| if (ret) |
| return ret; |
| } |
| |
| /* Unconditionally invalidate GPU caches and TLBs. */ |
| ret = request->engine->emit_flush(request, EMIT_INVALIDATE); |
| if (ret) |
| return ret; |
| |
| request->reserved_space -= EXECLISTS_REQUEST_SIZE; |
| return 0; |
| } |
| |
| static void reset_csb_pointers(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| const unsigned int reset_value = execlists->csb_size - 1; |
| |
| ring_set_paused(engine, 0); |
| |
| /* |
| * Sometimes Icelake forgets to reset its pointers on a GPU reset. |
| * Bludgeon them with a mmio update to be sure. |
| */ |
| ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, |
| 0xffff << 16 | reset_value << 8 | reset_value); |
| ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); |
| |
| /* |
| * After a reset, the HW starts writing into CSB entry [0]. We |
| * therefore have to set our HEAD pointer back one entry so that |
| * the *first* entry we check is entry 0. To complicate this further, |
| * as we don't wait for the first interrupt after reset, we have to |
| * fake the HW write to point back to the last entry so that our |
| * inline comparison of our cached head position against the last HW |
| * write works even before the first interrupt. |
| */ |
| execlists->csb_head = reset_value; |
| WRITE_ONCE(*execlists->csb_write, reset_value); |
| wmb(); /* Make sure this is visible to HW (paranoia?) */ |
| |
| /* Check that the GPU does indeed update the CSB entries! */ |
| memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64)); |
| drm_clflush_virt_range(execlists->csb_status, |
| execlists->csb_size * |
| sizeof(execlists->csb_status)); |
| |
| /* Once more for luck and our trusty paranoia */ |
| ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, |
| 0xffff << 16 | reset_value << 8 | reset_value); |
| ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); |
| |
| GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value); |
| } |
| |
| static void sanitize_hwsp(struct intel_engine_cs *engine) |
| { |
| struct intel_timeline *tl; |
| |
| list_for_each_entry(tl, &engine->status_page.timelines, engine_link) |
| intel_timeline_reset_seqno(tl); |
| } |
| |
| static void execlists_sanitize(struct intel_engine_cs *engine) |
| { |
| GEM_BUG_ON(execlists_active(&engine->execlists)); |
| |
| /* |
| * Poison residual state on resume, in case the suspend didn't! |
| * |
| * We have to assume that across suspend/resume (or other loss |
| * of control) that the contents of our pinned buffers has been |
| * lost, replaced by garbage. Since this doesn't always happen, |
| * let's poison such state so that we more quickly spot when |
| * we falsely assume it has been preserved. |
| */ |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); |
| |
| reset_csb_pointers(engine); |
| |
| /* |
| * The kernel_context HWSP is stored in the status_page. As above, |
| * that may be lost on resume/initialisation, and so we need to |
| * reset the value in the HWSP. |
| */ |
| sanitize_hwsp(engine); |
| |
| /* And scrub the dirty cachelines for the HWSP */ |
| drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); |
| |
| intel_engine_reset_pinned_contexts(engine); |
| } |
| |
| static void enable_error_interrupt(struct intel_engine_cs *engine) |
| { |
| u32 status; |
| |
| engine->execlists.error_interrupt = 0; |
| ENGINE_WRITE(engine, RING_EMR, ~0u); |
| ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */ |
| |
| status = ENGINE_READ(engine, RING_ESR); |
| if (unlikely(status)) { |
| drm_err(&engine->i915->drm, |
| "engine '%s' resumed still in error: %08x\n", |
| engine->name, status); |
| __intel_gt_reset(engine->gt, engine->mask); |
| } |
| |
| /* |
| * On current gen8+, we have 2 signals to play with |
| * |
| * - I915_ERROR_INSTUCTION (bit 0) |
| * |
| * Generate an error if the command parser encounters an invalid |
| * instruction |
| * |
| * This is a fatal error. |
| * |
| * - CP_PRIV (bit 2) |
| * |
| * Generate an error on privilege violation (where the CP replaces |
| * the instruction with a no-op). This also fires for writes into |
| * read-only scratch pages. |
| * |
| * This is a non-fatal error, parsing continues. |
| * |
| * * there are a few others defined for odd HW that we do not use |
| * |
| * Since CP_PRIV fires for cases where we have chosen to ignore the |
| * error (as the HW is validating and suppressing the mistakes), we |
| * only unmask the instruction error bit. |
| */ |
| ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION); |
| } |
| |
| static void enable_execlists(struct intel_engine_cs *engine) |
| { |
| u32 mode; |
| |
| assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); |
| |
| intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ |
| |
| if (GRAPHICS_VER(engine->i915) >= 11) |
| mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE); |
| else |
| mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE); |
| ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode); |
| |
| ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); |
| |
| ENGINE_WRITE_FW(engine, |
| RING_HWS_PGA, |
| i915_ggtt_offset(engine->status_page.vma)); |
| ENGINE_POSTING_READ(engine, RING_HWS_PGA); |
| |
| enable_error_interrupt(engine); |
| } |
| |
| static int execlists_resume(struct intel_engine_cs *engine) |
| { |
| intel_mocs_init_engine(engine); |
| intel_breadcrumbs_reset(engine->breadcrumbs); |
| |
| enable_execlists(engine); |
| |
| if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) |
| xehp_enable_ccs_engines(engine); |
| |
| return 0; |
| } |
| |
| static void execlists_reset_prepare(struct intel_engine_cs *engine) |
| { |
| ENGINE_TRACE(engine, "depth<-%d\n", |
| atomic_read(&engine->sched_engine->tasklet.count)); |
| |
| /* |
| * Prevent request submission to the hardware until we have |
| * completed the reset in i915_gem_reset_finish(). If a request |
| * is completed by one engine, it may then queue a request |
| * to a second via its execlists->tasklet *just* as we are |
| * calling engine->resume() and also writing the ELSP. |
| * Turning off the execlists->tasklet until the reset is over |
| * prevents the race. |
| */ |
| __tasklet_disable_sync_once(&engine->sched_engine->tasklet); |
| GEM_BUG_ON(!reset_in_progress(engine)); |
| |
| /* |
| * We stop engines, otherwise we might get failed reset and a |
| * dead gpu (on elk). Also as modern gpu as kbl can suffer |
| * from system hang if batchbuffer is progressing when |
| * the reset is issued, regardless of READY_TO_RESET ack. |
| * Thus assume it is best to stop engines on all gens |
| * where we have a gpu reset. |
| * |
| * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) |
| * |
| * FIXME: Wa for more modern gens needs to be validated |
| */ |
| ring_set_paused(engine, 1); |
| intel_engine_stop_cs(engine); |
| |
| /* |
| * Wa_22011802037: In addition to stopping the cs, we need |
| * to wait for any pending mi force wakeups |
| */ |
| if (intel_engine_reset_needs_wa_22011802037(engine->gt)) |
| intel_engine_wait_for_pending_mi_fw(engine); |
| |
| engine->execlists.reset_ccid = active_ccid(engine); |
| } |
| |
| static struct i915_request ** |
| reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| |
| drm_clflush_virt_range(execlists->csb_write, |
| sizeof(execlists->csb_write[0])); |
| |
| inactive = process_csb(engine, inactive); /* drain preemption events */ |
| |
| /* Following the reset, we need to reload the CSB read/write pointers */ |
| reset_csb_pointers(engine); |
| |
| return inactive; |
| } |
| |
| static void |
| execlists_reset_active(struct intel_engine_cs *engine, bool stalled) |
| { |
| struct intel_context *ce; |
| struct i915_request *rq; |
| u32 head; |
| |
| /* |
| * Save the currently executing context, even if we completed |
| * its request, it was still running at the time of the |
| * reset and will have been clobbered. |
| */ |
| rq = active_context(engine, engine->execlists.reset_ccid); |
| if (!rq) |
| return; |
| |
| ce = rq->context; |
| GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); |
| |
| if (__i915_request_is_complete(rq)) { |
| /* Idle context; tidy up the ring so we can restart afresh */ |
| head = intel_ring_wrap(ce->ring, rq->tail); |
| goto out_replay; |
| } |
| |
| /* We still have requests in-flight; the engine should be active */ |
| GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); |
| |
| /* Context has requests still in-flight; it should not be idle! */ |
| GEM_BUG_ON(i915_active_is_idle(&ce->active)); |
| |
| rq = active_request(ce->timeline, rq); |
| head = intel_ring_wrap(ce->ring, rq->head); |
| GEM_BUG_ON(head == ce->ring->tail); |
| |
| /* |
| * If this request hasn't started yet, e.g. it is waiting on a |
| * semaphore, we need to avoid skipping the request or else we |
| * break the signaling chain. However, if the context is corrupt |
| * the request will not restart and we will be stuck with a wedged |
| * device. It is quite often the case that if we issue a reset |
| * while the GPU is loading the context image, that the context |
| * image becomes corrupt. |
| * |
| * Otherwise, if we have not started yet, the request should replay |
| * perfectly and we do not need to flag the result as being erroneous. |
| */ |
| if (!__i915_request_has_started(rq)) |
| goto out_replay; |
| |
| /* |
| * If the request was innocent, we leave the request in the ELSP |
| * and will try to replay it on restarting. The context image may |
| * have been corrupted by the reset, in which case we may have |
| * to service a new GPU hang, but more likely we can continue on |
| * without impact. |
| * |
| * If the request was guilty, we presume the context is corrupt |
| * and have to at least restore the RING register in the context |
| * image back to the expected values to skip over the guilty request. |
| */ |
| __i915_request_reset(rq, stalled); |
| |
| /* |
| * We want a simple context + ring to execute the breadcrumb update. |
| * We cannot rely on the context being intact across the GPU hang, |
| * so clear it and rebuild just what we need for the breadcrumb. |
| * All pending requests for this context will be zapped, and any |
| * future request will be after userspace has had the opportunity |
| * to recreate its own state. |
| */ |
| out_replay: |
| ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n", |
| head, ce->ring->tail); |
| lrc_reset_regs(ce, engine); |
| ce->lrc.lrca = lrc_update_regs(ce, engine, head); |
| } |
| |
| static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct i915_request *post[2 * EXECLIST_MAX_PORTS]; |
| struct i915_request **inactive; |
| |
| rcu_read_lock(); |
| inactive = reset_csb(engine, post); |
| |
| execlists_reset_active(engine, true); |
| |
| inactive = cancel_port_requests(execlists, inactive); |
| post_process_csb(post, inactive); |
| rcu_read_unlock(); |
| } |
| |
| static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled) |
| { |
| unsigned long flags; |
| |
| ENGINE_TRACE(engine, "\n"); |
| |
| /* Process the csb, find the guilty context and throw away */ |
| execlists_reset_csb(engine, stalled); |
| |
| /* Push back any incomplete requests for replay after the reset. */ |
| rcu_read_lock(); |
| spin_lock_irqsave(&engine->sched_engine->lock, flags); |
| __unwind_incomplete_requests(engine); |
| spin_unlock_irqrestore(&engine->sched_engine->lock, flags); |
| rcu_read_unlock(); |
| } |
| |
| static void nop_submission_tasklet(struct tasklet_struct *t) |
| { |
| struct i915_sched_engine *sched_engine = |
| from_tasklet(sched_engine, t, tasklet); |
| struct intel_engine_cs * const engine = sched_engine->private_data; |
| |
| /* The driver is wedged; don't process any more events. */ |
| WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN); |
| } |
| |
| static void execlists_reset_cancel(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct i915_sched_engine * const sched_engine = engine->sched_engine; |
| struct i915_request *rq, *rn; |
| struct rb_node *rb; |
| unsigned long flags; |
| |
| ENGINE_TRACE(engine, "\n"); |
| |
| /* |
| * Before we call engine->cancel_requests(), we should have exclusive |
| * access to the submission state. This is arranged for us by the |
| * caller disabling the interrupt generation, the tasklet and other |
| * threads that may then access the same state, giving us a free hand |
| * to reset state. However, we still need to let lockdep be aware that |
| * we know this state may be accessed in hardirq context, so we |
| * disable the irq around this manipulation and we want to keep |
| * the spinlock focused on its duties and not accidentally conflate |
| * coverage to the submission's irq state. (Similarly, although we |
| * shouldn't need to disable irq around the manipulation of the |
| * submission's irq state, we also wish to remind ourselves that |
| * it is irq state.) |
| */ |
| execlists_reset_csb(engine, true); |
| |
| rcu_read_lock(); |
| spin_lock_irqsave(&engine->sched_engine->lock, flags); |
| |
| /* Mark all executing requests as skipped. */ |
| list_for_each_entry(rq, &engine->sched_engine->requests, sched.link) |
| i915_request_put(i915_request_mark_eio(rq)); |
| intel_engine_signal_breadcrumbs(engine); |
| |
| /* Flush the queued requests to the timeline list (for retiring). */ |
| while ((rb = rb_first_cached(&sched_engine->queue))) { |
| struct i915_priolist *p = to_priolist(rb); |
| |
| priolist_for_each_request_consume(rq, rn, p) { |
| if (i915_request_mark_eio(rq)) { |
| __i915_request_submit(rq); |
| i915_request_put(rq); |
| } |
| } |
| |
| rb_erase_cached(&p->node, &sched_engine->queue); |
| i915_priolist_free(p); |
| } |
| |
| /* On-hold requests will be flushed to timeline upon their release */ |
| list_for_each_entry(rq, &sched_engine->hold, sched.link) |
| i915_request_put(i915_request_mark_eio(rq)); |
| |
| /* Cancel all attached virtual engines */ |
| while ((rb = rb_first_cached(&execlists->virtual))) { |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| |
| rb_erase_cached(rb, &execlists->virtual); |
| RB_CLEAR_NODE(rb); |
| |
| spin_lock(&ve->base.sched_engine->lock); |
| rq = fetch_and_zero(&ve->request); |
| if (rq) { |
| if (i915_request_mark_eio(rq)) { |
| rq->engine = engine; |
| __i915_request_submit(rq); |
| i915_request_put(rq); |
| } |
| i915_request_put(rq); |
| |
| ve->base.sched_engine->queue_priority_hint = INT_MIN; |
| } |
| spin_unlock(&ve->base.sched_engine->lock); |
| } |
| |
| /* Remaining _unready_ requests will be nop'ed when submitted */ |
| |
| sched_engine->queue_priority_hint = INT_MIN; |
| sched_engine->queue = RB_ROOT_CACHED; |
| |
| GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet)); |
| engine->sched_engine->tasklet.callback = nop_submission_tasklet; |
| |
| spin_unlock_irqrestore(&engine->sched_engine->lock, flags); |
| rcu_read_unlock(); |
| } |
| |
| static void execlists_reset_finish(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| |
| /* |
| * After a GPU reset, we may have requests to replay. Do so now while |
| * we still have the forcewake to be sure that the GPU is not allowed |
| * to sleep before we restart and reload a context. |
| * |
| * If the GPU reset fails, the engine may still be alive with requests |
| * inflight. We expect those to complete, or for the device to be |
| * reset as the next level of recovery, and as a final resort we |
| * will declare the device wedged. |
| */ |
| GEM_BUG_ON(!reset_in_progress(engine)); |
| |
| /* And kick in case we missed a new request submission. */ |
| if (__tasklet_enable(&engine->sched_engine->tasklet)) |
| __execlists_kick(execlists); |
| |
| ENGINE_TRACE(engine, "depth->%d\n", |
| atomic_read(&engine->sched_engine->tasklet.count)); |
| } |
| |
| static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) |
| { |
| ENGINE_WRITE(engine, RING_IMR, |
| ~(engine->irq_enable_mask | engine->irq_keep_mask)); |
| ENGINE_POSTING_READ(engine, RING_IMR); |
| } |
| |
| static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) |
| { |
| ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); |
| } |
| |
| static void execlists_park(struct intel_engine_cs *engine) |
| { |
| cancel_timer(&engine->execlists.timer); |
| cancel_timer(&engine->execlists.preempt); |
| |
| /* Reset upon idling, or we may delay the busy wakeup. */ |
| WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN); |
| } |
| |
| static void add_to_engine(struct i915_request *rq) |
| { |
| lockdep_assert_held(&rq->engine->sched_engine->lock); |
| list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests); |
| } |
| |
| static void remove_from_engine(struct i915_request *rq) |
| { |
| struct intel_engine_cs *engine, *locked; |
| |
| /* |
| * Virtual engines complicate acquiring the engine timeline lock, |
| * as their rq->engine pointer is not stable until under that |
| * engine lock. The simple ploy we use is to take the lock then |
| * check that the rq still belongs to the newly locked engine. |
| */ |
| locked = READ_ONCE(rq->engine); |
| spin_lock_irq(&locked->sched_engine->lock); |
| while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { |
| spin_unlock(&locked->sched_engine->lock); |
| spin_lock(&engine->sched_engine->lock); |
| locked = engine; |
| } |
| list_del_init(&rq->sched.link); |
| |
| clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); |
| |
| /* Prevent further __await_execution() registering a cb, then flush */ |
| set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); |
| |
| spin_unlock_irq(&locked->sched_engine->lock); |
| |
| i915_request_notify_execute_cb_imm(rq); |
| } |
| |
| static bool can_preempt(struct intel_engine_cs *engine) |
| { |
| if (GRAPHICS_VER(engine->i915) > 8) |
| return true; |
| |
| /* GPGPU on bdw requires extra w/a; not implemented */ |
| return engine->class != RENDER_CLASS; |
| } |
| |
| static void kick_execlists(const struct i915_request *rq, int prio) |
| { |
| struct intel_engine_cs *engine = rq->engine; |
| struct i915_sched_engine *sched_engine = engine->sched_engine; |
| const struct i915_request *inflight; |
| |
| /* |
| * We only need to kick the tasklet once for the high priority |
| * new context we add into the queue. |
| */ |
| if (prio <= sched_engine->queue_priority_hint) |
| return; |
| |
| rcu_read_lock(); |
| |
| /* Nothing currently active? We're overdue for a submission! */ |
| inflight = execlists_active(&engine->execlists); |
| if (!inflight) |
| goto unlock; |
| |
| /* |
| * If we are already the currently executing context, don't |
| * bother evaluating if we should preempt ourselves. |
| */ |
| if (inflight->context == rq->context) |
| goto unlock; |
| |
| ENGINE_TRACE(engine, |
| "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n", |
| prio, |
| rq->fence.context, rq->fence.seqno, |
| inflight->fence.context, inflight->fence.seqno, |
| inflight->sched.attr.priority); |
| |
| sched_engine->queue_priority_hint = prio; |
| |
| /* |
| * Allow preemption of low -> normal -> high, but we do |
| * not allow low priority tasks to preempt other low priority |
| * tasks under the impression that latency for low priority |
| * tasks does not matter (as much as background throughput), |
| * so kiss. |
| */ |
| if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight))) |
| tasklet_hi_schedule(&sched_engine->tasklet); |
| |
| unlock: |
| rcu_read_unlock(); |
| } |
| |
| static void execlists_set_default_submission(struct intel_engine_cs *engine) |
| { |
| engine->submit_request = execlists_submit_request; |
| engine->sched_engine->schedule = i915_schedule; |
| engine->sched_engine->kick_backend = kick_execlists; |
| engine->sched_engine->tasklet.callback = execlists_submission_tasklet; |
| } |
| |
| static void execlists_shutdown(struct intel_engine_cs *engine) |
| { |
| /* Synchronise with residual timers and any softirq they raise */ |
| del_timer_sync(&engine->execlists.timer); |
| del_timer_sync(&engine->execlists.preempt); |
| tasklet_kill(&engine->sched_engine->tasklet); |
| } |
| |
| static void execlists_release(struct intel_engine_cs *engine) |
| { |
| engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ |
| |
| execlists_shutdown(engine); |
| |
| intel_engine_cleanup_common(engine); |
| lrc_fini_wa_ctx(engine); |
| } |
| |
| static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine, |
| ktime_t *now) |
| { |
| struct intel_engine_execlists_stats *stats = &engine->stats.execlists; |
| ktime_t total = stats->total; |
| |
| /* |
| * If the engine is executing something at the moment |
| * add it to the total. |
| */ |
| *now = ktime_get(); |
| if (READ_ONCE(stats->active)) |
| total = ktime_add(total, ktime_sub(*now, stats->start)); |
| |
| return total; |
| } |
| |
| static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine, |
| ktime_t *now) |
| { |
| struct intel_engine_execlists_stats *stats = &engine->stats.execlists; |
| unsigned int seq; |
| ktime_t total; |
| |
| do { |
| seq = read_seqcount_begin(&stats->lock); |
| total = __execlists_engine_busyness(engine, now); |
| } while (read_seqcount_retry(&stats->lock, seq)); |
| |
| return total; |
| } |
| |
| static void |
| logical_ring_default_vfuncs(struct intel_engine_cs *engine) |
| { |
| /* Default vfuncs which can be overridden by each engine. */ |
| |
| engine->resume = execlists_resume; |
| |
| engine->cops = &execlists_context_ops; |
| engine->request_alloc = execlists_request_alloc; |
| engine->add_active_request = add_to_engine; |
| engine->remove_active_request = remove_from_engine; |
| |
| engine->reset.prepare = execlists_reset_prepare; |
| engine->reset.rewind = execlists_reset_rewind; |
| engine->reset.cancel = execlists_reset_cancel; |
| engine->reset.finish = execlists_reset_finish; |
| |
| engine->park = execlists_park; |
| engine->unpark = NULL; |
| |
| engine->emit_flush = gen8_emit_flush_xcs; |
| engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; |
| engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; |
| if (GRAPHICS_VER(engine->i915) >= 12) { |
| engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; |
| engine->emit_flush = gen12_emit_flush_xcs; |
| } |
| engine->set_default_submission = execlists_set_default_submission; |
| |
| if (GRAPHICS_VER(engine->i915) < 11) { |
| engine->irq_enable = gen8_logical_ring_enable_irq; |
| engine->irq_disable = gen8_logical_ring_disable_irq; |
| } else { |
| /* |
| * TODO: On Gen11 interrupt masks need to be clear |
| * to allow C6 entry. Keep interrupts enabled at |
| * and take the hit of generating extra interrupts |
| * until a more refined solution exists. |
| */ |
| } |
| intel_engine_set_irq_handler(engine, execlists_irq_handler); |
| |
| engine->flags |= I915_ENGINE_SUPPORTS_STATS; |
| if (!intel_vgpu_active(engine->i915)) { |
| engine->flags |= I915_ENGINE_HAS_SEMAPHORES; |
| if (can_preempt(engine)) { |
| engine->flags |= I915_ENGINE_HAS_PREEMPTION; |
| if (CONFIG_DRM_I915_TIMESLICE_DURATION) |
| engine->flags |= I915_ENGINE_HAS_TIMESLICES; |
| } |
| } |
| |
| if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { |
| if (intel_engine_has_preemption(engine)) |
| engine->emit_bb_start = xehp_emit_bb_start; |
| else |
| engine->emit_bb_start = xehp_emit_bb_start_noarb; |
| } else { |
| if (intel_engine_has_preemption(engine)) |
| engine->emit_bb_start = gen8_emit_bb_start; |
| else |
| engine->emit_bb_start = gen8_emit_bb_start_noarb; |
| } |
| |
| engine->busyness = execlists_engine_busyness; |
| } |
| |
| static void logical_ring_default_irqs(struct intel_engine_cs *engine) |
| { |
| unsigned int shift = 0; |
| |
| if (GRAPHICS_VER(engine->i915) < 11) { |
| const u8 irq_shifts[] = { |
| [RCS0] = GEN8_RCS_IRQ_SHIFT, |
| [BCS0] = GEN8_BCS_IRQ_SHIFT, |
| [VCS0] = GEN8_VCS0_IRQ_SHIFT, |
| [VCS1] = GEN8_VCS1_IRQ_SHIFT, |
| [VECS0] = GEN8_VECS_IRQ_SHIFT, |
| }; |
| |
| shift = irq_shifts[engine->id]; |
| } |
| |
| engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; |
| engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; |
| engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift; |
| engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift; |
| } |
| |
| static void rcs_submission_override(struct intel_engine_cs *engine) |
| { |
| switch (GRAPHICS_VER(engine->i915)) { |
| case 12: |
| engine->emit_flush = gen12_emit_flush_rcs; |
| engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; |
| break; |
| case 11: |
| engine->emit_flush = gen11_emit_flush_rcs; |
| engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; |
| break; |
| default: |
| engine->emit_flush = gen8_emit_flush_rcs; |
| engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; |
| break; |
| } |
| } |
| |
| int intel_execlists_submission_setup(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct drm_i915_private *i915 = engine->i915; |
| struct intel_uncore *uncore = engine->uncore; |
| u32 base = engine->mmio_base; |
| |
| tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet); |
| timer_setup(&engine->execlists.timer, execlists_timeslice, 0); |
| timer_setup(&engine->execlists.preempt, execlists_preempt, 0); |
| |
| logical_ring_default_vfuncs(engine); |
| logical_ring_default_irqs(engine); |
| |
| seqcount_init(&engine->stats.execlists.lock); |
| |
| if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) |
| rcs_submission_override(engine); |
| |
| lrc_init_wa_ctx(engine); |
| |
| if (HAS_LOGICAL_RING_ELSQ(i915)) { |
| execlists->submit_reg = intel_uncore_regs(uncore) + |
| i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); |
| execlists->ctrl_reg = intel_uncore_regs(uncore) + |
| i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); |
| |
| engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore, |
| RING_EXECLIST_CONTROL(engine->mmio_base), |
| FW_REG_WRITE); |
| } else { |
| execlists->submit_reg = intel_uncore_regs(uncore) + |
| i915_mmio_reg_offset(RING_ELSP(base)); |
| } |
| |
| execlists->csb_status = |
| (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; |
| |
| execlists->csb_write = |
| &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)]; |
| |
| if (GRAPHICS_VER(i915) < 11) |
| execlists->csb_size = GEN8_CSB_ENTRIES; |
| else |
| execlists->csb_size = GEN11_CSB_ENTRIES; |
| |
| engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0); |
| if (GRAPHICS_VER(engine->i915) >= 11 && |
| GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) { |
| execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32); |
| execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32); |
| } |
| |
| /* Finally, take ownership and responsibility for cleanup! */ |
| engine->sanitize = execlists_sanitize; |
| engine->release = execlists_release; |
| |
| return 0; |
| } |
| |
| static struct list_head *virtual_queue(struct virtual_engine *ve) |
| { |
| return &ve->base.sched_engine->default_priolist.requests; |
| } |
| |
| static void rcu_virtual_context_destroy(struct work_struct *wrk) |
| { |
| struct virtual_engine *ve = |
| container_of(wrk, typeof(*ve), rcu.work); |
| unsigned int n; |
| |
| GEM_BUG_ON(ve->context.inflight); |
| |
| /* Preempt-to-busy may leave a stale request behind. */ |
| if (unlikely(ve->request)) { |
| struct i915_request *old; |
| |
| spin_lock_irq(&ve->base.sched_engine->lock); |
| |
| old = fetch_and_zero(&ve->request); |
| if (old) { |
| GEM_BUG_ON(!__i915_request_is_complete(old)); |
| __i915_request_submit(old); |
| i915_request_put(old); |
| } |
| |
| spin_unlock_irq(&ve->base.sched_engine->lock); |
| } |
| |
| /* |
| * Flush the tasklet in case it is still running on another core. |
| * |
| * This needs to be done before we remove ourselves from the siblings' |
| * rbtrees as in the case it is running in parallel, it may reinsert |
| * the rb_node into a sibling. |
| */ |
| tasklet_kill(&ve->base.sched_engine->tasklet); |
| |
| /* Decouple ourselves from the siblings, no more access allowed. */ |
| for (n = 0; n < ve->num_siblings; n++) { |
| struct intel_engine_cs *sibling = ve->siblings[n]; |
| struct rb_node *node = &ve->nodes[sibling->id].rb; |
| |
| if (RB_EMPTY_NODE(node)) |
| continue; |
| |
| spin_lock_irq(&sibling->sched_engine->lock); |
| |
| /* Detachment is lazily performed in the sched_engine->tasklet */ |
| if (!RB_EMPTY_NODE(node)) |
| rb_erase_cached(node, &sibling->execlists.virtual); |
| |
| spin_unlock_irq(&sibling->sched_engine->lock); |
| } |
| GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet)); |
| GEM_BUG_ON(!list_empty(virtual_queue(ve))); |
| |
| lrc_fini(&ve->context); |
| intel_context_fini(&ve->context); |
| |
| if (ve->base.breadcrumbs) |
| intel_breadcrumbs_put(ve->base.breadcrumbs); |
| if (ve->base.sched_engine) |
| i915_sched_engine_put(ve->base.sched_engine); |
| intel_engine_free_request_pool(&ve->base); |
| |
| kfree(ve); |
| } |
| |
| static void virtual_context_destroy(struct kref *kref) |
| { |
| struct virtual_engine *ve = |
| container_of(kref, typeof(*ve), context.ref); |
| |
| GEM_BUG_ON(!list_empty(&ve->context.signals)); |
| |
| /* |
| * When destroying the virtual engine, we have to be aware that |
| * it may still be in use from an hardirq/softirq context causing |
| * the resubmission of a completed request (background completion |
| * due to preempt-to-busy). Before we can free the engine, we need |
| * to flush the submission code and tasklets that are still potentially |
| * accessing the engine. Flushing the tasklets requires process context, |
| * and since we can guard the resubmit onto the engine with an RCU read |
| * lock, we can delegate the free of the engine to an RCU worker. |
| */ |
| INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy); |
| queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu); |
| } |
| |
| static void virtual_engine_initial_hint(struct virtual_engine *ve) |
| { |
| int swp; |
| |
| /* |
| * Pick a random sibling on starting to help spread the load around. |
| * |
| * New contexts are typically created with exactly the same order |
| * of siblings, and often started in batches. Due to the way we iterate |
| * the array of sibling when submitting requests, sibling[0] is |
| * prioritised for dequeuing. If we make sure that sibling[0] is fairly |
| * randomised across the system, we also help spread the load by the |
| * first engine we inspect being different each time. |
| * |
| * NB This does not force us to execute on this engine, it will just |
| * typically be the first we inspect for submission. |
| */ |
| swp = get_random_u32_below(ve->num_siblings); |
| if (swp) |
| swap(ve->siblings[swp], ve->siblings[0]); |
| } |
| |
| static int virtual_context_alloc(struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| |
| return lrc_alloc(ce, ve->siblings[0]); |
| } |
| |
| static int virtual_context_pre_pin(struct intel_context *ce, |
| struct i915_gem_ww_ctx *ww, |
| void **vaddr) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| |
| /* Note: we must use a real engine class for setting up reg state */ |
| return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr); |
| } |
| |
| static int virtual_context_pin(struct intel_context *ce, void *vaddr) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| |
| return lrc_pin(ce, ve->siblings[0], vaddr); |
| } |
| |
| static void virtual_context_enter(struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| unsigned int n; |
| |
| for (n = 0; n < ve->num_siblings; n++) |
| intel_engine_pm_get(ve->siblings[n]); |
| |
| intel_timeline_enter(ce->timeline); |
| } |
| |
| static void virtual_context_exit(struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| unsigned int n; |
| |
| intel_timeline_exit(ce->timeline); |
| |
| for (n = 0; n < ve->num_siblings; n++) |
| intel_engine_pm_put(ve->siblings[n]); |
| } |
| |
| static struct intel_engine_cs * |
| virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling) |
| { |
| struct virtual_engine *ve = to_virtual_engine(engine); |
| |
| if (sibling >= ve->num_siblings) |
| return NULL; |
| |
| return ve->siblings[sibling]; |
| } |
| |
| static const struct intel_context_ops virtual_context_ops = { |
| .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES, |
| |
| .alloc = virtual_context_alloc, |
| |
| .cancel_request = execlists_context_cancel_request, |
| |
| .pre_pin = virtual_context_pre_pin, |
| .pin = virtual_context_pin, |
| .unpin = lrc_unpin, |
| .post_unpin = lrc_post_unpin, |
| |
| .enter = virtual_context_enter, |
| .exit = virtual_context_exit, |
| |
| .destroy = virtual_context_destroy, |
| |
| .get_sibling = virtual_get_sibling, |
| }; |
| |
| static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) |
| { |
| struct i915_request *rq; |
| intel_engine_mask_t mask; |
| |
| rq = READ_ONCE(ve->request); |
| if (!rq) |
| return 0; |
| |
| /* The rq is ready for submission; rq->execution_mask is now stable. */ |
| mask = rq->execution_mask; |
| if (unlikely(!mask)) { |
| /* Invalid selection, submit to a random engine in error */ |
| i915_request_set_error_once(rq, -ENODEV); |
| mask = ve->siblings[0]->mask; |
| } |
| |
| ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n", |
| rq->fence.context, rq->fence.seqno, |
| mask, ve->base.sched_engine->queue_priority_hint); |
| |
| return mask; |
| } |
| |
| static void virtual_submission_tasklet(struct tasklet_struct *t) |
| { |
| struct i915_sched_engine *sched_engine = |
| from_tasklet(sched_engine, t, tasklet); |
| struct virtual_engine * const ve = |
| (struct virtual_engine *)sched_engine->private_data; |
| const int prio = READ_ONCE(sched_engine->queue_priority_hint); |
| intel_engine_mask_t mask; |
| unsigned int n; |
| |
| rcu_read_lock(); |
| mask = virtual_submission_mask(ve); |
| rcu_read_unlock(); |
| if (unlikely(!mask)) |
| return; |
| |
| for (n = 0; n < ve->num_siblings; n++) { |
| struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]); |
| struct ve_node * const node = &ve->nodes[sibling->id]; |
| struct rb_node **parent, *rb; |
| bool first; |
| |
| if (!READ_ONCE(ve->request)) |
| break; /* already handled by a sibling's tasklet */ |
| |
| spin_lock_irq(&sibling->sched_engine->lock); |
| |
| if (unlikely(!(mask & sibling->mask))) { |
| if (!RB_EMPTY_NODE(&node->rb)) { |
| rb_erase_cached(&node->rb, |
| &sibling->execlists.virtual); |
| RB_CLEAR_NODE(&node->rb); |
| } |
| |
| goto unlock_engine; |
| } |
| |
| if (unlikely(!RB_EMPTY_NODE(&node->rb))) { |
| /* |
| * Cheat and avoid rebalancing the tree if we can |
| * reuse this node in situ. |
| */ |
| first = rb_first_cached(&sibling->execlists.virtual) == |
| &node->rb; |
| if (prio == node->prio || (prio > node->prio && first)) |
| goto submit_engine; |
| |
| rb_erase_cached(&node->rb, &sibling->execlists.virtual); |
| } |
| |
| rb = NULL; |
| first = true; |
| parent = &sibling->execlists.virtual.rb_root.rb_node; |
| while (*parent) { |
| struct ve_node *other; |
| |
| rb = *parent; |
| other = rb_entry(rb, typeof(*other), rb); |
| if (prio > other->prio) { |
| parent = &rb->rb_left; |
| } else { |
| parent = &rb->rb_right; |
| first = false; |
| } |
| } |
| |
| rb_link_node(&node->rb, rb, parent); |
| rb_insert_color_cached(&node->rb, |
| &sibling->execlists.virtual, |
| first); |
| |
| submit_engine: |
| GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); |
| node->prio = prio; |
| if (first && prio > sibling->sched_engine->queue_priority_hint) |
| tasklet_hi_schedule(&sibling->sched_engine->tasklet); |
| |
| unlock_engine: |
| spin_unlock_irq(&sibling->sched_engine->lock); |
| |
| if (intel_context_inflight(&ve->context)) |
| break; |
| } |
| } |
| |
| static void virtual_submit_request(struct i915_request *rq) |
| { |
| struct virtual_engine *ve = to_virtual_engine(rq->engine); |
| unsigned long flags; |
| |
| ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n", |
| rq->fence.context, |
| rq->fence.seqno); |
| |
| GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); |
| |
| spin_lock_irqsave(&ve->base.sched_engine->lock, flags); |
| |
| /* By the time we resubmit a request, it may be completed */ |
| if (__i915_request_is_complete(rq)) { |
| __i915_request_submit(rq); |
| goto unlock; |
| } |
| |
| if (ve->request) { /* background completion from preempt-to-busy */ |
| GEM_BUG_ON(!__i915_request_is_complete(ve->request)); |
| __i915_request_submit(ve->request); |
| i915_request_put(ve->request); |
| } |
| |
| ve->base.sched_engine->queue_priority_hint = rq_prio(rq); |
| ve->request = i915_request_get(rq); |
| |
| GEM_BUG_ON(!list_empty(virtual_queue(ve))); |
| list_move_tail(&rq->sched.link, virtual_queue(ve)); |
| |
| tasklet_hi_schedule(&ve->base.sched_engine->tasklet); |
| |
| unlock: |
| spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags); |
| } |
| |
| static struct intel_context * |
| execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, |
| unsigned long flags) |
| { |
| struct drm_i915_private *i915 = siblings[0]->i915; |
| struct virtual_engine *ve; |
| unsigned int n; |
| int err; |
| |
| ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); |
| if (!ve) |
| return ERR_PTR(-ENOMEM); |
| |
| ve->base.i915 = i915; |
| ve->base.gt = siblings[0]->gt; |
| ve->base.uncore = siblings[0]->uncore; |
| ve->base.id = -1; |
| |
| ve->base.class = OTHER_CLASS; |
| ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; |
| ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| |
| /* |
| * The decision on whether to submit a request using semaphores |
| * depends on the saturated state of the engine. We only compute |
| * this during HW submission of the request, and we need for this |
| * state to be globally applied to all requests being submitted |
| * to this engine. Virtual engines encompass more than one physical |
| * engine and so we cannot accurately tell in advance if one of those |
| * engines is already saturated and so cannot afford to use a semaphore |
| * and be pessimized in priority for doing so -- if we are the only |
| * context using semaphores after all other clients have stopped, we |
| * will be starved on the saturated system. Such a global switch for |
| * semaphores is less than ideal, but alas is the current compromise. |
| */ |
| ve->base.saturated = ALL_ENGINES; |
| |
| snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); |
| |
| intel_engine_init_execlists(&ve->base); |
| |
| ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); |
| if (!ve->base.sched_engine) { |
| err = -ENOMEM; |
| goto err_put; |
| } |
| ve->base.sched_engine->private_data = &ve->base; |
| |
| ve->base.cops = &virtual_context_ops; |
| ve->base.request_alloc = execlists_request_alloc; |
| |
| ve->base.sched_engine->schedule = i915_schedule; |
| ve->base.sched_engine->kick_backend = kick_execlists; |
| ve->base.submit_request = virtual_submit_request; |
| |
| INIT_LIST_HEAD(virtual_queue(ve)); |
| tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet); |
| |
| intel_context_init(&ve->context, &ve->base); |
| |
| ve->base.breadcrumbs = intel_breadcrumbs_create(NULL); |
| if (!ve->base.breadcrumbs) { |
| err = -ENOMEM; |
| goto err_put; |
| } |
| |
| for (n = 0; n < count; n++) { |
| struct intel_engine_cs *sibling = siblings[n]; |
| |
| GEM_BUG_ON(!is_power_of_2(sibling->mask)); |
| if (sibling->mask & ve->base.mask) { |
| drm_dbg(&i915->drm, |
| "duplicate %s entry in load balancer\n", |
| sibling->name); |
| err = -EINVAL; |
| goto err_put; |
| } |
| |
| /* |
| * The virtual engine implementation is tightly coupled to |
| * the execlists backend -- we push out request directly |
| * into a tree inside each physical engine. We could support |
| * layering if we handle cloning of the requests and |
| * submitting a copy into each backend. |
| */ |
| if (sibling->sched_engine->tasklet.callback != |
| execlists_submission_tasklet) { |
| err = -ENODEV; |
| goto err_put; |
| } |
| |
| GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); |
| RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); |
| |
| ve->siblings[ve->num_siblings++] = sibling; |
| ve->base.mask |= sibling->mask; |
| ve->base.logical_mask |= sibling->logical_mask; |
| |
| /* |
| * All physical engines must be compatible for their emission |
| * functions (as we build the instructions during request |
| * construction and do not alter them before submission |
| * on the physical engine). We use the engine class as a guide |
| * here, although that could be refined. |
| */ |
| if (ve->base.class != OTHER_CLASS) { |
| if (ve->base.class != sibling->class) { |
| drm_dbg(&i915->drm, |
| "invalid mixing of engine class, sibling %d, already %d\n", |
| sibling->class, ve->base.class); |
| err = -EINVAL; |
| goto err_put; |
| } |
| continue; |
| } |
| |
| ve->base.class = sibling->class; |
| ve->base.uabi_class = sibling->uabi_class; |
| snprintf(ve->base.name, sizeof(ve->base.name), |
| "v%dx%d", ve->base.class, count); |
| ve->base.context_size = sibling->context_size; |
| |
| ve->base.add_active_request = sibling->add_active_request; |
| ve->base.remove_active_request = sibling->remove_active_request; |
| ve->base.emit_bb_start = sibling->emit_bb_start; |
| ve->base.emit_flush = sibling->emit_flush; |
| ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; |
| ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; |
| ve->base.emit_fini_breadcrumb_dw = |
| sibling->emit_fini_breadcrumb_dw; |
| |
| ve->base.flags = sibling->flags; |
| } |
| |
| ve->base.flags |= I915_ENGINE_IS_VIRTUAL; |
| |
| virtual_engine_initial_hint(ve); |
| return &ve->context; |
| |
| err_put: |
| intel_context_put(&ve->context); |
| return ERR_PTR(err); |
| } |
| |
| void intel_execlists_show_requests(struct intel_engine_cs *engine, |
| struct drm_printer *m, |
| void (*show_request)(struct drm_printer *m, |
| const struct i915_request *rq, |
| const char *prefix, |
| int indent), |
| unsigned int max) |
| { |
| const struct intel_engine_execlists *execlists = &engine->execlists; |
| struct i915_sched_engine *sched_engine = engine->sched_engine; |
| struct i915_request *rq, *last; |
| unsigned long flags; |
| unsigned int count; |
| struct rb_node *rb; |
| |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| |
| last = NULL; |
| count = 0; |
| list_for_each_entry(rq, &sched_engine->requests, sched.link) { |
| if (count++ < max - 1) |
| show_request(m, rq, "\t\t", 0); |
| else |
| last = rq; |
| } |
| if (last) { |
| if (count > max) { |
| drm_printf(m, |
| "\t\t...skipping %d executing requests...\n", |
| count - max); |
| } |
| show_request(m, last, "\t\t", 0); |
| } |
| |
| if (sched_engine->queue_priority_hint != INT_MIN) |
| drm_printf(m, "\t\tQueue priority hint: %d\n", |
| READ_ONCE(sched_engine->queue_priority_hint)); |
| |
| last = NULL; |
| count = 0; |
| for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { |
| struct i915_priolist *p = rb_entry(rb, typeof(*p), node); |
| |
| priolist_for_each_request(rq, p) { |
| if (count++ < max - 1) |
| show_request(m, rq, "\t\t", 0); |
| else |
| last = rq; |
| } |
| } |
| if (last) { |
| if (count > max) { |
| drm_printf(m, |
| "\t\t...skipping %d queued requests...\n", |
| count - max); |
| } |
| show_request(m, last, "\t\t", 0); |
| } |
| |
| last = NULL; |
| count = 0; |
| for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| struct i915_request *rq = READ_ONCE(ve->request); |
| |
| if (rq) { |
| if (count++ < max - 1) |
| show_request(m, rq, "\t\t", 0); |
| else |
| last = rq; |
| } |
| } |
| if (last) { |
| if (count > max) { |
| drm_printf(m, |
| "\t\t...skipping %d virtual requests...\n", |
| count - max); |
| } |
| show_request(m, last, "\t\t", 0); |
| } |
| |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| } |
| |
| void intel_execlists_dump_active_requests(struct intel_engine_cs *engine, |
| struct i915_request *hung_rq, |
| struct drm_printer *m) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&engine->sched_engine->lock, flags); |
| |
| intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m); |
| |
| drm_printf(m, "\tOn hold?: %zu\n", |
| list_count_nodes(&engine->sched_engine->hold)); |
| |
| spin_unlock_irqrestore(&engine->sched_engine->lock, flags); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftest_execlists.c" |
| #endif |