| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "xe_gt_pagefault.h" |
| |
| #include <linux/bitfield.h> |
| #include <linux/circ_buf.h> |
| |
| #include <drm/drm_exec.h> |
| #include <drm/drm_managed.h> |
| #include <drm/ttm/ttm_execbuf_util.h> |
| |
| #include "abi/guc_actions_abi.h" |
| #include "xe_bo.h" |
| #include "xe_gt.h" |
| #include "xe_gt_tlb_invalidation.h" |
| #include "xe_guc.h" |
| #include "xe_guc_ct.h" |
| #include "xe_migrate.h" |
| #include "xe_pt.h" |
| #include "xe_trace.h" |
| #include "xe_vm.h" |
| |
| struct pagefault { |
| u64 page_addr; |
| u32 asid; |
| u16 pdata; |
| u8 vfid; |
| u8 access_type; |
| u8 fault_type; |
| u8 fault_level; |
| u8 engine_class; |
| u8 engine_instance; |
| u8 fault_unsuccessful; |
| bool trva_fault; |
| }; |
| |
| enum access_type { |
| ACCESS_TYPE_READ = 0, |
| ACCESS_TYPE_WRITE = 1, |
| ACCESS_TYPE_ATOMIC = 2, |
| ACCESS_TYPE_RESERVED = 3, |
| }; |
| |
| enum fault_type { |
| NOT_PRESENT = 0, |
| WRITE_ACCESS_VIOLATION = 1, |
| ATOMIC_ACCESS_VIOLATION = 2, |
| }; |
| |
| struct acc { |
| u64 va_range_base; |
| u32 asid; |
| u32 sub_granularity; |
| u8 granularity; |
| u8 vfid; |
| u8 access_type; |
| u8 engine_class; |
| u8 engine_instance; |
| }; |
| |
| static bool access_is_atomic(enum access_type access_type) |
| { |
| return access_type == ACCESS_TYPE_ATOMIC; |
| } |
| |
| static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma) |
| { |
| return BIT(tile->id) & vma->tile_present && |
| !(BIT(tile->id) & vma->tile_invalidated); |
| } |
| |
| static bool vma_matches(struct xe_vma *vma, u64 page_addr) |
| { |
| if (page_addr > xe_vma_end(vma) - 1 || |
| page_addr + SZ_4K - 1 < xe_vma_start(vma)) |
| return false; |
| |
| return true; |
| } |
| |
| static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr) |
| { |
| struct xe_vma *vma = NULL; |
| |
| if (vm->usm.last_fault_vma) { /* Fast lookup */ |
| if (vma_matches(vm->usm.last_fault_vma, page_addr)) |
| vma = vm->usm.last_fault_vma; |
| } |
| if (!vma) |
| vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K); |
| |
| return vma; |
| } |
| |
| static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma, |
| bool atomic, unsigned int id) |
| { |
| struct xe_bo *bo = xe_vma_bo(vma); |
| struct xe_vm *vm = xe_vma_vm(vma); |
| int err; |
| |
| err = xe_vm_lock_vma(exec, vma); |
| if (err) |
| return err; |
| |
| if (atomic && IS_DGFX(vm->xe)) { |
| if (xe_vma_is_userptr(vma)) { |
| err = -EACCES; |
| return err; |
| } |
| |
| /* Migrate to VRAM, move should invalidate the VMA first */ |
| err = xe_bo_migrate(bo, XE_PL_VRAM0 + id); |
| if (err) |
| return err; |
| } else if (bo) { |
| /* Create backing store if needed */ |
| err = xe_bo_validate(bo, vm, true); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| struct xe_tile *tile = gt_to_tile(gt); |
| struct drm_exec exec; |
| struct xe_vm *vm; |
| struct xe_vma *vma = NULL; |
| struct dma_fence *fence; |
| bool write_locked; |
| int ret = 0; |
| bool atomic; |
| |
| /* SW isn't expected to handle TRTT faults */ |
| if (pf->trva_fault) |
| return -EFAULT; |
| |
| /* ASID to VM */ |
| mutex_lock(&xe->usm.lock); |
| vm = xa_load(&xe->usm.asid_to_vm, pf->asid); |
| if (vm && xe_vm_in_fault_mode(vm)) |
| xe_vm_get(vm); |
| else |
| vm = NULL; |
| mutex_unlock(&xe->usm.lock); |
| if (!vm) |
| return -EINVAL; |
| |
| retry_userptr: |
| /* |
| * TODO: Avoid exclusive lock if VM doesn't have userptrs, or |
| * start out read-locked? |
| */ |
| down_write(&vm->lock); |
| write_locked = true; |
| vma = lookup_vma(vm, pf->page_addr); |
| if (!vma) { |
| ret = -EINVAL; |
| goto unlock_vm; |
| } |
| |
| if (!xe_vma_is_userptr(vma) || |
| !xe_vma_userptr_check_repin(to_userptr_vma(vma))) { |
| downgrade_write(&vm->lock); |
| write_locked = false; |
| } |
| |
| trace_xe_vma_pagefault(vma); |
| |
| atomic = access_is_atomic(pf->access_type); |
| |
| /* Check if VMA is valid */ |
| if (vma_is_valid(tile, vma) && !atomic) |
| goto unlock_vm; |
| |
| /* TODO: Validate fault */ |
| |
| if (xe_vma_is_userptr(vma) && write_locked) { |
| struct xe_userptr_vma *uvma = to_userptr_vma(vma); |
| |
| spin_lock(&vm->userptr.invalidated_lock); |
| list_del_init(&uvma->userptr.invalidate_link); |
| spin_unlock(&vm->userptr.invalidated_lock); |
| |
| ret = xe_vma_userptr_pin_pages(uvma); |
| if (ret) |
| goto unlock_vm; |
| |
| downgrade_write(&vm->lock); |
| write_locked = false; |
| } |
| |
| /* Lock VM and BOs dma-resv */ |
| drm_exec_init(&exec, 0, 0); |
| drm_exec_until_all_locked(&exec) { |
| ret = xe_pf_begin(&exec, vma, atomic, tile->id); |
| drm_exec_retry_on_contention(&exec); |
| if (ret) |
| goto unlock_dma_resv; |
| } |
| |
| /* Bind VMA only to the GT that has faulted */ |
| trace_xe_vma_pf_bind(vma); |
| fence = __xe_pt_bind_vma(tile, vma, xe_tile_migrate_engine(tile), NULL, 0, |
| vma->tile_present & BIT(tile->id)); |
| if (IS_ERR(fence)) { |
| ret = PTR_ERR(fence); |
| goto unlock_dma_resv; |
| } |
| |
| /* |
| * XXX: Should we drop the lock before waiting? This only helps if doing |
| * GPU binds which is currently only done if we have to wait for more |
| * than 10ms on a move. |
| */ |
| dma_fence_wait(fence, false); |
| dma_fence_put(fence); |
| |
| if (xe_vma_is_userptr(vma)) |
| ret = xe_vma_userptr_check_repin(to_userptr_vma(vma)); |
| vma->tile_invalidated &= ~BIT(tile->id); |
| |
| unlock_dma_resv: |
| drm_exec_fini(&exec); |
| unlock_vm: |
| if (!ret) |
| vm->usm.last_fault_vma = vma; |
| if (write_locked) |
| up_write(&vm->lock); |
| else |
| up_read(&vm->lock); |
| if (ret == -EAGAIN) |
| goto retry_userptr; |
| |
| if (!ret) { |
| ret = xe_gt_tlb_invalidation_vma(gt, NULL, vma); |
| if (ret >= 0) |
| ret = 0; |
| } |
| xe_vm_put(vm); |
| |
| return ret; |
| } |
| |
| static int send_pagefault_reply(struct xe_guc *guc, |
| struct xe_guc_pagefault_reply *reply) |
| { |
| u32 action[] = { |
| XE_GUC_ACTION_PAGE_FAULT_RES_DESC, |
| reply->dw0, |
| reply->dw1, |
| }; |
| |
| return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); |
| } |
| |
| static void print_pagefault(struct xe_device *xe, struct pagefault *pf) |
| { |
| drm_dbg(&xe->drm, "\n\tASID: %d\n" |
| "\tVFID: %d\n" |
| "\tPDATA: 0x%04x\n" |
| "\tFaulted Address: 0x%08x%08x\n" |
| "\tFaultType: %d\n" |
| "\tAccessType: %d\n" |
| "\tFaultLevel: %d\n" |
| "\tEngineClass: %d\n" |
| "\tEngineInstance: %d\n", |
| pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr), |
| lower_32_bits(pf->page_addr), |
| pf->fault_type, pf->access_type, pf->fault_level, |
| pf->engine_class, pf->engine_instance); |
| } |
| |
| #define PF_MSG_LEN_DW 4 |
| |
| static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf) |
| { |
| const struct xe_guc_pagefault_desc *desc; |
| bool ret = false; |
| |
| spin_lock_irq(&pf_queue->lock); |
| if (pf_queue->tail != pf_queue->head) { |
| desc = (const struct xe_guc_pagefault_desc *) |
| (pf_queue->data + pf_queue->tail); |
| |
| pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0); |
| pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0); |
| pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0); |
| pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0); |
| pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) << |
| PFD_PDATA_HI_SHIFT; |
| pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0); |
| pf->asid = FIELD_GET(PFD_ASID, desc->dw1); |
| pf->vfid = FIELD_GET(PFD_VFID, desc->dw2); |
| pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2); |
| pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2); |
| pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) << |
| PFD_VIRTUAL_ADDR_HI_SHIFT; |
| pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) << |
| PFD_VIRTUAL_ADDR_LO_SHIFT; |
| |
| pf_queue->tail = (pf_queue->tail + PF_MSG_LEN_DW) % |
| PF_QUEUE_NUM_DW; |
| ret = true; |
| } |
| spin_unlock_irq(&pf_queue->lock); |
| |
| return ret; |
| } |
| |
| static bool pf_queue_full(struct pf_queue *pf_queue) |
| { |
| lockdep_assert_held(&pf_queue->lock); |
| |
| return CIRC_SPACE(pf_queue->head, pf_queue->tail, PF_QUEUE_NUM_DW) <= |
| PF_MSG_LEN_DW; |
| } |
| |
| int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len) |
| { |
| struct xe_gt *gt = guc_to_gt(guc); |
| struct xe_device *xe = gt_to_xe(gt); |
| struct pf_queue *pf_queue; |
| unsigned long flags; |
| u32 asid; |
| bool full; |
| |
| /* |
| * The below logic doesn't work unless PF_QUEUE_NUM_DW % PF_MSG_LEN_DW == 0 |
| */ |
| BUILD_BUG_ON(PF_QUEUE_NUM_DW % PF_MSG_LEN_DW); |
| |
| if (unlikely(len != PF_MSG_LEN_DW)) |
| return -EPROTO; |
| |
| asid = FIELD_GET(PFD_ASID, msg[1]); |
| pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE); |
| |
| spin_lock_irqsave(&pf_queue->lock, flags); |
| full = pf_queue_full(pf_queue); |
| if (!full) { |
| memcpy(pf_queue->data + pf_queue->head, msg, len * sizeof(u32)); |
| pf_queue->head = (pf_queue->head + len) % PF_QUEUE_NUM_DW; |
| queue_work(gt->usm.pf_wq, &pf_queue->worker); |
| } else { |
| drm_warn(&xe->drm, "PF Queue full, shouldn't be possible"); |
| } |
| spin_unlock_irqrestore(&pf_queue->lock, flags); |
| |
| return full ? -ENOSPC : 0; |
| } |
| |
| #define USM_QUEUE_MAX_RUNTIME_MS 20 |
| |
| static void pf_queue_work_func(struct work_struct *w) |
| { |
| struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker); |
| struct xe_gt *gt = pf_queue->gt; |
| struct xe_device *xe = gt_to_xe(gt); |
| struct xe_guc_pagefault_reply reply = {}; |
| struct pagefault pf = {}; |
| unsigned long threshold; |
| int ret; |
| |
| threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS); |
| |
| while (get_pagefault(pf_queue, &pf)) { |
| ret = handle_pagefault(gt, &pf); |
| if (unlikely(ret)) { |
| print_pagefault(xe, &pf); |
| pf.fault_unsuccessful = 1; |
| drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret); |
| } |
| |
| reply.dw0 = FIELD_PREP(PFR_VALID, 1) | |
| FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) | |
| FIELD_PREP(PFR_REPLY, PFR_ACCESS) | |
| FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) | |
| FIELD_PREP(PFR_ASID, pf.asid); |
| |
| reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) | |
| FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) | |
| FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) | |
| FIELD_PREP(PFR_PDATA, pf.pdata); |
| |
| send_pagefault_reply(>->uc.guc, &reply); |
| |
| if (time_after(jiffies, threshold) && |
| pf_queue->tail != pf_queue->head) { |
| queue_work(gt->usm.pf_wq, w); |
| break; |
| } |
| } |
| } |
| |
| static void acc_queue_work_func(struct work_struct *w); |
| |
| int xe_gt_pagefault_init(struct xe_gt *gt) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| int i; |
| |
| if (!xe->info.has_usm) |
| return 0; |
| |
| for (i = 0; i < NUM_PF_QUEUE; ++i) { |
| gt->usm.pf_queue[i].gt = gt; |
| spin_lock_init(>->usm.pf_queue[i].lock); |
| INIT_WORK(>->usm.pf_queue[i].worker, pf_queue_work_func); |
| } |
| for (i = 0; i < NUM_ACC_QUEUE; ++i) { |
| gt->usm.acc_queue[i].gt = gt; |
| spin_lock_init(>->usm.acc_queue[i].lock); |
| INIT_WORK(>->usm.acc_queue[i].worker, acc_queue_work_func); |
| } |
| |
| gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue", |
| WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE); |
| if (!gt->usm.pf_wq) |
| return -ENOMEM; |
| |
| gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue", |
| WQ_UNBOUND | WQ_HIGHPRI, |
| NUM_ACC_QUEUE); |
| if (!gt->usm.acc_wq) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void xe_gt_pagefault_reset(struct xe_gt *gt) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| int i; |
| |
| if (!xe->info.has_usm) |
| return; |
| |
| for (i = 0; i < NUM_PF_QUEUE; ++i) { |
| spin_lock_irq(>->usm.pf_queue[i].lock); |
| gt->usm.pf_queue[i].head = 0; |
| gt->usm.pf_queue[i].tail = 0; |
| spin_unlock_irq(>->usm.pf_queue[i].lock); |
| } |
| |
| for (i = 0; i < NUM_ACC_QUEUE; ++i) { |
| spin_lock(>->usm.acc_queue[i].lock); |
| gt->usm.acc_queue[i].head = 0; |
| gt->usm.acc_queue[i].tail = 0; |
| spin_unlock(>->usm.acc_queue[i].lock); |
| } |
| } |
| |
| static int granularity_in_byte(int val) |
| { |
| switch (val) { |
| case 0: |
| return SZ_128K; |
| case 1: |
| return SZ_2M; |
| case 2: |
| return SZ_16M; |
| case 3: |
| return SZ_64M; |
| default: |
| return 0; |
| } |
| } |
| |
| static int sub_granularity_in_byte(int val) |
| { |
| return (granularity_in_byte(val) / 32); |
| } |
| |
| static void print_acc(struct xe_device *xe, struct acc *acc) |
| { |
| drm_warn(&xe->drm, "Access counter request:\n" |
| "\tType: %s\n" |
| "\tASID: %d\n" |
| "\tVFID: %d\n" |
| "\tEngine: %d:%d\n" |
| "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n" |
| "\tSub_Granularity Vector: 0x%08x\n" |
| "\tVA Range base: 0x%016llx\n", |
| acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL", |
| acc->asid, acc->vfid, acc->engine_class, acc->engine_instance, |
| granularity_in_byte(acc->granularity) / SZ_1K, |
| sub_granularity_in_byte(acc->granularity) / SZ_1K, |
| acc->sub_granularity, acc->va_range_base); |
| } |
| |
| static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc) |
| { |
| u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) * |
| sub_granularity_in_byte(acc->granularity); |
| |
| return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K); |
| } |
| |
| static int handle_acc(struct xe_gt *gt, struct acc *acc) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| struct xe_tile *tile = gt_to_tile(gt); |
| struct drm_exec exec; |
| struct xe_vm *vm; |
| struct xe_vma *vma; |
| int ret = 0; |
| |
| /* We only support ACC_TRIGGER at the moment */ |
| if (acc->access_type != ACC_TRIGGER) |
| return -EINVAL; |
| |
| /* ASID to VM */ |
| mutex_lock(&xe->usm.lock); |
| vm = xa_load(&xe->usm.asid_to_vm, acc->asid); |
| if (vm) |
| xe_vm_get(vm); |
| mutex_unlock(&xe->usm.lock); |
| if (!vm || !xe_vm_in_fault_mode(vm)) |
| return -EINVAL; |
| |
| down_read(&vm->lock); |
| |
| /* Lookup VMA */ |
| vma = get_acc_vma(vm, acc); |
| if (!vma) { |
| ret = -EINVAL; |
| goto unlock_vm; |
| } |
| |
| trace_xe_vma_acc(vma); |
| |
| /* Userptr or null can't be migrated, nothing to do */ |
| if (xe_vma_has_no_bo(vma)) |
| goto unlock_vm; |
| |
| /* Lock VM and BOs dma-resv */ |
| drm_exec_init(&exec, 0, 0); |
| drm_exec_until_all_locked(&exec) { |
| ret = xe_pf_begin(&exec, vma, true, tile->id); |
| drm_exec_retry_on_contention(&exec); |
| if (ret) |
| break; |
| } |
| |
| drm_exec_fini(&exec); |
| unlock_vm: |
| up_read(&vm->lock); |
| xe_vm_put(vm); |
| |
| return ret; |
| } |
| |
| #define make_u64(hi__, low__) ((u64)(hi__) << 32 | (u64)(low__)) |
| |
| #define ACC_MSG_LEN_DW 4 |
| |
| static bool get_acc(struct acc_queue *acc_queue, struct acc *acc) |
| { |
| const struct xe_guc_acc_desc *desc; |
| bool ret = false; |
| |
| spin_lock(&acc_queue->lock); |
| if (acc_queue->tail != acc_queue->head) { |
| desc = (const struct xe_guc_acc_desc *) |
| (acc_queue->data + acc_queue->tail); |
| |
| acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2); |
| acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 | |
| FIELD_GET(ACC_SUBG_LO, desc->dw0); |
| acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1); |
| acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1); |
| acc->asid = FIELD_GET(ACC_ASID, desc->dw1); |
| acc->vfid = FIELD_GET(ACC_VFID, desc->dw2); |
| acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0); |
| acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI, |
| desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO); |
| |
| acc_queue->tail = (acc_queue->tail + ACC_MSG_LEN_DW) % |
| ACC_QUEUE_NUM_DW; |
| ret = true; |
| } |
| spin_unlock(&acc_queue->lock); |
| |
| return ret; |
| } |
| |
| static void acc_queue_work_func(struct work_struct *w) |
| { |
| struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker); |
| struct xe_gt *gt = acc_queue->gt; |
| struct xe_device *xe = gt_to_xe(gt); |
| struct acc acc = {}; |
| unsigned long threshold; |
| int ret; |
| |
| threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS); |
| |
| while (get_acc(acc_queue, &acc)) { |
| ret = handle_acc(gt, &acc); |
| if (unlikely(ret)) { |
| print_acc(xe, &acc); |
| drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret); |
| } |
| |
| if (time_after(jiffies, threshold) && |
| acc_queue->tail != acc_queue->head) { |
| queue_work(gt->usm.acc_wq, w); |
| break; |
| } |
| } |
| } |
| |
| static bool acc_queue_full(struct acc_queue *acc_queue) |
| { |
| lockdep_assert_held(&acc_queue->lock); |
| |
| return CIRC_SPACE(acc_queue->head, acc_queue->tail, ACC_QUEUE_NUM_DW) <= |
| ACC_MSG_LEN_DW; |
| } |
| |
| int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len) |
| { |
| struct xe_gt *gt = guc_to_gt(guc); |
| struct acc_queue *acc_queue; |
| u32 asid; |
| bool full; |
| |
| /* |
| * The below logic doesn't work unless ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW == 0 |
| */ |
| BUILD_BUG_ON(ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW); |
| |
| if (unlikely(len != ACC_MSG_LEN_DW)) |
| return -EPROTO; |
| |
| asid = FIELD_GET(ACC_ASID, msg[1]); |
| acc_queue = >->usm.acc_queue[asid % NUM_ACC_QUEUE]; |
| |
| spin_lock(&acc_queue->lock); |
| full = acc_queue_full(acc_queue); |
| if (!full) { |
| memcpy(acc_queue->data + acc_queue->head, msg, |
| len * sizeof(u32)); |
| acc_queue->head = (acc_queue->head + len) % ACC_QUEUE_NUM_DW; |
| queue_work(gt->usm.acc_wq, &acc_queue->worker); |
| } else { |
| drm_warn(>_to_xe(gt)->drm, "ACC Queue full, dropping ACC"); |
| } |
| spin_unlock(&acc_queue->lock); |
| |
| return full ? -ENOSPC : 0; |
| } |